Home > Publications database > Interplay of intrinsic motion of partons and soft gluon emissions in Drell–Yan production studied with PYTHIA > print |
001 | 626263 | ||
005 | 20250715151514.0 | ||
024 | 7 | _ | |a 10.1140/epjc/s10052-025-14066-4 |2 doi |
024 | 7 | _ | |a Bubanja:2024crf |2 INSPIRETeX |
024 | 7 | _ | |a inspire:2856840 |2 inspire |
024 | 7 | _ | |a 1434-6044 |2 ISSN |
024 | 7 | _ | |a 1434-6052 |2 ISSN |
024 | 7 | _ | |a arXiv:2412.05221 |2 arXiv |
024 | 7 | _ | |a 10.3204/PUBDB-2025-01342 |2 datacite_doi |
024 | 7 | _ | |a altmetric:171794753 |2 altmetric |
024 | 7 | _ | |a WOS:001456277300001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4409026198 |
037 | _ | _ | |a PUBDB-2025-01342 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | _ | _ | |a arXiv:2412.05221 |2 arXiv |
088 | _ | _ | |a DESY-24-182 |2 DESY |
100 | 1 | _ | |a Bubanja, I. |0 0009-0005-4364-277X |b 0 |
245 | _ | _ | |a Interplay of intrinsic motion of partons and soft gluon emissions in Drell–Yan production studied with PYTHIA |
260 | _ | _ | |a Heidelberg |c 2025 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1745318543_2744350 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Understanding the intrinsic transverse momentum (intrinsic-$k_\textrm{T}$) of partons within colliding hadrons, typically modeled with a Gaussian distribution characterized by a specific width (the intrinsic-$k_\textrm{T}$width), has been an extremely challenging issue. This difficulty arises because event generators like Pythia8 require an intrinsic-$k_\textrm{T}$ width that unexpectedly varies with collision energy, reaching unphysical values at high energies. This paper investigates the underlying physics behind this energy dependence in Pythia8, revealing that it arises from an interplay between two non-perturbative processes: the internal transverse motion of partons and non-perturbative soft gluon emissions. These contributions are most constrained in the production of Drell–Yan pairs with very low transverse momentum, where soft gluon effects become increasingly prominent with rising collision energy-contrary to initial expectations. Through a detailed analysis of the Sudakov form factor and its influence on intrinsic-$k_\textrm{T}$ width, we clarify the observed energy scaling behavior in Pythia8, providing insight into a longstanding issue in parton shower modeling. |
536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF4-611) |0 G:(DE-HGF)POF4-611 |c POF4-611 |f POF IV |x 0 |
536 | _ | _ | |a STRONG-2020 - The strong interaction at the frontier of knowledge: fundamental research and applications (824093) |0 G:(EU-Grant)824093 |c 824093 |f H2020-INFRAIA-2018-1 |x 1 |
536 | _ | _ | |a DFG project G:(GEPRIS)467467041 - Ein neuer Ansatz für Präzisionsberechnungen von harten Streuprozessen am LHC und zukünftigen Beschleunigern unter Verwendung von Parton Branching Transversalimpuls Verteilungen (PB-app) (467467041) |0 G:(GEPRIS)467467041 |c 467467041 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Jung, H. |0 P:(DE-H253)PIP1002297 |b 1 |
700 | 1 | _ | |a Raicevic, N. |b 2 |
700 | 1 | _ | |a Taheri Monfared, Sara |0 P:(DE-H253)PIP1026681 |b 3 |e Corresponding author |u desy |
773 | _ | _ | |a 10.1140/epjc/s10052-025-14066-4 |g Vol. 85, no. 3, p. 363 |0 PERI:(DE-600)1459069-4 |n 3 |p 363 |t The European physical journal / C |v 85 |y 2025 |x 1434-6044 |
787 | 0 | _ | |a Bubanja, I. et.al. |d 2024 |i IsMemberOf |0 PUBDB-2024-07073 |r DESY-24-182 ; arXiv:2412.05221 |t Interplay of intrinsic motion of partons and soft gluon emissions in Drell-Yan production studied with PYTHIA |
856 | 4 | _ | |u https://link.springer.com/article/10.1140/epjc/s10052-025-14066-4 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/626263/files/s10052-025-14066-4.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/626263/files/s10052-025-14066-4.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:626263 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1002297 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1002297 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1026681 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-611 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:05:14Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:05:14Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EUR PHYS J C : 2022 |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2024-12-27 |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
920 | 1 | _ | |0 I:(DE-H253)CMS-20120731 |k CMS |l LHC/CMS Experiment |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CMS-20120731 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|