001     627850
005     20250808212030.0
024 7 _ |a arXiv:2505.08555
|2 arXiv
024 7 _ |a 10.1103/hqmt-vq1g
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-01633
|2 datacite_doi
037 _ _ |a PUBDB-2025-01633
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2505.08555
|2 arXiv
100 1 _ |a Rubiera Gimeno, José Alejandro
|0 P:(DE-H253)PIP1089473
|b 0
|e Corresponding author
|u desy
245 _ _ |a Simulation and measurement of Black Body Radiation background in a Transition Edge Sensor
260 _ _ |a Ridge, NY
|c 2025
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754643774_2558065
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 13 pages, 11 figures
520 _ _ |a The Any Light Particle Search II (ALPS II) experiment at DESY, Hamburg, is a Light-Shining-through-a-Wall (LSW) experiment aiming to probe the existence of axions and axion-like particles (ALPs), which are candidates for dark matter. Data collection in ALPS II is underway utilizing a heterodyne-based detection scheme. A complementary run for confirmation or as an alternative method is planned using single photon detection, requiring a sensor capable of measuring low-energy photons ($1064\,\mathrm{nm}$, $1.165\,\mathrm{eV}$) with high efficiency (higher than $50\,\%$) and a low background rate (below $7.7\cdot10^{-6}\,\mathrm{cps}$). To meet these requirements, we are investigating a tungsten Transition Edge Sensor (TES) provided by NIST, which operates in its superconducting transition region at millikelvin temperatures. This sensor exploits the drastic change in resistance caused by the absorption of a single photon.We find that the background observed in the setup with a fiber-coupled TES is consistent with Black Body Radiation (BBR) as the primary background contributor.A framework was developed to simulate BBR propagation to the TES under realistic conditions.The framework not only allows the exploration of background reduction strategies, such as improving the TES energy resolution, but also reproduces, within uncertainties, the spectral distribution of the observed background.These simulations have been validated with experimental data, in agreement with the modeled background distribution, and show that the improved energy resolution reduces the background rate in the $1064\,\mathrm{nm}$ signal region by one order of magnitude, to approximately $10^{-4}\,\mathrm{cps}$. However, this rate must be reduced further to meet the ALPS II requirements.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306)
|0 G:(GEPRIS)390833306
|c 390833306
|x 1
536 _ _ |a AxionDM - Searching for axion and axion-like-particle dark matter in the laboratory and with high-energy astrophysical observations (948689)
|0 G:(EU-Grant)948689
|c 948689
|f ERC-2020-STG
|x 2
588 _ _ |a Dataset connected to DataCite
693 _ _ |0 EXP:(DE-H253)ALPS-20150101
|5 EXP:(DE-H253)ALPS-20150101
|e Any Light Particle Search
|x 0
700 1 _ |a Isleif, Katharina-Sophie
|0 P:(DE-H253)PIP1091679
|b 1
|u desy
700 1 _ |a Januschek, Friederike
|0 P:(DE-H253)PIP1005478
|b 2
|u desy
700 1 _ |a Lindner, Axel
|0 P:(DE-H253)PIP1003168
|b 3
|u desy
700 1 _ |a Meyer, Manuel
|0 P:(DE-H253)PIP1089089
|b 4
700 1 _ |a Othman, Gulden
|0 P:(DE-H253)PIP1098835
|b 5
700 1 _ |a Rivasto, Elmeri
|0 P:(DE-H253)PIP1108889
|b 6
700 1 _ |a Shah, Rikhav
|0 P:(DE-H253)PIP1086966
|b 7
700 1 _ |a Schwemmbauer, Christina
|0 P:(DE-H253)PIP1089678
|b 8
|u desy
773 _ _ |a 10.1103/hqmt-vq1g
|g Vol. 112, no. 3, p. 032001
|0 PERI:(DE-600)2844732-3
|n 3
|p 032001
|t Physical review / D
|v 112
|y 2025
|x 2470-0010
787 0 _ |a Rubiera Gimeno, José Alejandro et.al.
|d 2025
|i IsParent
|0 PUBDB-2025-01514
|r arXiv:2505.08555
|t Simulation and measurement of Black Body Radiation background in a Transition Edge Sensor
856 4 _ |u https://bib-pubdb1.desy.de/record/627850/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/627850/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/627850/files/hqmt-vq1g.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/627850/files/hqmt-vq1g.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:627850
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1089473
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1089473
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1091679
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1091679
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1005478
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1003168
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1089089
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1098835
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1108889
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1086966
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1089678
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV D : 2022
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV D : 2022
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 1 _ |0 I:(DE-H253)ALPS-20130318
|k ALPS
|l Any Light Particle Search
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)ALPS-20130318
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21