Home > Publications database > pH and Temperature Dependence of Low‐Core $T_g$ Micellar Structures Formed by PDMAEMA ‐ b ‐ PLMA Diblock Copolymers in Aqueous Solution > print |
001 | 626388 | ||
005 | 20250723105843.0 | ||
024 | 7 | _ | |a 10.1002/pol.20241120 |2 doi |
024 | 7 | _ | |a 2642-4150 |2 ISSN |
024 | 7 | _ | |a 2642-4169 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2025-01380 |2 datacite_doi |
024 | 7 | _ | |a WOS:001419099300001 |2 WOS |
024 | 7 | _ | |a openalex:W4407555430 |2 openalex |
037 | _ | _ | |a PUBDB-2025-01380 |
041 | _ | _ | |a English |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Chrysostomou, Varvara |b 0 |
245 | _ | _ | |a pH and Temperature Dependence of Low‐Core $T_g$ Micellar Structures Formed by PDMAEMA ‐ b ‐ PLMA Diblock Copolymers in Aqueous Solution |
260 | _ | _ | |a Hoboken, NJ |c 2025 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1745831152_477599 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A diblock copolymer featuring a hydrophobic block with a low glass transition temperature and a pH-responsive, cationic block is synthesized and investigated with respect to its self-assembly behavior in aqueous solution. The synthesis of the poly(lauryl methacrylate)-block-poly(2-(N,N-dimethylamino) ethyl methacrylate) diblock copolymer PDMAEMA$_{60}$-b-PLMA$_{40}$ is carried out using reversible addition fragmentation chain transfer (RAFT) polymerization. Its self-assembly in dilute aqueous solution at pH 7 is investigated using various light scattering methods. Micelles with a positive zeta potential are identified. Synchrotron small-angle X-ray scattering reveals changes in the inner structure of the micelles as a function of temperature and at pH values above, below and close to the pKa value of PDMAEMA (ca. 7.5). At all pH values, cigar-shaped core–shell micelles are found. While the micellar size and shape hardly change with temperature at pH 5, temperature responsivity is observed at pH 7 and 10, resulting in, among others, a change of the core size. These structural changes are facilitated by the softness of the PLMA core. Such systems may be suitable for the co-delivery of hydrophobic drugs and nucleic acids. |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
536 | _ | _ | |a SINE2020 - World class Science and Innovation with Neutrons in Europe 2020 – SINE2020 (654000) |0 G:(EU-Grant)654000 |c 654000 |f H2020-INFRADEV-1-2014-1 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P12 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P12-20150101 |6 EXP:(DE-H253)P-P12-20150101 |x 0 |
700 | 1 | _ | |a Da Vela, Stefano |0 P:(DE-H253)PIP1103945 |b 1 |
700 | 1 | _ | |a Pispas, Stergios |0 P:(DE-HGF)0 |b 2 |e Corresponding author |
700 | 1 | _ | |a Papadakis, Christine M. |0 P:(DE-H253)PIP1007946 |b 3 |e Corresponding author |
773 | _ | _ | |a 10.1002/pol.20241120 |g Vol. 63, no. 7, p. 1684 - 1694 |0 PERI:(DE-600)3004641-5 |n 7 |p 1684 - 1694 |t Journal of polymer science |v 63 |y 2025 |x 2642-4150 |
856 | 4 | _ | |u https://onlinelibrary.wiley.com/doi/full/10.1002/pol.20241120 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/626388/files/pH%20and%20Temperature%20Dependence%20of%20Low%20Core%20T%20g%20Micellar%20Structures%20Formed%20by%20PDMAEMA%20%20b%20%20PLMA%20Diblock%20Copolymers%20in%20Aqueous%20Solution.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/626388/files/pH%20and%20Temperature%20Dependence%20of%20Low%20Core%20T%20g%20Micellar%20Structures%20Formed%20by%20PDMAEMA%20%20b%20%20PLMA%20Diblock%20Copolymers%20in%20Aqueous%20Solution.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:626388 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a European Molecular Biology Laboratory |0 I:(DE-588b)235011-7 |k EMBL |b 1 |6 P:(DE-H253)PIP1103945 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1007946 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J POLYM SCI : 2022 |d 2024-12-27 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-27 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
920 | 1 | _ | |0 I:(DE-H253)EMBL-20120731 |k EMBL |l EMBL |x 0 |
920 | 1 | _ | |0 I:(DE-H253)EMBL-User-20120814 |k EMBL-User |l EMBL-User |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)EMBL-20120731 |
980 | _ | _ | |a I:(DE-H253)EMBL-User-20120814 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|