Home > Publications database > Multicomponent dynamics in amorphous ice studied using X-ray photon correlation spectroscopy at elevated pressure and cryogenic temperatures > print |
001 | 625242 | ||
005 | 20250715151513.0 | ||
024 | 7 | _ | |a 10.1038/s42004-025-01480-8 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2025-01058 |2 datacite_doi |
024 | 7 | _ | |a 40091131 |2 pmid |
024 | 7 | _ | |a WOS:001445653700001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4408498212 |
037 | _ | _ | |a PUBDB-2025-01058 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Karina, Aigerim |0 P:(DE-H253)PIP1091697 |b 0 |
245 | _ | _ | |a Multicomponent dynamics in amorphous ice studied using X-ray photon correlation spectroscopy at elevated pressure and cryogenic temperatures |
260 | _ | _ | |a [London] |c 2025 |b Macmillan Publishers Limited, part of Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1744206241_2962104 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Knowing the pressure dependence of glass forming liquids is important in various contexts. Here, we study the case of supercooled water, which has at least two different amorphous states with different densities. The pressure dependencies of the two glass transitions are predicted to show opposite behaviour, crossing in the P-T plane at elevated pressure. The experimental identification of the glass transition at elevated pressure and cryo-conditions is technically difficult. Moreover, in the case of amorphous ices, the glass transition is interrupted by crystallization, which makes it even more challenging. We show the feasibility of performing X-ray photon correlation spectroscopy experiments at elevated pressure using a diamond anvil cell at cryogenic temperatures. We observe two dynamic components when approaching the glass transition temperature. For high-density amorphous ice at a pressure of around (0.08 ± 0.02) GPa we determine the glass transition to be at higher temperatures compared to ambient conditions. |
536 | _ | _ | |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633) |0 G:(DE-HGF)POF4-633 |c POF4-633 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
536 | _ | _ | |a FS-Proposal: I-20200286 EC (I-20200286-EC) |0 G:(DE-H253)I-20200286-EC |c I-20200286-EC |x 2 |
536 | _ | _ | |a FS-Proposal: I-20220659 (I-20220659) |0 G:(DE-H253)I-20220659 |c I-20220659 |x 3 |
536 | _ | _ | |a SWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY) |0 G:(DE-HGF)2020_Join2-SWEDEN-DESY |c 2020_Join2-SWEDEN-DESY |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P10 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P10-20150101 |6 EXP:(DE-H253)P-P10-20150101 |x 0 |
700 | 1 | _ | |a Li, Hailong |0 P:(DE-H253)PIP1027478 |b 1 |
700 | 1 | _ | |a Eklund, Tobias |0 P:(DE-H253)PIP1100202 |b 2 |
700 | 1 | _ | |a Ladd-Parada, Marjorie |0 0000-0003-1355-649X |b 3 |
700 | 1 | _ | |a Massani, Bernhard |0 P:(DE-H253)PIP1026549 |b 4 |
700 | 1 | _ | |a Filianina, Mariia |0 P:(DE-H253)PIP1096199 |b 5 |
700 | 1 | _ | |a Kondedan, Neha |0 P:(DE-H253)PIP1102842 |b 6 |
700 | 1 | _ | |a Rydh, Andreas |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Holl, Klara |0 P:(DE-H253)PIP1105775 |b 8 |
700 | 1 | _ | |a Trevorah, Ryan |0 P:(DE-H253)PIP1102871 |b 9 |
700 | 1 | _ | |a Huotari, Simo |0 P:(DE-H253)PIP1085062 |b 10 |
700 | 1 | _ | |a Bauer, Robert |0 P:(DE-H253)PIP1100149 |b 11 |u desy |
700 | 1 | _ | |a Goy, Claudia |0 P:(DE-H253)PIP1025570 |b 12 |u desy |
700 | 1 | _ | |a Striker, Nele |0 P:(DE-H253)PIP1083382 |b 13 |u desy |
700 | 1 | _ | |a Dallari, Francesco |0 P:(DE-H253)PIP1027104 |b 14 |u desy |
700 | 1 | _ | |a Westermeier, Fabian |0 P:(DE-H253)PIP1006002 |b 15 |
700 | 1 | _ | |a Sprung, Michael |0 P:(DE-H253)PIP1007141 |b 16 |u desy |
700 | 1 | _ | |a Lehmkühler, Felix |0 P:(DE-H253)PIP1008819 |b 17 |
700 | 1 | _ | |a Amann-Winkel, Katrin |0 P:(DE-H253)PIP1024001 |b 18 |e Corresponding author |
773 | _ | _ | |a 10.1038/s42004-025-01480-8 |g Vol. 8, no. 1, p. 82 |0 PERI:(DE-600)2929562-2 |n 1 |p 82 |t Communications chemistry |v 8 |y 2025 |x 2399-3669 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/625242/files/s42004-025-01480-8.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/625242/files/s42004-025-01480-8.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:625242 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1091697 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1027478 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1100202 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1100202 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1026549 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1096199 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1102842 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1105775 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1102871 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-H253)PIP1085062 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 10 |6 P:(DE-H253)PIP1085062 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1100149 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-H253)PIP1100149 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 12 |6 P:(DE-H253)PIP1025570 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 13 |6 P:(DE-H253)PIP1083382 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 14 |6 P:(DE-H253)PIP1027104 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 14 |6 P:(DE-H253)PIP1027104 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 14 |6 P:(DE-H253)PIP1027104 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 15 |6 P:(DE-H253)PIP1006002 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 15 |6 P:(DE-H253)PIP1006002 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 16 |6 P:(DE-H253)PIP1007141 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 16 |6 P:(DE-H253)PIP1007141 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 17 |6 P:(DE-H253)PIP1008819 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 17 |6 P:(DE-H253)PIP1008819 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 18 |6 P:(DE-H253)PIP1024001 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-633 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Life Sciences – Building Blocks of Life: Structure and Function |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-10 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-10 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMMUN CHEM : 2022 |d 2024-12-10 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b COMMUN CHEM : 2022 |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-10T15:36:12Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-10T15:36:12Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-10 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-10 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-10 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-10 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-SMP-20171124 |k FS-SMP |l Spectroscopy of molecular processes |x 1 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-S-20210408 |k FS-PETRA-S |l PETRA-S |x 2 |
920 | 1 | _ | |0 I:(DE-H253)FS-CXS-20130727 |k FS-CXS |l Coherent X-ray Scattering |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-SMP-20171124 |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-S-20210408 |
980 | _ | _ | |a I:(DE-H253)FS-CXS-20130727 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|