001     625354
005     20250715151511.0
024 7 _ |a 10.1039/D4EA00151F
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-01111
|2 datacite_doi
024 7 _ |a altmetric:174630133
|2 altmetric
024 7 _ |a pmid:39989667
|2 pmid
024 7 _ |a WOS:001426902700001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4407081160
037 _ _ |a PUBDB-2025-01111
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Gholami, Shirin
|0 P:(DE-H253)PIP1100593
|b 0
245 _ _ |a Interaction of ions and surfactants at the seawater–air interface
260 _ _ |a Cambridge
|c 2025
|b Royal Society of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1742903053_940679
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interface of the oceans and aqueous aerosols with air drives many important physical and chemical processes in the environment, including the uptake of CO2 by the oceans. Transport across and reactions at the ocean–air boundary are in large part determined by the chemical composition of the interface, i.e., the first few nanometers into the ocean. The main constituents of the interface, besides water molecules, are dissolved ions and amphiphilic surfactants, which are ubiquitous in nature. We have used a combination of surface tension measurements and liquid-jet X-ray photoelectron spectroscopy to investigate model seawater solutions at realistic ocean-water ion concentrations in the absence and in the presence of model surfactants. Our investigations provide a quantitative picture of the enhancement or reduction of the concentration of ions due to the presence of charged surfactants at the interface. We have also directly determined the concentration of surfactants at the interface, which is related to the ionic strength of the solution (i.e., the “salting out” effect). Our results show that the interaction of ions and surfactants can strongly change the concentration of both classes of species at aqueous solution–air interfaces, with direct consequences for heterogeneous reactions as well as gas uptake and release at ocean–air interfaces.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20221212 (I-20221212)
|0 G:(DE-H253)I-20221212
|c I-20221212
|x 2
536 _ _ |a DFG project G:(GEPRIS)509471550 - Dynamik photoionisations-induzierter Prozesse in laser-präparierten Molekülen in der Gasphase und der wässrigen Phase (509471550)
|0 G:(GEPRIS)509471550
|c 509471550
|x 3
536 _ _ |a AQUACHIRAL - Chiral aqueous-phase chemistry (883759)
|0 G:(EU-Grant)883759
|c 883759
|f ERC-2019-ADG
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P04
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P04-20150101
|6 EXP:(DE-H253)P-P04-20150101
|x 0
700 1 _ |a Buttersack, Tillmann
|0 P:(DE-H253)PIP1095694
|b 1
700 1 _ |a Richter, Clemens
|0 P:(DE-H253)PIP1098291
|b 2
700 1 _ |a Trinter, Florian
|0 P:(DE-H253)PIP1017364
|b 3
700 1 _ |a Dupuy, Remi
|0 P:(DE-H253)PIP1097998
|b 4
700 1 _ |a Cablitz, Louisa
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zhou, Qi
|0 P:(DE-H253)PIP1108125
|b 6
700 1 _ |a nicolas, christophe
|0 P:(DE-H253)PIP1102022
|b 7
700 1 _ |a Shavorskiy, Andrey
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Diaman, Dian
|0 P:(DE-H253)PIP1014198
|b 9
|u desy
700 1 _ |a Hergenhahn, Uwe
|0 P:(DE-H253)PIP1008114
|b 10
700 1 _ |a Winter, Bernd
|0 P:(DE-H253)PIP1023483
|b 11
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-H253)PIP1098267
|b 12
|e Corresponding author
770 _ _ |a Brilliant Light Sources
773 _ _ |a 10.1039/D4EA00151F
|g Vol. 5, no. 3, p. 291 - 299
|0 PERI:(DE-600)3057711-1
|n 3
|p 291 - 299
|t Environmental science / Atmospheres
|v 5
|y 2025
|x 2634-3606
856 4 _ |u https://pubs.rsc.org/en/content/articlelanding/2025/ea/d4ea00151f
856 4 _ |u https://bib-pubdb1.desy.de/record/625354/files/Gholami_%20EnvironSciAtmos_2025.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/625354/files/Gholami_%20EnvironSciAtmos_2025.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:625354
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1100593
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1095694
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1098291
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1017364
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1017364
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1097998
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1108125
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1102022
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1102022
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1014198
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1014198
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 9
|6 P:(DE-H253)PIP1014198
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1008114
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1023483
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1098267
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON SCI-ATMOS : 2022
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-23T09:22:12Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-23T09:22:12Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-23T09:22:12Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 1
920 1 _ |0 I:(DE-H253)FS-PET-S-20190712
|k FS-PET-S
|l Experimentebetreuung PETRA III
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a I:(DE-H253)FS-PET-S-20190712
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21