000623572 001__ 623572
000623572 005__ 20250715151516.0
000623572 0247_ $$2doi$$a10.1021/acs.jpcb.4c04386
000623572 0247_ $$2ISSN$$a1520-6106
000623572 0247_ $$2ISSN$$a1520-5207
000623572 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00695
000623572 0247_ $$2pmid$$a39808180
000623572 0247_ $$2WOS$$aWOS:001398066100001
000623572 0247_ $$2openalex$$aopenalex:W4406365759
000623572 037__ $$aPUBDB-2025-00695
000623572 041__ $$aEnglish
000623572 082__ $$a530
000623572 1001_ $$0P:(DE-H253)PIP1098197$$aDavoodi, Saeed$$b0
000623572 245__ $$aConfinement-Induced Self-Assembly of Protein Nanofibrils Probed by Microfocus X-ray Scattering
000623572 260__ $$aWashington, DC$$bAmerical Chemical Society$$c2025
000623572 3367_ $$2DRIVER$$aarticle
000623572 3367_ $$2DataCite$$aOutput Types/Journal article
000623572 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1740484449_931673
000623572 3367_ $$2BibTeX$$aARTICLE
000623572 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000623572 3367_ $$00$$2EndNote$$aJournal Article
000623572 520__ $$aWe here explore confinement-induced assembly of whey protein nanofibrils (PNFs) into microscale fibers using microfocused synchrotron X-ray scattering. Solvent evaporation aligns the PNFs into anisotropic fibers, and the process is followed in situ by scattering experiments within a droplet of PNF dispersion. We find an optimal temperature at which the order parameter of the protein fiber is maximized, suggesting that the degree of order results from a balance between the time scales of the forced alignment and the rotational diffusion of the fibrils. Furthermore, the assembly process is shown to depend on the nanoscale morphology and flexibility of the PNFs. Stiff/straight PNFs with long persistence lengths (∼2 μm) align at the air–water interface, with anisotropy decreasing toward the center of the droplet as Marangoni flows increase entanglement toward the center. By contrast, flexible/curved PNFs with shorter persistence lengths (<100 nm) align more uniformly throughout the droplet, likely due to enhanced local entanglements. Straight PNFs pack tightly, forming smaller clusters with short intercluster distances, while curved PNFs form intricate, adaptable networks with larger characteristic distances and more varied structures. 
000623572 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000623572 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000623572 536__ $$0G:(DE-HGF)2020_Join2-SWEDEN-DESY$$aSWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)$$c2020_Join2-SWEDEN-DESY$$x2
000623572 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000623572 693__ $$0EXP:(DE-H253)P-P03-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P03-20150101$$aPETRA III$$fPETRA Beamline P03$$x0
000623572 7001_ $$0P:(DE-H253)PIP1083744$$aOrnithopoulou, Eirini$$b1
000623572 7001_ $$00000-0001-5789-6299$$aGavillet, Calvin J.$$b2
000623572 7001_ $$0P:(DE-H253)PIP1011657$$aDavydok, Anton$$b3
000623572 7001_ $$0P:(DE-H253)PIP1003299$$aRoth, Stephan V.$$b4
000623572 7001_ $$0P:(DE-H253)PIP1027156$$aLendel, Christofer$$b5
000623572 7001_ $$0P:(DE-H253)PIP1018084$$aLundell, Fredrik$$b6$$eCorresponding author
000623572 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.4c04386$$gVol. 129, no. 3, p. 1070 - 1081$$n3$$p1070 - 1081$$tThe journal of physical chemistry / B$$v129$$x1520-6106$$y2025
000623572 8564_ $$uhttps://bib-pubdb1.desy.de/record/623572/files/davoodi-et-al-2025-confinement-induced-self-assembly-of-protein-nanofibrils-probed-by-microfocus-x-ray-scattering.pdf$$yOpenAccess
000623572 8564_ $$uhttps://bib-pubdb1.desy.de/record/623572/files/davoodi-et-al-2025-confinement-induced-self-assembly-of-protein-nanofibrils-probed-by-microfocus-x-ray-scattering.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000623572 909CO $$ooai:bib-pubdb1.desy.de:623572$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000623572 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098197$$aExternal Institute$$b0$$kExtern
000623572 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083744$$aExternal Institute$$b1$$kExtern
000623572 9101_ $$0I:(DE-588b)16087541-9$$6P:(DE-H253)PIP1011657$$aHelmholtz-Zentrum Geesthacht$$b3$$kHZG
000623572 9101_ $$0I:(DE-588b)1231250402$$6P:(DE-H253)PIP1011657$$aHelmholtz-Zentrum Hereon$$b3$$kHereon
000623572 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003299$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000623572 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1003299$$aEuropean XFEL$$b4$$kXFEL.EU
000623572 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1027156$$aExternal Institute$$b5$$kExtern
000623572 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1018084$$aExternal Institute$$b6$$kExtern
000623572 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000623572 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000623572 9141_ $$y2025
000623572 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000623572 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000623572 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000623572 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000623572 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
000623572 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000623572 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000623572 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-20
000623572 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000623572 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000623572 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2022$$d2024-12-20
000623572 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000623572 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000623572 9201_ $$0I:(DE-H253)Hereon-20210428$$kHereon$$lHelmholtz-Zentrum Hereon$$x0
000623572 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x1
000623572 9201_ $$0I:(DE-H253)FS-SMA-20220811$$kFS-SMA$$lSustainable Materials$$x2
000623572 980__ $$ajournal
000623572 980__ $$aVDB
000623572 980__ $$aUNRESTRICTED
000623572 980__ $$aI:(DE-H253)Hereon-20210428
000623572 980__ $$aI:(DE-H253)HAS-User-20120731
000623572 980__ $$aI:(DE-H253)FS-SMA-20220811
000623572 9801_ $$aFullTexts