000627277 001__ 627277
000627277 005__ 20250715151524.0
000627277 0247_ $$2doi$$a10.1111/nph.70103
000627277 0247_ $$2ISSN$$a0028-646X
000627277 0247_ $$2ISSN$$a1469-8137
000627277 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-01594
000627277 0247_ $$2altmetric$$aaltmetric:176155931
000627277 0247_ $$2pmid$$apmid:40235337
000627277 0247_ $$2WOS$$aWOS:001467446700001
000627277 0247_ $$2openalex$$aopenalex:W4409512155
000627277 037__ $$aPUBDB-2025-01594
000627277 041__ $$aEnglish
000627277 082__ $$a580
000627277 1001_ $$0P:(DE-H253)PIP1083225$$aMorina, Filis$$b0$$eCorresponding author
000627277 245__ $$aHow eriophyid mites shape metal metabolism in leaf galls on Tilia cordata
000627277 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2025
000627277 3367_ $$2DRIVER$$aarticle
000627277 3367_ $$2DataCite$$aOutput Types/Journal article
000627277 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1748855255_1140297
000627277 3367_ $$2BibTeX$$aARTICLE
000627277 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000627277 3367_ $$00$$2EndNote$$aJournal Article
000627277 520__ $$aMetal metabolism in plant–galler interactions is largely unknown. We hypothesise that themites manipulate metal distribution by sequestration of excessive levels and differential regu-lation of metalloproteins to support the main functions of gall-nutrition, protection and micro-environment. Using the Tilia cordata–eriophyid mites system, we aimed to reveal the role of metals in gallsby investigating their distribution, speciation, gene expression and metabolome profiling. Com-plementary spectroscopy techniques (lXRF and lXANES tomographies, electron paramagneticresonance), histochemical, metabolomic and transcriptomic analyses were employed. Mn was the most abundant micronutrient in the galls. Differential cell-specific Mn accumu-lation (idioblasts vs nutritive tissue) and speciation are essential for its homeostasis. Mn(II)-aquo complex, co-localised with Ca, sequestered in idioblasts, while Mn bound to strongerligands including enzymes accumulated in the nutritive tissue. Zn, Cu and Fe predominatelyaccumulated in the nutritive tissue to support intensive metabolic processes such as secondaryand lipid metabolism, protein N-glycosylation and redox regulation. The slower rate ofredox-sensitive spin probes’ decay in the galls indicated a lower amount of antioxidants thanin the leaf. We reveal essential functions of micronutrients in the galls, supporting the developmentaland chemical changes in the host plant, and the nutrition of the galler.
000627277 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000627277 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000627277 536__ $$0G:(EU-Grant)730872$$aCALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the World (730872)$$c730872$$fH2020-INFRAIA-2016-1$$x2
000627277 536__ $$0G:(DE-H253)I-20191173-EC$$aFS-Proposal: I-20191173 EC (I-20191173-EC)$$cI-20191173-EC$$x3
000627277 536__ $$0G:(DE-H253)I-20211505-EC$$aFS-Proposal: I-20211505 EC (I-20211505-EC)$$cI-20211505-EC$$x4
000627277 536__ $$0G:(DE-H253)I-20211619-EC$$aFS-Proposal: I-20211619 EC (I-20211619-EC)$$cI-20211619-EC$$x5
000627277 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000627277 693__ $$0EXP:(DE-H253)P-P06-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P06-20150101$$aPETRA III$$fPETRA Beamline P06$$x0
000627277 7001_ $$00009-0005-4190-5003$$aKuvelja, Anđela$$b1
000627277 7001_ $$0P:(DE-H253)PIP1021825$$aBrückner, Dennis$$b2
000627277 7001_ $$00000-0002-1868-9913$$aMojović, Miloš$$b3
000627277 7001_ $$00000-0002-0154-6430$$aNakarada, Đura$$b4
000627277 7001_ $$00000-0002-7446-8867$$aBokhari, Syed Nadeem Hussain$$b5
000627277 7001_ $$0P:(DE-H253)PIP1101066$$aVujić, Bojan$$b6
000627277 7001_ $$0P:(DE-H253)PIP1002716$$aFalkenberg, Gerald$$b7
000627277 7001_ $$0P:(DE-H253)PIP1013392$$aKuepper, Hendrik$$b8$$eCorresponding author
000627277 773__ $$0PERI:(DE-600)1472194-6$$a10.1111/nph.70103$$gVol. 246, no. 5, p. 2222 - 2242$$n5$$p2222 - 2242$$tThe new phytologist$$v246$$x0028-646X$$y2025
000627277 8564_ $$uhttps://bib-pubdb1.desy.de/record/627277/files/New%20Phytologist%20-%202025%20-%20Morina%20-%20How%20eriophyid%20mites%20shape%20metal%20metabolism%20in%20leaf%20galls%20on%20Tilia%20cordata.pdf$$yOpenAccess
000627277 8564_ $$uhttps://bib-pubdb1.desy.de/record/627277/files/New%20Phytologist%20-%202025%20-%20Morina%20-%20How%20eriophyid%20mites%20shape%20metal%20metabolism%20in%20leaf%20galls%20on%20Tilia%20cordata.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000627277 909CO $$ooai:bib-pubdb1.desy.de:627277$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000627277 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083225$$aExternal Institute$$b0$$kExtern
000627277 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021825$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000627277 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1101066$$aExternal Institute$$b6$$kExtern
000627277 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002716$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000627277 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013392$$aExternal Institute$$b8$$kExtern
000627277 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000627277 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000627277 9141_ $$y2025
000627277 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
000627277 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
000627277 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-12
000627277 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-12
000627277 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
000627277 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW PHYTOL : 2022$$d2024-12-12
000627277 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEW PHYTOL : 2022$$d2024-12-12
000627277 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-12$$wger
000627277 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
000627277 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
000627277 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000627277 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
000627277 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-12
000627277 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-12$$wger
000627277 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
000627277 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000627277 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
000627277 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000627277 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x1
000627277 980__ $$ajournal
000627277 980__ $$aVDB
000627277 980__ $$aUNRESTRICTED
000627277 980__ $$aI:(DE-H253)HAS-User-20120731
000627277 980__ $$aI:(DE-H253)FS-PETRA-S-20210408
000627277 9801_ $$aFullTexts