001     626502
005     20250831054605.0
024 7 _ |a 10.1038/s41594-025-01488-7
|2 doi
024 7 _ |a 1545-9993
|2 ISSN
024 7 _ |a 1072-8368
|2 ISSN
024 7 _ |a 1545-9985
|2 ISSN
024 7 _ |a 2331-365X
|2 ISSN
024 7 _ |a altmetric:175975110
|2 altmetric
024 7 _ |a pmid:40205223
|2 pmid
037 _ _ |a PUBDB-2025-01455
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Zabelskii, Dmitrii
|b 0
245 _ _ |a Ion-conducting and gating molecular mechanisms of channelrhodopsin revealed by true-atomic-resolution structures of open and closed states
260 _ _ |a London [u.a.]
|c 2025
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756376192_3860815
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a Channelrhodopsins (ChRs) have emerged as major optogenetics tools, particularly in neuroscience. Despite their importance, the molecular mechanism of ChR opening remains elusive. Moreover, all reported structures of ChRs correspond to either a closed or an early intermediate state and lack the necessary level of detail owing to the limited resolution. Here we present the structures of the closed and open states of a cation-conducting ChR, OLPVR1, from Organic Lake phycodnavirus, belonging to the family of viral ChRs solved at 1.1- and 1.3-Å resolution at physiologically relevant pH conditions (pH 8.0). OLPVR1 was expressed in Escherichia coli and crystallized using an in meso approach, and the structures were solved by X-ray crystallography. We also present the structure of the OLPVR1 protonated state at acidic pH (pH 2.5) at 1.4-Å resolution. Together, these three structures elucidate the molecular mechanisms of the channel’s opening and permeability in detail. Extensive functional studies support the proposed mechanisms. Channel opening is controlled by isomerization of the retinal cofactor, triggering protonation of proton acceptors and deprotonation of proton donors located in the three gates of the channel. The E51 residue in the core of the central gate (similar to E90 of ChR2 from Chlamydomonas reinhardtii) plays a key role in the opening of the channel. E51 flips out of the gate and towards the proton acceptor D200 (D253 in ChR2 in C. reinhardtii), establishing a hydrogen bond between them. Despite differences in subfamilies of ChRs, they share a common gate–cavity architecture, suggesting that they could have similar general gating mechanisms. These results enabled us to design viral rhodopsin with improved properties for optogenetic applications. The structural data and mechanisms might also be helpful for better understanding other ChRs and their engineering.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P14
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P14-20150101
|6 EXP:(DE-H253)P-P14-20150101
|x 0
700 1 _ |a Bukhdruker, Sergey
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bukhalovich, Siarhei
|0 0000-0002-0770-6597
|b 2
700 1 _ |a Tsybrov, Fedor
|0 0000-0001-7422-0899
|b 3
700 1 _ |a Lamm, Gerrit H. U.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Astashkin, Roman
|b 5
700 1 _ |a Doroginin, Demid
|b 6
700 1 _ |a Matveev, Grigory
|b 7
700 1 _ |a Sudarev, Vsevolod
|b 8
700 1 _ |a Kuzmin, Alexander
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Zinovev, Egor
|b 10
700 1 _ |a Vlasova, Anastasiia
|b 11
700 1 _ |a Ryzhykau, Yury
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Ilyinsky, Nikolay
|0 0000-0002-8812-5849
|b 13
700 1 _ |a Gushchin, Ivan
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Bourenkov, Gleb
|0 P:(DE-H253)PIP1007425
|b 15
700 1 _ |a Alekseev, Alexey
|b 16
700 1 _ |a Round, Adam
|0 P:(DE-H253)PIP1028533
|b 17
700 1 _ |a Wachtveitl, Josef
|0 0000-0002-8496-8240
|b 18
700 1 _ |a Bamberg, Ernst
|0 P:(DE-H253)PIP1101635
|b 19
|e Corresponding author
700 1 _ |a Gordeliy, Valentin
|0 P:(DE-H253)PIP1080706
|b 20
|e Corresponding author
773 _ _ |a 10.1038/s41594-025-01488-7
|g Vol. 32, no. 8, p. 1347 - 1357
|0 PERI:(DE-600)2131437-8
|n 8
|p 1347 - 1357
|t Nature structural & molecular biology
|v 32
|y 2025
|x 1545-9993
856 4 _ |u https://www.nature.com/articles/s41594-025-01488-7#article-info
856 4 _ |u https://bib-pubdb1.desy.de/record/626502/files/s41594-025-01488-7.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/626502/files/s41594-025-01488-7.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:626502
|p VDB
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 15
|6 P:(DE-H253)PIP1007425
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 15
|6 P:(DE-H253)PIP1007425
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 17
|6 P:(DE-H253)PIP1028533
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-H253)PIP1101635
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 19
|6 P:(DE-H253)PIP1101635
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 20
|6 P:(DE-H253)PIP1080706
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 20
|6 P:(DE-H253)PIP1080706
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT STRUCT MOL BIOL : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT STRUCT MOL BIOL : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
920 1 _ |0 I:(DE-H253)EMBL-20120731
|k EMBL
|l EMBL
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 _ _ |a I:(DE-H253)EMBL-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21