001     627267
005     20250715151535.0
024 7 _ |a 10.1039/D4CP03907F
|2 doi
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-01584
|2 datacite_doi
024 7 _ |a 40047179
|2 pmid
024 7 _ |a WOS:001437729600001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4408199215
037 _ _ |a PUBDB-2025-01584
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Bloss, Dana
|0 P:(DE-H253)PIP1025978
|b 0
|e Corresponding author
245 _ _ |a Interplay of protection and damage through intermolecular processes in the decay of electronic core holes in microsolvated organic molecules
260 _ _ |a Cambridge
|c 2025
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747049793_1174699
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Soft X-ray irradiation of molecules causes electronic core-level vacancies through photoelectron emission. In light elements, such as C, N, or O, which are abundant in the biosphere, these vacancies predominantly decay by Auger emission, leading inevitably to dissociative multiply charged states. It was recently demonstrated that an environment can prevent fragmentation of core-level-ionised small organic molecules through immediate non-local decay of the core hole, dissipating charge and energy to the environment. Here, we present an extended photoelectron–photoion–photoion coincidence (PEPIPICO) study of the biorelevant pyrimidine molecule embedded in a water cluster. It is observed and supported by theoretical calculations that the supposed protective effect of the environment is partially reversed if the vacancy is originally located at a water molecule. In this scenario, intermolecular energy or charge transfer from the core-ionised water environment to the pyrimidine molecule leads to ionisation of the latter, however, presumably in non-dissociative cationic states. Our results contribute to a more comprehensive understanding of the complex interplay of protective and harmful effects of an environment in the photochemistry of microsolvated molecules exposed to X-rays.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a DFG project G:(GEPRIS)328961117 - SFB 1319: Extremes Licht zur Analyse und Kontrolle molekularer Chiralität (ELCH) (328961117)
|0 G:(GEPRIS)328961117
|c 328961117
|x 2
536 _ _ |a DFG project G:(GEPRIS)509471550 - Dynamik photoionisations-induzierter Prozesse in laser-präparierten Molekülen in der Gasphase und der wässrigen Phase (509471550)
|0 G:(GEPRIS)509471550
|c 509471550
|x 3
536 _ _ |a ETMD_ICEC - Efficient pathways to neutralization and radical production enabled by environment (692657)
|0 G:(EU-Grant)692657
|c 692657
|f ERC-2015-AdG
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P04
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P04-20150101
|6 EXP:(DE-H253)P-P04-20150101
|x 0
700 1 _ |a Kryzhevoi, Nikolai V.
|b 1
700 1 _ |a Maurmann, Jonas
|b 2
700 1 _ |a Schmidt, Philipp
|0 P:(DE-H253)PIP1014429
|b 3
700 1 _ |a Knie, André
|0 P:(DE-H253)PIP1011674
|b 4
700 1 _ |a Viehmann, Johannes H.
|0 P:(DE-H253)PIP1032785
|b 5
700 1 _ |a Küstner-Wetekam, Catmarna
|0 P:(DE-H253)PIP1022146
|b 6
700 1 _ |a Deinert, Sascha
|0 P:(DE-H253)PIP1006213
|b 7
700 1 _ |a Hartmann, Gregor
|0 P:(DE-H253)PIP1019644
|b 8
700 1 _ |a Trinter, Florian
|0 P:(DE-H253)PIP1017364
|b 9
700 1 _ |a Cederbaum, Lorenz S.
|0 P:(DE-H253)PIP1027260
|b 10
700 1 _ |a Ehresmann, Arno
|0 P:(DE-H253)PIP1010716
|b 11
700 1 _ |a Kuleff, Alexander I.
|0 P:(DE-H253)PIP1102446
|b 12
700 1 _ |a Hans, Andreas
|0 P:(DE-H253)PIP1017360
|b 13
773 _ _ |a 10.1039/D4CP03907F
|g Vol. 27, no. 18, p. 9329 - 9335
|0 PERI:(DE-600)1476244-4
|n 18
|p 9329 - 9335
|t Physical chemistry, chemical physics
|v 27
|y 2025
|x 1463-9076
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/627267/files/PCCP_Blo%C3%9F.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/627267/files/PCCP_Blo%C3%9F.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:627267
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1025978
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1014429
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1011674
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1011674
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1032785
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1022146
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1006213
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1006213
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1006213
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1019644
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1017364
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1027260
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1010716
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1102446
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 12
|6 P:(DE-H253)PIP1102446
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 13
|6 P:(DE-H253)PIP1017360
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2022
|d 2024-12-09
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
920 1 _ |0 I:(DE-H253)FS-PETRA-20140814
|k FS-PETRA
|l FS-PETRA
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 1
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PETRA-20140814
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21