001     626476
005     20250804212006.0
024 7 _ |a 10.1021/acscatal.4c07438
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-01440
|2 datacite_doi
024 7 _ |a altmetric:174724209
|2 altmetric
024 7 _ |a 40365074
|2 pmid
024 7 _ |a WOS:001433007100001
|2 WOS
024 7 _ |a openalex:W4407954120
|2 openalex
037 _ _ |a PUBDB-2025-01440
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Funke, Franziska Jasmin
|b 0
245 _ _ |a Activity Regulation of a Glutamine Amidotransferase Bienzyme Complex by Substrate-Induced Subunit Interface Expansion
260 _ _ |a Washington, DC
|c 2025
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754319440_3080589
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Glutamine amidotransferases are multienzyme machineries in which reactive ammonia is generated by a glutaminase and then transferred through a sequestered protein tunnel to a synthase active site for incorporation into diverse metabolites. To avoid wasteful metabolite consumption, there is a requirement for synchronized catalysis, but any generally applicable mechanistic insight is still lacking. As synthase activity depends on glutamine turnover, we investigated possible mechanisms controlling glutaminase catalysis using aminodeoxychorismate synthase involved in folate biosynthesis as a model. By analyzing this system in distinct states of catalysis, we found that incubation with glutamine leads to a subunit interface expansion by one-third of its original area. These changes completely enclose the glutaminase active site for sequestered catalysis and the subsequent transport of volatile ammonia to the synthase active site. In view of similar rearrangements in other glutamine amidotransferases, our observations may provide a general mechanism for the catalysis synchronization of this multienzyme family.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P13
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P13-20150101
|6 EXP:(DE-H253)P-P13-20150101
|x 0
700 1 _ |a Schlee, Sandra
|b 1
700 1 _ |a Bento, Isabel
|0 P:(DE-H253)PIP1021139
|b 2
700 1 _ |a Bourenkov, Gleb
|0 P:(DE-H253)PIP1007425
|b 3
700 1 _ |a Sterner, Reinhard
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Wilmanns, Matthias
|0 P:(DE-H253)PIP1001283
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acscatal.4c07438
|g Vol. 15, no. 5, p. 4359 - 4373
|0 PERI:(DE-600)2584887-2
|n 5
|p 4359 - 4373
|t ACS catalysis
|v 15
|y 2025
|x 2155-5435
856 4 _ |u https://pubs.acs.org/doi/full/10.1021/acscatal.4c07438
856 4 _ |u https://bib-pubdb1.desy.de/record/626476/files/Activity%20Regulation%20of%20a%20Glutamine%20Amidotransferase%20Bienzyme%20Complex%20by%20Substrate-Induced%20Subunit%20Interface%20Expansion.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/626476/files/Activity%20Regulation%20of%20a%20Glutamine%20Amidotransferase%20Bienzyme%20Complex%20by%20Substrate-Induced%20Subunit%20Interface%20Expansion.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:626476
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1021139
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 2
|6 P:(DE-H253)PIP1021139
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 3
|6 P:(DE-H253)PIP1007425
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1007425
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 5
|6 P:(DE-H253)PIP1001283
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1001283
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CATAL : 2022
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS CATAL : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
920 1 _ |0 I:(DE-H253)EMBL-20120731
|k EMBL
|l EMBL
|x 1
920 1 _ |0 I:(DE-H253)CSSB-CF-SPC-20210520
|k CSSB-CF-SPC
|l CSSB-CF-SPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 _ _ |a I:(DE-H253)EMBL-20120731
980 _ _ |a I:(DE-H253)CSSB-CF-SPC-20210520
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21