Home > Publications database > Insight into heterogeneous dynamics of growing islands using coherent x-ray scattering > print |
001 | 623805 | ||
005 | 20250715173432.0 | ||
024 | 7 | _ | |a 10.1088/1367-2630/acfe33 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2025-00771 |2 datacite_doi |
024 | 7 | _ | |a WOS:001145757000001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4387124237 |
037 | _ | _ | |a PUBDB-2025-00771 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Dax, Ingrid |0 P:(DE-H253)PIP1095955 |b 0 |e Corresponding author |
245 | _ | _ | |a Insight into heterogeneous dynamics of growing islands using coherent x-ray scattering |
260 | _ | _ | |a [Bad Honnef] |c 2023 |b Dt. Physikalische Ges. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1740405546_2876993 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Understanding the non-equilibrium structure formation of thin films is a fundamental challenge with important implications also for technical applications. The interplay between adsorption, desorption, and surface diffusion may result in the formation of nontrivial surface morphologies. X-ray photon correlation spectroscopy opens up new possibilities for understanding these processes. In this work, we perform in situ x-ray experiments in grazing incidence geometry to follow the growth of diindenoperylene thin films in real time, revealing details of the dynamics during molecular island formation. Comparison with simulations allows to extract dynamic and kinetic time scales. We observe time scales in the range of a few hundred seconds which occur mainly due to kinetics, i.e. island growth. Importantly, we can relate the observed heterogeneous behavior in dynamics to the number of open layers, revealing information about the change in the roughness, and the growth speed of each layer. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
536 | _ | _ | |a FS-Proposal: I-20210492 (I-20210492) |0 G:(DE-H253)I-20210492 |c I-20210492 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P10 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P10-20150101 |6 EXP:(DE-H253)P-P10-20150101 |x 0 |
700 | 1 | _ | |a Zaluzhnyy, I. A. |0 P:(DE-H253)PIP1014884 |b 1 |
700 | 1 | _ | |a Pylypenko, A. |0 P:(DE-H253)PIP1098408 |b 2 |
700 | 1 | _ | |a Russegger, N. |0 P:(DE-H253)PIP1090673 |b 3 |
700 | 1 | _ | |a Starostin, V. |0 P:(DE-H253)PIP1090758 |b 4 |
700 | 1 | _ | |a Rysov, R. |0 P:(DE-H253)PIP1024691 |b 5 |
700 | 1 | _ | |a Westermeier, F. |0 P:(DE-H253)PIP1006002 |b 6 |
700 | 1 | _ | |a Sprung, M. |0 P:(DE-H253)PIP1007141 |b 7 |
700 | 1 | _ | |a Hinderhofer, A. |0 P:(DE-H253)PIP1081858 |b 8 |
700 | 1 | _ | |a Pithan, L. |0 P:(DE-H253)PIP1017835 |b 9 |
700 | 1 | _ | |a Schreiber, F. |0 P:(DE-H253)PIP1008437 |b 10 |e Corresponding author |
773 | _ | _ | |a 10.1088/1367-2630/acfe33 |g Vol. 25, no. 10, p. 103033 - |0 PERI:(DE-600)1464444-7 |n 10 |p 103033 |t New journal of physics |v 25 |y 2023 |x 1367-2630 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/623805/files/Dax_2023_New_J._Phys._25_103033.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/623805/files/Dax_2023_New_J._Phys._25_103033.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:623805 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1095955 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1014884 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1098408 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1090673 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1090758 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1024691 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 5 |6 P:(DE-H253)PIP1024691 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1006002 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 6 |6 P:(DE-H253)PIP1006002 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1007141 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 7 |6 P:(DE-H253)PIP1007141 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1081858 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1017835 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-H253)PIP1008437 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-17 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-17 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEW J PHYS : 2022 |d 2024-12-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-08-08T17:02:41Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-08-08T17:02:41Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-17 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-17 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-17 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-17 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-17 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2024-12-17 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-17 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-S-20210408 |k FS-PETRA-S |l PETRA-S |x 1 |
920 | 1 | _ | |0 I:(DE-H253)FS-EC-20120731 |k FS-EC |l FS-Experiment Control |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-S-20210408 |
980 | _ | _ | |a I:(DE-H253)FS-EC-20120731 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|