001     625035
005     20251207044140.0
024 7 _ |a Gross:2025qae
|2 INSPIRETeX
024 7 _ |a inspire:2900428
|2 inspire
024 7 _ |a arXiv:2503.11480
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2025-01008
|2 datacite_doi
037 _ _ |a PUBDB-2025-01008
041 _ _ |a English
088 _ _ |a arXiv:2503.11480
|2 arXiv
100 1 _ |a Gross, Christoph
|0 P:(DE-H253)PIP1096851
|b 0
|e Corresponding author
245 _ _ |a Matching Lagrangian and Hamiltonian Simulations in (2+1)-dimensional U(1) Gauge Theory
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1762431531_1356010
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 11 figures, 9 tables
520 _ _ |a At finite lattice spacing, Lagrangian and Hamiltonian predictions differ due to discretization effects. In the Hamiltonian limit, i.e. at vanishing temporal lattice spacing $a_t$, the path integral approach in the Lagrangian formalism reproduces the results of the Hamiltonian theory. In this work, we numerically calculate the Hamiltonian limit of a U$(1)$ gauge theory in $(2+1)$ dimensions. This is achieved by Monte Carlo simulations in the Lagrangian formalism with lattices that are anisotropic in the time direction. For each ensemble, we determine the ratio between the temporal and spatial scale with the static quark potential and extrapolate to $a_t \to 0$. Our results are compared with the data from Hamiltonian simulations at small volumes, showing agreement within $<2\sigma$. These results can be used to match the two formalisms.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)511713970 - SFB 1639: NuMeriQS: Numerische Methoden zur Untersuchung von Dynamik und Strukturbildung in Quantensystemen (511713970)
|0 G:(GEPRIS)511713970
|c 511713970
|x 1
536 _ _ |a QUEST - QUantum computing for Excellence in Science and Technology (101087126)
|0 G:(EU-Grant)101087126
|c 101087126
|f HORIZON-WIDERA-2022-TALENTS-01
|x 2
588 _ _ |a Dataset connected to INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Romiti, S.
|b 1
700 1 _ |a Funcke, L.
|b 2
700 1 _ |a Jansen, Karl
|0 P:(DE-H253)PIP1003636
|b 3
700 1 _ |a Kan, A.
|b 4
700 1 _ |a Kuehn, Stefan
|0 P:(DE-H253)PIP1086314
|b 5
|e Corresponding author
700 1 _ |a Urbach, C.
|b 6
856 4 _ |u https://bib-pubdb1.desy.de/record/625035/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/625035/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/625035/files/2503.11480v1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/625035/files/2503.11480v1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:625035
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1096851
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1003636
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1086314
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)CQTA-20221102
|k CQTA
|l Centre f. Quantum Techno. a. Application
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CQTA-20221102
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21