TY - JOUR AU - Linker, Thomas M. AU - Halavanau, Aliaksei AU - Kroll, Thomas AU - Benediktovitch, Andrei AU - Zhang, Yu AU - Michine, Yurina AU - Chuchurka, Stasis AU - Abhari, Zain AU - Ronchetti, Daniele AU - Fransson, Thomas AU - Weninger, Clemens AU - Fuller, Franklin D. AU - Aquila, Andy AU - Alonso-Mori, Roberto AU - Boutet, Sebastien AU - Guetg, Marc W. AU - Marinelli, Agostino AU - Lutman, Alberto A. AU - Yabashi, Makina AU - Inoue, Ichiro AU - Osaka, Taito AU - Yamada, Jumpei AU - Inubushi, Yuichi AU - Yamaguchi, Gota AU - Hara, Toru AU - Babu, Ganguli AU - Salpekar, Devashish AU - Sayed, Farheen N. AU - Ajayan, Pulickel M. AU - Kern, Jan AU - Yano, Junko AU - Yachandra, Vittal K. AU - Kling, Matthias F. AU - Pellegrini, Claudio AU - Yoneda, Hitoki AU - Rohringer, Nina AU - Bergmann, Uwe TI - Attosecond Inner-Shell Lasing at Angstrom Wavelengths JO - Nature VL - 642 IS - arXiv:2409.06914 SN - 0028-0836 CY - London [u.a.] PB - Nature Publ. Group M1 - PUBDB-2025-01093 M1 - arXiv:2409.06914 SP - 934 – 940 PY - 2025 AB - Since the invention of the laser nonlinear effects such as filamentation, Rabi-cycling and collective emission have been explored in the optical regime leading to a wide range of scientific and industrial applications. X-ray free electron lasers (XFELs) have led to the extension of many optical techniques to X-rays for their advantages of angstrom scale spatial resolution and elemental specificity. One such example is XFEL driven population inversion of 1s core hole states resulting in inner-shell Kα (2p to 1s) X-ray lasing in elements ranging from neon to copper, which has been utilized for nonlinear spectroscopy and development of next generation X-ray laser sources. Here we show that strong lasing effects, similar to those observed in the optical regime, can occur at 1.5 to 2.1 angstrom wavelengths during high intensity (> 10<sup>19</sup> W/cm<sup>2</sup>) XFEL driven inner-shell lasing and superfluorescence of copper and manganese. Depending on the temporal substructure of the XFEL pump pulses(containing 10<sup>6</sup> - 10<sup>8</sup> photons) i, the resulting inner-shell X-ray laser pulses can exhibit strong spatial inhomogeneities as well as spectral splitting, inhomogeneities and broadening. Through 3D Maxwell Bloch theory we show that the observed spatial inhomogeneities result from X-ray filamentation, and that the spectral splitting and broadening is driven by Rabi cycling with sub-femtosecond periods. Our simulations indicate that these X-ray pulses can have pulse lengths of less than 100 attoseconds and coherence properties that open the door for quantum X-ray optics applications. KW - Optics (physics.optics) (Other) KW - Atomic Physics (physics.atom-ph) (Other) KW - FOS: Physical sciences (Other) LB - PUB:(DE-HGF)16 C6 - pmid:40500439 DO - DOI:10.1038/s41586-025-09105-9 UR - https://bib-pubdb1.desy.de/record/625317 ER -