001     623850
005     20251107114632.0
024 7 _ |a arXiv:2405.15367
|2 arXiv
024 7 _ |a 10.1038/s41467-025-57083-3
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-00802
|2 datacite_doi
024 7 _ |a altmetric:175059313
|2 altmetric
024 7 _ |a pmid:40021641
|2 pmid
024 7 _ |a WOS:001435592900010
|2 WOS
024 7 _ |2 openalex
|a openalex:W4408027852
037 _ _ |a PUBDB-2025-00802
041 _ _ |a English
082 _ _ |a 500
088 _ _ |a arXiv:2405.15367
|2 arXiv
100 1 _ |a Jahnke, Till
|0 P:(DE-H253)PIP1084564
|b 0
|e Corresponding author
245 _ _ |a Direct observation of ultrafast symmetry reduction during internal conversion of 2-thiouracil using Coulomb explosion imaging
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741771690_1508630
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 19 pages, 8 figures. Title is: Direct observation of ultrafast symmetry reduction during internal conversion 2-thiouracil using Coulomb explosion imagingBitte mit dem
520 _ _ |a The photochemistry of heterocyclic molecules plays a decisive role for processes and applications like DNA photo-protection from UV damage and organic photocatalysis. The photochemical reactivity of heterocycles is determined by the redistribution of photoenergy into electronic and nuclear degrees of freedom, initially involving ultrafast internal conversion. Most heterocycles are planar in their ground state and internal conversion requires symmetry breaking. To lower the symmetry, the molecule must undergo an out-of-plane motion, which has not yet been observed directly. Here we show using the example of 2-thiouracil, how Coulomb explosion imaging can be utilized to extract comprehensive information on this molecular deformation, linking the extracted deplanarization of the molecular geometry to the previously studied temporal evolution of its electronic properties. Particularly, the protons of the exploded molecule are well-suited messengers carrying rich information on its geometry at distinct times after electronic excitation. We expect that our new analysis approach centered on these peripheral protons can be adapted as a general concept for future time-resolved studies of complex molecules in the gas phase.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G2 - FLASH (DESY) (POF4-6G2)
|0 G:(DE-HGF)POF4-6G2
|c POF4-6G2
|f POF IV
|x 1
536 _ _ |a AIM, DFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)
|0 G:(GEPRIS)390715994
|c 390715994
|x 2
536 _ _ |a DFG project G:(GEPRIS)509471550 - Dynamik photoionisations-induzierter Prozesse in laser-präparierten Molekülen in der Gasphase und der wässrigen Phase (509471550)
|0 G:(GEPRIS)509471550
|c 509471550
|x 3
536 _ _ |a 123-CO - Spying on Ultrafast Structural Changes Through Three Sets of Eyes (101067645)
|0 G:(EU-Grant)101067645
|c 101067645
|f HORIZON-MSCA-2021-PF-01
|x 4
588 _ _ |a Dataset connected to DataCite
693 _ _ |a FLASH2
|f FLASH2 Beamline FL24
|1 EXP:(DE-H253)FLASHII-20150901
|0 EXP:(DE-H253)F-FL24-20150901
|6 EXP:(DE-H253)F-FL24-20150901
|x 0
700 1 _ |a Mai, Sebastian
|b 1
700 1 _ |a Bhattacharyya, Surjendu
|0 P:(DE-H253)PIP1095450
|b 2
700 1 _ |a Chen, Keyu
|0 P:(DE-H253)PIP1099016
|b 3
700 1 _ |a Boll, Rebecca
|0 P:(DE-H253)PIP1014282
|b 4
700 1 _ |a Castellani, Maria Elena
|0 P:(DE-H253)PIP1103529
|b 5
700 1 _ |a Dold, Simon
|0 P:(DE-H253)PIP1027431
|b 6
700 1 _ |a Duley, Avijit
|0 P:(DE-H253)PIP1104549
|b 7
700 1 _ |a Frühling, Ulrike
|0 P:(DE-H253)PIP1005343
|b 8
700 1 _ |a Green, Alice E.
