001     624397
005     20250723105755.0
024 7 _ |a 10.1016/j.jlumin.2025.121120
|2 doi
024 7 _ |a 0022-2313
|2 ISSN
024 7 _ |a 1872-7883
|2 ISSN
024 7 _ |a WOS:001426538800001
|2 WOS
024 7 _ |a openalex:W4407187564
|2 openalex
037 _ _ |a PUBDB-2025-00866
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Chornodolskyy, Ya.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Quenching mechanisms of CeF$_3$ luminescence
260 _ _ |a New York, NY [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741353168_69917
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a The luminescent properties of CeF₃ single crystals and nanoparticles have been investigated. The single crystals exhibit intense luminescence associated with the emission of 5d-4f Frenkel excitons at 283 and 305 nm (4.38 and 4.07 eV), as well as “perturbed” cerium ions with a maximum at approximately 340 nm (3.64 eV). The transition from a single crystal to nanoparticles results in a significant reduction in exciton luminescence intensity, giving way to defect-related luminescence. The excitation spectrum maxima of exciton luminescence in nanoparticles with size of a = 26 nm correlate with the dips in the excitation spectrum of the single crystals and the maxima of cerium ion luminescence excitation in LaF₃-Ce, due to the absence of light absorption saturation effects in the thin layer of the nanoparticle. The reduction of the exciton luminescence decay time constant from 16.1 for single crystals to 1.7 ns for nanoparticles with size of 12 nm indicates the predominance of non-radiative decay mechanisms associated with surface defects. The quenching rate of exciton luminescence is higher than that of “perturbed” centers luminescence, which is due to an additional channel of exciton luminescence quenching through the diffusion of excitons to surface defects. The quenching rate of exciton luminescence exceeds that of “perturbed” center luminescence due to exciton diffusion to surface defects. In nanoparticles with a = 8 nm, exciton luminescence is absent, however, the defect luminescence excitation spectrum still suggests exciton formation. The absence of delay in the rise time of the defect luminescence pulse for nanoparticles with a = 8 nm confirms the radiative nature of the interaction between excitons and “perturbed” cerium centers.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a EURIZON - European network for developing new horizons for RIs (871072)
|0 G:(EU-Grant)871072
|c 871072
|f H2020-INFRASUPP-2019-1
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P66
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P66-20150101
|6 EXP:(DE-H253)P-P66-20150101
|x 0
700 1 _ |a Demkiv, Taras
|0 P:(DE-H253)PIP1097767
|b 1
|e Corresponding author
700 1 _ |a Demchenko, P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kurlyak, V.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kotlov, A.
|0 P:(DE-H253)PIP1007151
|b 4
700 1 _ |a Gloskovskii, A.
|0 P:(DE-H253)PIP1007694
|b 5
700 1 _ |a Salapak, V.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gektin, A.
|0 P:(DE-H253)PIP1013995
|b 7
700 1 _ |a Voloshinovskii, A.
|0 P:(DE-H253)PIP1008468
|b 8
773 _ _ |a 10.1016/j.jlumin.2025.121120
|g Vol. 280, p. 121120 -
|0 PERI:(DE-600)1491401-3
|p 121120
|t Journal of luminescence
|v 280
|y 2025
|x 0022-2313
856 4 _ |u https://bib-pubdb1.desy.de/record/624397/files/1-s2.0-S0022231325000602-main.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/624397/files/1-s2.0-S0022231325000602-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:624397
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1097767
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1007151
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1007694
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1013995
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 8
|6 P:(DE-H253)PIP1008468
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1008468
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-20
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-S-20190712
|k FS-PET-S
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PET-S-20190712
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21