TY  - JOUR
AU  - Jahnke, Till
AU  - Mai, Sebastian
AU  - Bhattacharyya, Surjendu
AU  - Chen, Keyu
AU  - Boll, Rebecca
AU  - Castellani, Maria Elena
AU  - Dold, Simon
AU  - Duley, Avijit
AU  - Frühling, Ulrike
AU  - Green, Alice E.
AU  - Ilchen, Markus
AU  - Ingle, Rebecca
AU  - Kastirke, Gregor
AU  - Lam, Huynh Van Sa
AU  - Lever, Fabiano
AU  - Mayer, Dennis
AU  - Mazza, Tommaso
AU  - Mullins, Terence
AU  - Ovcharenko, Yevheniy
AU  - Senfftleben, Björn
AU  - Trinter, Florian
AU  - Noor, Atia Tul
AU  - Usenko, Sergey
AU  - Venkatachalam, Anbu Selvam
AU  - Rudenko, Artem
AU  - Rolles, Daniel
AU  - Meyer, Michael
AU  - Ibrahim, Heide
AU  - Gühr, Markus
TI  - Direct observation of ultrafast symmetry reduction during internal conversion of 2-thiouracil using Coulomb explosion imaging
JO  - Nature Communications
VL  - 16
IS  - arXiv:2405.15367
SN  - 2041-1723
CY  - [London]
PB  - Springer Nature
M1  - PUBDB-2025-00802
M1  - arXiv:2405.15367
SP  - 2074
PY  - 2025
N1  - 19 pages, 8 figures. Title is: Direct observation of ultrafast symmetry reduction during internal conversion 2-thiouracil using Coulomb explosion imagingBitte mit dem 
AB  - The photochemistry of heterocyclic molecules plays a decisive role for processes and applications like DNA photo-protection from UV damage and organic photocatalysis. The photochemical reactivity of heterocycles is determined by the redistribution of photoenergy into electronic and nuclear degrees of freedom, initially involving ultrafast internal conversion. Most heterocycles are planar in their ground state and internal conversion requires symmetry breaking. To lower the symmetry, the molecule must undergo an out-of-plane motion, which has not yet been observed directly. Here we show using the example of 2-thiouracil, how Coulomb explosion imaging can be utilized to extract comprehensive information on this molecular deformation, linking the extracted deplanarization of the molecular geometry to the previously studied temporal evolution of its electronic properties. Particularly, the protons of the exploded molecule are well-suited messengers carrying rich information on its geometry at distinct times after electronic excitation. We expect that our new analysis approach centered on these peripheral protons can be adapted as a general concept for future time-resolved studies of complex molecules in the gas phase.
LB  - PUB:(DE-HGF)16
C6  - pmid:40021641
UR  - <Go to ISI:>//WOS:001435592900010
DO  - DOI:10.1038/s41467-025-57083-3
UR  - https://bib-pubdb1.desy.de/record/623850
ER  -