|0 P:(DE-H253)PIP1099247
|b 9
700 1 _ |a Ilchen, Markus
|0 P:(DE-H253)PIP1007017
|b 10
700 1 _ |a Ingle, Rebecca
|0 P:(DE-H253)PIP1031944
|b 11
700 1 _ |a Kastirke, Gregor
|0 P:(DE-H253)PIP1014655
|b 12
700 1 _ |a Lam, Huynh Van Sa
|0 P:(DE-H253)PIP1099018
|b 13
700 1 _ |a Lever, Fabiano
|b 14
700 1 _ |a Mayer, Dennis
|0 P:(DE-H253)PIP1087484
|b 15
700 1 _ |a Mazza, Tommaso
|0 P:(DE-H253)PIP1013759
|b 16
700 1 _ |a Mullins, Terence
|0 P:(DE-H253)PIP1013728
|b 17
700 1 _ |a Ovcharenko, Yevheniy
|0 P:(DE-H253)PIP1014906
|b 18
700 1 _ |a Senfftleben, Björn
|0 P:(DE-H253)PIP1027397
|b 19
700 1 _ |a Trinter, Florian
|0 P:(DE-H253)PIP1017364
|b 20
700 1 _ |a Noor, Atia Tul
|b 21
700 1 _ |a Usenko, Sergey
|0 P:(DE-H253)PIP1013098
|b 22
700 1 _ |a Venkatachalam, Anbu Selvam
|0 P:(DE-H253)PIP1096868
|b 23
700 1 _ |a Rudenko, Artem
|0 P:(DE-H253)PIP1006803
|b 24
700 1 _ |a Rolles, Daniel
|0 P:(DE-H253)PIP1007320
|b 25
700 1 _ |a Meyer, Michael
|b 26
700 1 _ |a Ibrahim, Heide
|0 P:(DE-H253)PIP1103428
|b 27
700 1 _ |a Gühr, Markus
|0 P:(DE-H253)PIP1084094
|b 28
|e Corresponding author
773 _ _ |a 10.1038/s41467-025-57083-3
|g Vol. 16, no. 1, p. 2074
|0 PERI:(DE-600)2553671-0
|p 2074
|t Nature Communications
|v 16
|y 2025
|x 2041-1723
787 0 _ |a Jahnke, Till et.al.
|d 2025
|i IsParent
|0 PUBDB-2025-01007
|r arXiv:2405.15367
|t X-ray Coulomb explosion imaging reveals role of molecular structure in internal conversion
856 4 _ |u https://bib-pubdb1.desy.de/record/623850/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/623850/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/623850/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/623850/files/Article%20Approval%20Service.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/623850/files/s41467-025-57083-3.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/623850/files/s41467-025-57083-3.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:623850
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1084564
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1084564
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1084564
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1095450
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1095450
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1099016
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1099016
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1014282
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1103529
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1103529
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1027431
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1027431
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 6
|6 P:(DE-H253)PIP1027431
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1104549
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1005343
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1099247
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 9
|6 P:(DE-H253)PIP1099247
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1007017
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 10
|6 P:(DE-H253)PIP1007017
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 10
|6 P:(DE-H253)PIP1007017
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1031944
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1014655
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 13
|6 P:(DE-H253)PIP1099018
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 13
|6 P:(DE-H253)PIP1099018
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1087484
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1087484
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 16
|6 P:(DE-H253)PIP1013759
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 17
|6 P:(DE-H253)PIP1013728
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 17
|6 P:(DE-H253)PIP1013728
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 18
|6 P:(DE-H253)PIP1014906
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 19
|6 P:(DE-H253)PIP1027397
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-H253)PIP1027397
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 19
|6 P:(DE-H253)PIP1027397
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 20
|6 P:(DE-H253)PIP1017364
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 20
|6 P:(DE-H253)PIP1017364
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 22
|6 P:(DE-H253)PIP1013098
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 23
|6 P:(DE-H253)PIP1096868
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 23
|6 P:(DE-H253)PIP1096868
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 24
|6 P:(DE-H253)PIP1006803
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 25
|6 P:(DE-H253)PIP1007320
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 27
|6 P:(DE-H253)PIP1103428
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 27
|6 P:(DE-H253)PIP1103428
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 28
|6 P:(DE-H253)PIP1084094
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 28
|6 P:(DE-H253)PIP1084094
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 28
|6 P:(DE-H253)PIP1084094
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G2
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v FLASH (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 01.01.2024
|2 APC
|0 PC:(DE-HGF)0178
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-FLASH-20140814
|k FS-FLASH
|l FS-FLASH
|x 1
920 1 _ |0 I:(DE-H253)XFEL_E2_SQS-20210408
|k XFEL_E2_SQS
|l SQS
|x 2
920 1 _ |0 I:(DE-H253)FS-FLASH-O-20160930
|k FS-FLASH-O
|l FLASH Wissenschaftlicher Nutzerbetrieb
|x 3
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-FLASH-20140814
980 _ _ |a I:(DE-H253)XFEL_E2_SQS-20210408
980 _ _ |a I:(DE-H253)FS-FLASH-O-20160930
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21