001     627880
005     20250715151538.0
024 7 _ |a 10.1038/s41586-025-08936-w
|2 doi
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-01655
|2 datacite_doi
024 7 _ |a altmetric:177087662
|2 altmetric
024 7 _ |a pmid:40369082
|2 pmid
024 7 _ |a WOS:001488377700001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4410362150
037 _ _ |a PUBDB-2025-01655
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Ji, Cheng
|0 P:(DE-H253)PIP1090229
|b 0
245 _ _ |a Ultrahigh-pressure crystallographic passage towards metallic hydrogen
260 _ _ |a London [u.a.]
|c 2025
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747986157_2912852
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The structural evolution of molecular hydrogen H2 under multi-megabar compression and its relation to atomic metallic hydrogen is a key unsolved problem in condensed-matter physics. Although dozens of crystal structures have been proposed by theory1,2,3,4, only one, the simple hexagonal-close-packed (hcp) structure of only spherical disordered H2, has been previously confirmed in experiments5. Through advancing nano-focused synchrotron X-ray probes, here we report the observation of the transition from hcp H2 to a post-hcp structure with a six-fold larger supercell at pressures above 212 GPa, indicating the change of spherical H2 to various ordered configurations. Theoretical calculations based on our XRD results found a time-averaged structure model in the space group with alternating layers of spherically disordered H2 and new graphene-like layers consisting of H2 trimers (H6) formed by the association of three H2 molecules. This supercell has not been reported by any previous theoretical study for the post-hcp phase, but is close to a number of theoretical models with mixed-layer structures. The evidence of a structural transition beyond hcp establishes the trend of H2 molecular association towards polymerization at extreme pressures, giving clues about the nature of the molecular-to-atomic transition of metallic hydrogen. Considering the spectroscopic behaviours that show strong vibrational and bending peaks of H2 up to 400 GPa, it would be prudent to speculate the continuation of hydrogen molecular polymerization up to its metallization.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20190637 (I-20190637)
|0 G:(DE-H253)I-20190637
|c I-20190637
|x 2
536 _ _ |a FS-Proposal: I-20220481 (I-20220481)
|0 G:(DE-H253)I-20220481
|c I-20220481
|x 3
536 _ _ |a FS-Proposal: I-20230465 (I-20230465)
|0 G:(DE-H253)I-20230465
|c I-20230465
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.2-20150101
|6 EXP:(DE-H253)P-P02.2-20150101
|x 0
700 1 _ |a Li, Bing
|0 P:(DE-H253)PIP1090339
|b 1
700 1 _ |a Luo, Jie
|0 P:(DE-H253)PIP1096288
|b 2
700 1 _ |a Zhao, Yongsheng
|0 P:(DE-H253)PIP1081797
|b 3
700 1 _ |a Liu, Yuan
|0 P:(DE-H253)PIP1109731
|b 4
700 1 _ |a Glazyrin, Konstantin
|0 P:(DE-H253)PIP1019654
|b 5
700 1 _ |a Björling, Alexander
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Marçal, Lucas A. B.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kahnt, Maik
|0 P:(DE-H253)PIP1020373
|b 8
700 1 _ |a Kalbfleisch, Sebastian
|0 P:(DE-H253)PIP1011695
|b 9
700 1 _ |a Liu, Wenjun
|0 0000-0001-9072-5379
|b 10
700 1 _ |a Gao, Yang
|0 P:(DE-H253)PIP1090496
|b 11
700 1 _ |a Wang, Junyue
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Mao, Wendy
|0 P:(DE-H253)PIP1105961
|b 13
700 1 _ |a Liu, Hanyu
|0 0000-0003-2394-5421
|b 14
700 1 _ |a Ma, Yanming
|0 P:(DE-H253)PIP1090354
|b 15
700 1 _ |a Ding, Yang
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Yang, Wenge
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Mao, Ho-Kwang
|0 P:(DE-H253)PIP1090494
|b 18
|e Corresponding author
773 _ _ |a 10.1038/s41586-025-08936-w
|g Vol. 641, no. 8064, p. 904 - 909
|0 PERI:(DE-600)1413423-8
|n 8064
|p 904 - 909
|t Nature
|v 641
|y 2025
|x 0028-0836
856 4 _ |u https://www.nature.com/articles/s41586-025-08936-w
856 4 _ |u https://bib-pubdb1.desy.de/record/627880/files/MS_rev2_20250310_final-shorten_Fig1-title_withTables1-2.pdf
|y Published on 2025-05-14. Available in OpenAccess from 2025-11-14.
856 4 _ |u https://bib-pubdb1.desy.de/record/627880/files/s41586-025-08936-w.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/627880/files/MS_rev2_20250310_final-shorten_Fig1-title_withTables1-2.pdf?subformat=pdfa
|x pdfa
|y Published on 2025-05-14. Available in OpenAccess from 2025-11-14.
856 4 _ |u https://bib-pubdb1.desy.de/record/627880/files/s41586-025-08936-w.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:627880
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1090229
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1090339
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1096288
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1081797
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1081797
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1109731
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1019654
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1019654
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1020373
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1011695
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1090496
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 13
|6 P:(DE-H253)PIP1105961
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 13
|6 P:(DE-H253)PIP1105961
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1090354
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 18
|6 P:(DE-H253)PIP1090494
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-06
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-06
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a IF >= 60
|0 StatID:(DE-HGF)9960
|2 StatID
|b NATURE : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2025-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21