%0 Journal Article
%A Chornodolskyy, Ya.
%A Demkiv, Taras
%A Demchenko, P.
%A Kurlyak, V.
%A Kotlov, A.
%A Gloskovskii, A.
%A Salapak, V.
%A Gektin, A.
%A Voloshinovskii, A.
%T Quenching mechanisms of CeF<sub>3</sub> luminescence
%J Journal of luminescence
%V 280
%@ 0022-2313
%C New York, NY [u.a.]
%I Elsevier
%M PUBDB-2025-00866
%P 121120
%D 2025
%Z Waiting for fulltext 
%X The luminescent properties of CeF₃ single crystals and nanoparticles have been investigated. The single crystals exhibit intense luminescence associated with the emission of 5d-4f Frenkel excitons at 283 and 305 nm (4.38 and 4.07 eV), as well as “perturbed” cerium ions with a maximum at approximately 340 nm (3.64 eV). The transition from a single crystal to nanoparticles results in a significant reduction in exciton luminescence intensity, giving way to defect-related luminescence. The excitation spectrum maxima of exciton luminescence in nanoparticles with size of a = 26 nm correlate with the dips in the excitation spectrum of the single crystals and the maxima of cerium ion luminescence excitation in LaF₃-Ce, due to the absence of light absorption saturation effects in the thin layer of the nanoparticle. The reduction of the exciton luminescence decay time constant from 16.1 for single crystals to 1.7 ns for nanoparticles with size of 12 nm indicates the predominance of non-radiative decay mechanisms associated with surface defects. The quenching rate of exciton luminescence is higher than that of “perturbed” centers luminescence, which is due to an additional channel of exciton luminescence quenching through the diffusion of excitons to surface defects. The quenching rate of exciton luminescence exceeds that of “perturbed” center luminescence due to exciton diffusion to surface defects. In nanoparticles with a = 8 nm, exciton luminescence is absent, however, the defect luminescence excitation spectrum still suggests exciton formation. The absence of delay in the rise time of the defect luminescence pulse for nanoparticles with a = 8 nm confirms the radiative nature of the interaction between excitons and “perturbed” cerium centers.
%F PUB:(DE-HGF)16
%9 Journal Article
%U <Go to ISI:>//WOS:001426538800001
%R 10.1016/j.jlumin.2025.121120
%U https://bib-pubdb1.desy.de/record/624397