001     626388
005     20250723105843.0
024 7 _ |a 10.1002/pol.20241120
|2 doi
024 7 _ |a 2642-4150
|2 ISSN
024 7 _ |a 2642-4169
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-01380
|2 datacite_doi
024 7 _ |a WOS:001419099300001
|2 WOS
024 7 _ |a openalex:W4407555430
|2 openalex
037 _ _ |a PUBDB-2025-01380
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Chrysostomou, Varvara
|b 0
245 _ _ |a pH and Temperature Dependence of Low‐Core $T_g$ Micellar Structures Formed by PDMAEMA ‐ b ‐ PLMA Diblock Copolymers in Aqueous Solution
260 _ _ |a Hoboken, NJ
|c 2025
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1745831152_477599
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A diblock copolymer featuring a hydrophobic block with a low glass transition temperature and a pH-responsive, cationic block is synthesized and investigated with respect to its self-assembly behavior in aqueous solution. The synthesis of the poly(lauryl methacrylate)-block-poly(2-(N,N-dimethylamino) ethyl methacrylate) diblock copolymer PDMAEMA$_{60}$-b-PLMA$_{40}$ is carried out using reversible addition fragmentation chain transfer (RAFT) polymerization. Its self-assembly in dilute aqueous solution at pH 7 is investigated using various light scattering methods. Micelles with a positive zeta potential are identified. Synchrotron small-angle X-ray scattering reveals changes in the inner structure of the micelles as a function of temperature and at pH values above, below and close to the pKa value of PDMAEMA (ca. 7.5). At all pH values, cigar-shaped core–shell micelles are found. While the micellar size and shape hardly change with temperature at pH 5, temperature responsivity is observed at pH 7 and 10, resulting in, among others, a change of the core size. These structural changes are facilitated by the softness of the PLMA core. Such systems may be suitable for the co-delivery of hydrophobic drugs and nucleic acids.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a SINE2020 - World class Science and Innovation with Neutrons in Europe 2020 – SINE2020 (654000)
|0 G:(EU-Grant)654000
|c 654000
|f H2020-INFRADEV-1-2014-1
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P12
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P12-20150101
|6 EXP:(DE-H253)P-P12-20150101
|x 0
700 1 _ |a Da Vela, Stefano
|0 P:(DE-H253)PIP1103945
|b 1
700 1 _ |a Pispas, Stergios
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Papadakis, Christine M.
|0 P:(DE-H253)PIP1007946
|b 3
|e Corresponding author
773 _ _ |a 10.1002/pol.20241120
|g Vol. 63, no. 7, p. 1684 - 1694
|0 PERI:(DE-600)3004641-5
|n 7
|p 1684 - 1694
|t Journal of polymer science
|v 63
|y 2025
|x 2642-4150
856 4 _ |u https://onlinelibrary.wiley.com/doi/full/10.1002/pol.20241120
856 4 _ |u https://bib-pubdb1.desy.de/record/626388/files/pH%20and%20Temperature%20Dependence%20of%20Low%20Core%20T%20g%20Micellar%20Structures%20Formed%20by%20PDMAEMA%20%20b%20%20PLMA%20Diblock%20Copolymers%20in%20Aqueous%20Solution.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/626388/files/pH%20and%20Temperature%20Dependence%20of%20Low%20Core%20T%20g%20Micellar%20Structures%20Formed%20by%20PDMAEMA%20%20b%20%20PLMA%20Diblock%20Copolymers%20in%20Aqueous%20Solution.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:626388
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 1
|6 P:(DE-H253)PIP1103945
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1007946
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POLYM SCI : 2022
|d 2024-12-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 1 _ |0 I:(DE-H253)EMBL-20120731
|k EMBL
|l EMBL
|x 0
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)EMBL-20120731
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21