Home > Publications database > Unlocking Four‐electron Conversion in Tellurium Cathodes for Advanced Magnesium‐based Dual‐ion Batteries > print |
001 | 626264 | ||
005 | 20250625130100.0 | ||
024 | 7 | _ | |a 10.1002/anie.202401818 |2 doi |
024 | 7 | _ | |a 1433-7851 |2 ISSN |
024 | 7 | _ | |a 0570-0833 |2 ISSN |
024 | 7 | _ | |a 1521-3773 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2025-01343 |2 datacite_doi |
024 | 7 | _ | |a altmetric:160686582 |2 altmetric |
024 | 7 | _ | |a pmid:38465851 |2 pmid |
024 | 7 | _ | |a WOS:001192233800001 |2 WOS |
037 | _ | _ | |a PUBDB-2025-01343 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Morag, Ahiud |0 P:(DE-H253)PIP1103005 |b 0 |
245 | _ | _ | |a Unlocking Four‐electron Conversion in Tellurium Cathodes for Advanced Magnesium‐based Dual‐ion Batteries |
260 | _ | _ | |a Weinheim |c 2024 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1745414500_3819906 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Magnesium (Mg) batteries hold promise as a large-scale energy storage solution, but their progress has been hindered by the lack of high-performance cathodes. Here, we address this challenge by unlocking the reversible four-electron Te$^0$/Te$^{4+}$ conversion in elemental Te, enabling the demonstration of superior Mg//Te dual-ion batteries. Specifically, the classic magnesium aluminum chloride complex (MACC) electrolyte is tailored by introducing Mg bis(trifluoromethanesulfonyl)imide (Mg(TFSI)$_2$), which initiates the Te$^0$/Te$^{4+}$ conversion with two distinct charge-storage steps. Te cathode undergoes Te/TeCl$_4$ conversion involving Cl− as charge carriers, during which a tellurium subchloride phase is presented as an intermediate. Significantly, the Te cathode achieves a high specific capacity of 543 mAh gTe$^{−1}$ and an outstanding energy density of 850 Wh kgTe$^{−1}$, outperforming most of the previously reported cathodes. Our electrolyte analysis indicates that the addition of Mg(TFSI)2 reduces the overall ion-molecule interaction and mitigates the strength of ion-solvent aggregation within the MACC electrolyte, which implies the facilized Cl− dissociation from the electrolyte. Besides, Mg(TFSI)$_2$ is verified as an essential buffer to mitigate the corrosion and passivation of Mg anodes caused by the consumption of the electrolyte MgCl$_2$ in Mg//Te dual-ion cells. These findings provide crucial insights into the development of advanced Mg-based dual-ion batteries. |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)417590517 - SFB 1415: Chemie der synthetischen zweidimensionalen Materialien (417590517) |0 G:(GEPRIS)417590517 |c 417590517 |x 1 |
536 | _ | _ | |a LIGHT-CAP - MULTI-ELECTRON PROCESSES FOR LIGHT DRIVEN ELECTRODES AND ELECTROLYTES IN CONVERSION AND STORAGE OF SOLAR ENERGY (101017821) |0 G:(EU-Grant)101017821 |c 101017821 |f H2020-FETPROACT-2020-2 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P62 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P62-20221101 |6 EXP:(DE-H253)P-P62-20221101 |x 0 |
693 | _ | _ | |a PETRA III |f PETRA Beamline P65 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P65-20150101 |6 EXP:(DE-H253)P-P65-20150101 |x 1 |
700 | 1 | _ | |a Chu, Xingyuan |0 P:(DE-H253)PIP1101476 |b 1 |
700 | 1 | _ | |a Marczewski, Maciej |b 2 |
700 | 1 | _ | |a Kunigkeit, Jonas |b 3 |
700 | 1 | _ | |a Neumann, Christof |b 4 |
700 | 1 | _ | |a Sabaghi, Davood |b 5 |
700 | 1 | _ | |a Żukowska, Grażyna Zofia |b 6 |
700 | 1 | _ | |a Du, Jingwei |0 P:(DE-H253)PIP1098080 |b 7 |
700 | 1 | _ | |a Li, Xiaodong |0 P:(DE-H253)PIP1080044 |b 8 |
700 | 1 | _ | |a Turchanin, Andrey |b 9 |
700 | 1 | _ | |a Brunner, Eike |b 10 |
700 | 1 | _ | |a Feng, Xinliang |0 P:(DE-H253)PIP1081776 |b 11 |e Corresponding author |
700 | 1 | _ | |a Yu, Minghao |0 P:(DE-H253)PIP1083931 |b 12 |e Corresponding author |
773 | _ | _ | |a 10.1002/anie.202401818 |g Vol. 63, no. 19, p. e202401818 |0 PERI:(DE-600)2011836-3 |n 19 |p e202401818 |t Angewandte Chemie / International edition |v 63 |y 2024 |x 1433-7851 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/626264/files/Angew%20Chem%20Int%20Ed%20-%202024%20-%20Morag%20-%20Unlocking%20Four%E2%80%90electron%20Conversion%20in%20Tellurium%20Cathodes%20for%20Advanced%20Magnesium%E2%80%90based.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/626264/files/Angew%20Chem%20Int%20Ed%20-%202024%20-%20Morag%20-%20Unlocking%20Four%E2%80%90electron%20Conversion%20in%20Tellurium%20Cathodes%20for%20Advanced%20Magnesium%E2%80%90based.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:626264 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1103005 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1101476 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1098080 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 8 |6 P:(DE-H253)PIP1080044 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1080044 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-H253)PIP1081776 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 P:(DE-H253)PIP1083931 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-16 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-16 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ANGEW CHEM INT EDIT : 2022 |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-16 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-16 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2024-12-16 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-16 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2024-12-16 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANGEW CHEM INT EDIT : 2022 |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-16 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-16 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-16 |
920 | 1 | _ | |0 I:(DE-H253)FS_DOOR-User-20241023 |k FS DOOR-User |l FS DOOR-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS_DOOR-User-20241023 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|