000624400 001__ 624400
000624400 005__ 20250723105742.0
000624400 0247_ $$2doi$$a10.1016/j.actamat.2025.120852
000624400 0247_ $$2ISSN$$a1359-6454
000624400 0247_ $$2ISSN$$a1873-2453
000624400 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00869
000624400 0247_ $$2altmetric$$aaltmetric:174408236
000624400 0247_ $$2WOS$$aWOS:001437968100001
000624400 0247_ $$2openalex$$aopenalex:W4407763439
000624400 037__ $$aPUBDB-2025-00869
000624400 041__ $$aEnglish
000624400 082__ $$a670
000624400 1001_ $$0P:(DE-H253)PIP1105795$$aWu, Chengguang$$b0
000624400 245__ $$aHydrogen accommodation and its role in lattice symmetry in a TiNbZr medium-entropy alloy
000624400 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
000624400 3367_ $$2DRIVER$$aarticle
000624400 3367_ $$2DataCite$$aOutput Types/Journal article
000624400 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1741354229_77431
000624400 3367_ $$2BibTeX$$aARTICLE
000624400 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000624400 3367_ $$00$$2EndNote$$aJournal Article
000624400 520__ $$aRefractory medium/high-entropy alloys (M/HEAs) are emerging as promising alternative materials for hydrogen storage and hydrogen combustion engines due to their favorable thermodynamic and kinetic conditions for hydrogen accommodation (for the former) and promising high-temperature mechanical properties (for the latter). A better understanding of hydrogen-metal interactions is necessary to advance the development of this material class, thus helping leverage hydrogen-based applications. Here we reveal the microstructural evolution of a TiNbZr MEA by in-situ synchrotron high-energy X-ray diffraction (HEXRD) during hydrogenation in pure H2 gas at atmospheric pressure. At 500 °C, dissolved hydrogen atoms gradually expand the crystal lattice isotropically, and the body-centered cubic crystal remains stable up to a hydrogen concentration of ∼46.4 at.%. The thermodynamics of hydrogen accommodation associated with experimental observations in the crystal lattice is elucidated using density functional theory (DFT). The calculations suggest that tetrahedral interstitial sites are the thermodynamically favorable positions for hydrogen accommodation in both cases (i) for a single hydrogen in the special quasirandom structure supercell and (ii) at a high hydrogen concentration (∼45.4 at.%). In the latter case, hydrogen interstitials are randomly distributed on the tetrahedral sites. Upon cooling, it is observed that the body-centered cubic lattice transforms to a body-centered tetragonal structure. The DFT calculations show that this change is related to the ordering distribution of hydrogen interstitials within the TiNbZr lattice. By combining in-situ HEXRD experiments and DFT calculations, the study provides fundamental insights into hydrogen accommodation in the interstitial positions and its impact on the lattice symmetry in TiNbZr MEA.
000624400 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000624400 536__ $$0G:(DE-H253)I-20211077$$aFS-Proposal: I-20211077 (I-20211077)$$cI-20211077$$x1
000624400 536__ $$0G:(GEPRIS)388544551$$aDFG project G:(GEPRIS)388544551 - Design und mechanische Eigenschaften chemisch-komplexer Legierungen: von Zwillings-induzierter Plastizität zu bidirektionaler transformations-induzierter Plastizität (MULTI-TRIP CCAs) (388544551)$$c388544551$$x2
000624400 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000624400 693__ $$0EXP:(DE-H253)P-P02.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P02.1-20150101$$aPETRA III$$fPETRA Beamline P02.1$$x0
000624400 7001_ $$00000-0002-8088-2562$$aGong, Yilun$$b1$$eCorresponding author
000624400 7001_ $$aLiu, Chang$$b2
000624400 7001_ $$aLi, Xuehan$$b3
000624400 7001_ $$0P:(DE-H253)PIP1030053$$aGizer, Gökhan$$b4
000624400 7001_ $$0P:(DE-H253)PIP1010848$$aPistidda, Claudio$$b5
000624400 7001_ $$aKörmann, Fritz$$b6
000624400 7001_ $$0P:(DE-H253)PIP1090354$$aMa, Yanming$$b7$$eCorresponding author
000624400 7001_ $$00000-0002-7903-2472$$aNeugebauer, Jörg$$b8
000624400 7001_ $$0P:(DE-H253)PIP1010873$$aRaabe, Dierk$$b9
000624400 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2025.120852$$gVol. 288, p. 120852 -$$p120852$$tActa materialia$$v288$$x1359-6454$$y2025
000624400 8564_ $$uhttps://bib-pubdb1.desy.de/record/624400/files/2025-H_in_TiNbZr_lattice_symmetry-Acta_Mater.pdf$$yOpenAccess
000624400 8564_ $$uhttps://bib-pubdb1.desy.de/record/624400/files/2025-H_in_TiNbZr_lattice_symmetry-Acta_Mater.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000624400 909CO $$ooai:bib-pubdb1.desy.de:624400$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000624400 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1105795$$aExternal Institute$$b0$$kExtern
000624400 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1030053$$aExternal Institute$$b4$$kExtern
000624400 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010848$$aExternal Institute$$b5$$kExtern
000624400 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090354$$aExternal Institute$$b7$$kExtern
000624400 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010873$$aExternal Institute$$b9$$kExtern
000624400 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000624400 9141_ $$y2025
000624400 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
000624400 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
000624400 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-31
000624400 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31
000624400 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000624400 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-31
000624400 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2022$$d2024-12-31
000624400 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-31
000624400 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000624400 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31
000624400 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2022$$d2024-12-31
000624400 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-31
000624400 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
000624400 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
000624400 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000624400 9201_ $$0I:(DE-H253)Hereon-20210428$$kHereon$$lHelmholtz-Zentrum Hereon$$x1
000624400 980__ $$ajournal
000624400 980__ $$aVDB
000624400 980__ $$aUNRESTRICTED
000624400 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000624400 980__ $$aI:(DE-H253)Hereon-20210428
000624400 9801_ $$aFullTexts