000626264 001__ 626264
000626264 005__ 20250625130100.0
000626264 0247_ $$2doi$$a10.1002/anie.202401818
000626264 0247_ $$2ISSN$$a1433-7851
000626264 0247_ $$2ISSN$$a0570-0833
000626264 0247_ $$2ISSN$$a1521-3773
000626264 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-01343
000626264 0247_ $$2altmetric$$aaltmetric:160686582
000626264 0247_ $$2pmid$$apmid:38465851
000626264 0247_ $$2WOS$$aWOS:001192233800001
000626264 037__ $$aPUBDB-2025-01343
000626264 041__ $$aEnglish
000626264 082__ $$a540
000626264 1001_ $$0P:(DE-H253)PIP1103005$$aMorag, Ahiud$$b0
000626264 245__ $$aUnlocking Four‐electron Conversion in Tellurium Cathodes for Advanced Magnesium‐based Dual‐ion Batteries
000626264 260__ $$aWeinheim$$bWiley-VCH$$c2024
000626264 3367_ $$2DRIVER$$aarticle
000626264 3367_ $$2DataCite$$aOutput Types/Journal article
000626264 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745414500_3819906
000626264 3367_ $$2BibTeX$$aARTICLE
000626264 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000626264 3367_ $$00$$2EndNote$$aJournal Article
000626264 520__ $$aMagnesium (Mg) batteries hold promise as a large-scale energy storage solution, but their progress has been hindered by the lack of high-performance cathodes. Here, we address this challenge by unlocking the reversible four-electron Te$^0$/Te$^{4+}$ conversion in elemental Te, enabling the demonstration of superior Mg//Te dual-ion batteries. Specifically, the classic magnesium aluminum chloride complex (MACC) electrolyte is tailored by introducing Mg bis(trifluoromethanesulfonyl)imide (Mg(TFSI)$_2$), which initiates the Te$^0$/Te$^{4+}$ conversion with two distinct charge-storage steps. Te cathode undergoes Te/TeCl$_4$ conversion involving Cl− as charge carriers, during which a tellurium subchloride phase is presented as an intermediate. Significantly, the Te cathode achieves a high specific capacity of 543 mAh gTe$^{−1}$ and an outstanding energy density of 850 Wh kgTe$^{−1}$, outperforming most of the previously reported cathodes. Our electrolyte analysis indicates that the addition of Mg(TFSI)2 reduces the overall ion-molecule interaction and mitigates the strength of ion-solvent aggregation within the MACC electrolyte, which implies the facilized Cl− dissociation from the electrolyte. Besides, Mg(TFSI)$_2$ is verified as an essential buffer to mitigate the corrosion and passivation of Mg anodes caused by the consumption of the electrolyte MgCl$_2$ in Mg//Te dual-ion cells. These findings provide crucial insights into the development of advanced Mg-based dual-ion batteries.
000626264 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000626264 536__ $$0G:(GEPRIS)417590517$$aDFG project G:(GEPRIS)417590517 - SFB 1415: Chemie der synthetischen zweidimensionalen Materialien (417590517)$$c417590517$$x1
000626264 536__ $$0G:(EU-Grant)101017821$$aLIGHT-CAP - MULTI-ELECTRON PROCESSES FOR LIGHT DRIVEN ELECTRODES AND ELECTROLYTES IN CONVERSION AND STORAGE OF SOLAR ENERGY (101017821)$$c101017821$$fH2020-FETPROACT-2020-2$$x2
000626264 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000626264 693__ $$0EXP:(DE-H253)P-P62-20221101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P62-20221101$$aPETRA III$$fPETRA Beamline P62$$x0
000626264 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x1
000626264 7001_ $$0P:(DE-H253)PIP1101476$$aChu, Xingyuan$$b1
000626264 7001_ $$aMarczewski, Maciej$$b2
000626264 7001_ $$aKunigkeit, Jonas$$b3
000626264 7001_ $$aNeumann, Christof$$b4
000626264 7001_ $$aSabaghi, Davood$$b5
000626264 7001_ $$aŻukowska, Grażyna Zofia$$b6
000626264 7001_ $$0P:(DE-H253)PIP1098080$$aDu, Jingwei$$b7
000626264 7001_ $$0P:(DE-H253)PIP1080044$$aLi, Xiaodong$$b8
000626264 7001_ $$aTurchanin, Andrey$$b9
000626264 7001_ $$aBrunner, Eike$$b10
000626264 7001_ $$0P:(DE-H253)PIP1081776$$aFeng, Xinliang$$b11$$eCorresponding author
000626264 7001_ $$0P:(DE-H253)PIP1083931$$aYu, Minghao$$b12$$eCorresponding author
000626264 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.202401818$$gVol. 63, no. 19, p. e202401818$$n19$$pe202401818$$tAngewandte Chemie / International edition$$v63$$x1433-7851$$y2024
000626264 8564_ $$uhttps://bib-pubdb1.desy.de/record/626264/files/Angew%20Chem%20Int%20Ed%20-%202024%20-%20Morag%20-%20Unlocking%20Four%E2%80%90electron%20Conversion%20in%20Tellurium%20Cathodes%20for%20Advanced%20Magnesium%E2%80%90based.pdf$$yOpenAccess
000626264 8564_ $$uhttps://bib-pubdb1.desy.de/record/626264/files/Angew%20Chem%20Int%20Ed%20-%202024%20-%20Morag%20-%20Unlocking%20Four%E2%80%90electron%20Conversion%20in%20Tellurium%20Cathodes%20for%20Advanced%20Magnesium%E2%80%90based.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000626264 909CO $$ooai:bib-pubdb1.desy.de:626264$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000626264 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103005$$aExternal Institute$$b0$$kExtern
000626264 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1101476$$aExternal Institute$$b1$$kExtern
000626264 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098080$$aExternal Institute$$b7$$kExtern
000626264 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1080044$$aEuropean XFEL$$b8$$kXFEL.EU
000626264 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1080044$$aExternal Institute$$b8$$kExtern
000626264 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081776$$aExternal Institute$$b11$$kExtern
000626264 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083931$$aExternal Institute$$b12$$kExtern
000626264 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000626264 9141_ $$y2024
000626264 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000626264 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
000626264 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000626264 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000626264 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bANGEW CHEM INT EDIT : 2022$$d2024-12-16
000626264 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
000626264 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-16$$wger
000626264 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-16
000626264 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2024-12-16
000626264 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
000626264 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000626264 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000626264 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000626264 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2024-12-16
000626264 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2022$$d2024-12-16
000626264 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000626264 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger
000626264 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000626264 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000626264 980__ $$ajournal
000626264 980__ $$aVDB
000626264 980__ $$aUNRESTRICTED
000626264 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000626264 9801_ $$aFullTexts