000626502 001__ 626502
000626502 005__ 20250831054605.0
000626502 0247_ $$2doi$$a10.1038/s41594-025-01488-7
000626502 0247_ $$2ISSN$$a1545-9993
000626502 0247_ $$2ISSN$$a1072-8368
000626502 0247_ $$2ISSN$$a1545-9985
000626502 0247_ $$2ISSN$$a2331-365X
000626502 0247_ $$2altmetric$$aaltmetric:175975110
000626502 0247_ $$2pmid$$apmid:40205223
000626502 037__ $$aPUBDB-2025-01455
000626502 041__ $$aEnglish
000626502 082__ $$a570
000626502 1001_ $$aZabelskii, Dmitrii$$b0
000626502 245__ $$aIon-conducting and gating molecular mechanisms of channelrhodopsin revealed by true-atomic-resolution structures of open and closed states
000626502 260__ $$aLondon [u.a.]$$bNature Publishing Group$$c2025
000626502 3367_ $$2DRIVER$$aarticle
000626502 3367_ $$2DataCite$$aOutput Types/Journal article
000626502 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756376192_3860815
000626502 3367_ $$2BibTeX$$aARTICLE
000626502 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000626502 3367_ $$00$$2EndNote$$aJournal Article
000626502 500__ $$aWaiting for fulltext
000626502 520__ $$aChannelrhodopsins (ChRs) have emerged as major optogenetics tools, particularly in neuroscience. Despite their importance, the molecular mechanism of ChR opening remains elusive. Moreover, all reported structures of ChRs correspond to either a closed or an early intermediate state and lack the necessary level of detail owing to the limited resolution. Here we present the structures of the closed and open states of a cation-conducting ChR, OLPVR1, from Organic Lake phycodnavirus, belonging to the family of viral ChRs solved at 1.1- and 1.3-Å resolution at physiologically relevant pH conditions (pH 8.0). OLPVR1 was expressed in Escherichia coli and crystallized using an in meso approach, and the structures were solved by X-ray crystallography. We also present the structure of the OLPVR1 protonated state at acidic pH (pH 2.5) at 1.4-Å resolution. Together, these three structures elucidate the molecular mechanisms of the channel’s opening and permeability in detail. Extensive functional studies support the proposed mechanisms. Channel opening is controlled by isomerization of the retinal cofactor, triggering protonation of proton acceptors and deprotonation of proton donors located in the three gates of the channel. The E51 residue in the core of the central gate (similar to E90 of ChR2 from Chlamydomonas reinhardtii) plays a key role in the opening of the channel. E51 flips out of the gate and towards the proton acceptor D200 (D253 in ChR2 in C. reinhardtii), establishing a hydrogen bond between them. Despite differences in subfamilies of ChRs, they share a common gate–cavity architecture, suggesting that they could have similar general gating mechanisms. These results enabled us to design viral rhodopsin with improved properties for optogenetic applications. The structural data and mechanisms might also be helpful for better understanding other ChRs and their engineering.
000626502 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000626502 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000626502 693__ $$0EXP:(DE-H253)P-P14-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P14-20150101$$aPETRA III$$fPETRA Beamline P14$$x0
000626502 7001_ $$0P:(DE-HGF)0$$aBukhdruker, Sergey$$b1
000626502 7001_ $$00000-0002-0770-6597$$aBukhalovich, Siarhei$$b2
000626502 7001_ $$00000-0001-7422-0899$$aTsybrov, Fedor$$b3
000626502 7001_ $$0P:(DE-HGF)0$$aLamm, Gerrit H. U.$$b4
000626502 7001_ $$aAstashkin, Roman$$b5
000626502 7001_ $$aDoroginin, Demid$$b6
000626502 7001_ $$aMatveev, Grigory$$b7
000626502 7001_ $$aSudarev, Vsevolod$$b8
000626502 7001_ $$0P:(DE-HGF)0$$aKuzmin, Alexander$$b9
000626502 7001_ $$aZinovev, Egor$$b10
000626502 7001_ $$aVlasova, Anastasiia$$b11
000626502 7001_ $$0P:(DE-HGF)0$$aRyzhykau, Yury$$b12
000626502 7001_ $$00000-0002-8812-5849$$aIlyinsky, Nikolay$$b13
000626502 7001_ $$0P:(DE-HGF)0$$aGushchin, Ivan$$b14
000626502 7001_ $$0P:(DE-H253)PIP1007425$$aBourenkov, Gleb$$b15
000626502 7001_ $$aAlekseev, Alexey$$b16
000626502 7001_ $$0P:(DE-H253)PIP1028533$$aRound, Adam$$b17
000626502 7001_ $$00000-0002-8496-8240$$aWachtveitl, Josef$$b18
000626502 7001_ $$0P:(DE-H253)PIP1101635$$aBamberg, Ernst$$b19$$eCorresponding author
000626502 7001_ $$0P:(DE-H253)PIP1080706$$aGordeliy, Valentin$$b20$$eCorresponding author
000626502 773__ $$0PERI:(DE-600)2131437-8$$a10.1038/s41594-025-01488-7$$gVol. 32, no. 8, p. 1347 - 1357$$n8$$p1347 - 1357$$tNature structural & molecular biology$$v32$$x1545-9993$$y2025
000626502 8564_ $$uhttps://www.nature.com/articles/s41594-025-01488-7#article-info
000626502 8564_ $$uhttps://bib-pubdb1.desy.de/record/626502/files/s41594-025-01488-7.pdf$$yRestricted
000626502 8564_ $$uhttps://bib-pubdb1.desy.de/record/626502/files/s41594-025-01488-7.pdf?subformat=pdfa$$xpdfa$$yRestricted
000626502 909CO $$ooai:bib-pubdb1.desy.de:626502$$pVDB
000626502 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1007425$$aEuropean Molecular Biology Laboratory$$b15$$kEMBL
000626502 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1007425$$aEuropean XFEL$$b15$$kXFEL.EU
000626502 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1028533$$aEuropean XFEL$$b17$$kXFEL.EU
000626502 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1101635$$aExternal Institute$$b19$$kExtern
000626502 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1101635$$aEuropean XFEL$$b19$$kXFEL.EU
000626502 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1080706$$aEuropean Molecular Biology Laboratory$$b20$$kEMBL
000626502 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1080706$$aExternal Institute$$b20$$kExtern
000626502 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000626502 9141_ $$y2025
000626502 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000626502 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2025-01-02$$wger
000626502 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT STRUCT MOL BIOL : 2022$$d2025-01-02
000626502 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000626502 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000626502 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
000626502 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
000626502 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000626502 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000626502 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000626502 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000626502 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000626502 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000626502 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000626502 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT STRUCT MOL BIOL : 2022$$d2025-01-02
000626502 9201_ $$0I:(DE-H253)EMBL-User-20120814$$kEMBL-User$$lEMBL-User$$x0
000626502 9201_ $$0I:(DE-H253)EMBL-20120731$$kEMBL$$lEMBL$$x1
000626502 980__ $$ajournal
000626502 980__ $$aVDB
000626502 980__ $$aI:(DE-H253)EMBL-User-20120814
000626502 980__ $$aI:(DE-H253)EMBL-20120731
000626502 980__ $$aUNRESTRICTED