001     626436
005     20250723105852.0
024 7 _ |a 10.1042/BCJ20253036
|2 doi
024 7 _ |a 1470-8728
|2 ISSN
024 7 _ |a 0264-6021
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-01415
|2 datacite_doi
024 7 _ |a 40192062
|2 pmid
024 7 _ |a WOS:001489807200002
|2 WOS
024 7 _ |a altmetric:177417430
|2 altmetric
024 7 _ |a openalex:W4409212161
|2 openalex
037 _ _ |a PUBDB-2025-01415
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Varga, Soma
|b 0
245 _ _ |a Dynamic Interchange of Local Residue-Residue Interactions in the Largely Extended Single Alpha-Helix in Drebrin
260 _ _ |a London
|c 2025
|b Portland Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1746004059_2796705
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 1470-8728 not unique: **2 hits**.
520 _ _ |a Single alpha-helices (SAHs) are protein regions with unique mechanical properties, forming long stable monomeric helical structures in solution. To date, only a few naturally occurring SAH regions have been extensively characterized, primarily from myosins, leaving the structural and dynamic variability of SAH regions largely unexplored. Drebrin (developmentally regulated brain protein) contains a predicted SAH segment with unique sequence characteristics, including aromatic residues within the SAH region and a preference for arginine over lysine in its C-terminal half. Using and NMR spectroscopy, combined with SAXS measurements, we demonstrate that the Drebrin-SAH is helical and monomeric in solution. NMR resonance assignment required specific 4D techniques to resolve severe signal overlap resulting from the low complexity and largely helical conformation of the sequence. To further characterize its structure, we generated a structural ensemble consistent with Cα, Cβ chemical shifts and SAXS data, revealing a primarily extended structure with non-uniform helicity. Our results suggest that dynamic rearrangement of salt bridges and potential transient cation-π interactions contribute to the formation and stabilization of both helical and non-helical local conformational states.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P12
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P12-20150101
|6 EXP:(DE-H253)P-P12-20150101
|x 0
700 1 _ |a Péterfia, Bálint Ferenc
|b 1
700 1 _ |a Dudola, Dániel
|b 2
700 1 _ |a Farkas, Viktor
|b 3
700 1 _ |a Jeffries, Cy M.
|b 4
700 1 _ |a Permi, Perttu
|b 5
700 1 _ |a Gáspári, Zoltán
|0 0000-0002-8692-740X
|b 6
|e Corresponding author
773 _ _ |a 10.1042/BCJ20253036
|g p. BCJ20253036
|0 PERI:(DE-600)1473095-9
|n 08
|p 383 - 399
|t Biochemical journal
|v 482
|y 2025
|x 0006-2936
856 4 _ |u https://portlandpress.com/biochemj/article/doi/10.1042/BCJ20253036/235927
856 4 _ |u https://bib-pubdb1.desy.de/record/626436/files/bcj-2025-3036.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/626436/files/bcj-2025-3036.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:626436
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOCHEM J : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
920 1 _ |0 I:(DE-H253)EMBL-20120731
|k EMBL
|l EMBL
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 _ _ |a I:(DE-H253)EMBL-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21