% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Jooss:623250,
author = {Jooss, Christian and Seibt, Michael and Wenderoth, Martin
and Bünermann, Oliver and Bunjes, Ole and Domröse, Till
and Eckel, Christian and Falorsi, Francesca and Flathmann,
Christoph and de Azagra, Monica Kolek Martinez and Krüger,
Matthias and Lindner, Jonas and Meyer, Tobias and Ropers,
Claus and Ross, Ulrich and Rossnagel, Kai and Lalithambika,
Sreeju Sreekantan Nair and Techert, Simone and Traeger,
Georg A. and Volkert, Cynthia and Weitz, R. Thomas and
Wodtke, Alec M.},
title = {{A}dvancing {E}nergy {M}aterials by {I}n {S}itu {A}tomic
{S}cale {M}ethods},
journal = {Advanced energy materials},
volume = {1},
issn = {1614-6832},
address = {Weinheim},
publisher = {Wiley-VCH},
reportid = {PUBDB-2025-00675},
pages = {2404280},
year = {2025},
abstract = {Despite significant advancements in materials design for
renewable energy devices, the fundamental understanding of
the underlying processes in many materials remains limited,
particularly in complex, inhomogeneous systems and
interfaces. In such cases, in situ studies with high spatial
and energy resolution are essential for uncovering new
insights into excitation, dissipation, and conversion
processes. Recent progress in in situ atomic scale methods
has greatly enhanced the understanding of energy materials.
Here, key advances are reviewed, including in situ,
environmental and ultra-fast transmission electron
microscopy, scanning probe techniques,
single-photon-resolved infrared spectroscopy,
velocity-resolved molecular kinetics, and in situ
grazing-incidence X-ray spectroscopy. These techniques
enable the study of energy conversion with spatial
resolution from nanometers down to individual atoms, energy
resolution down to meV, and single-quantum detection.
Especially they enable access to processes that involve
multiple degrees of freedom, strong coupling, or spatial
inhomogeneities. They have driven a qualitative leap in the
fundamental understanding of energy conversion processes,
opening new avenues for improving existing materials and
designing novel clean and efficient energy materials in
photovoltaics, friction, and surface chemistry and
(photo-)electrochemistry.},
cin = {FS-SCS / FS-SXQM},
ddc = {050},
cid = {I:(DE-H253)FS-SCS-20131031 / I:(DE-H253)FS-SXQM-20190201},
pnm = {632 - Materials – Quantum, Complex and Functional
Materials (POF4-632) / 6G2 - FLASH (DESY) (POF4-6G2) / 6G3 -
PETRA III (DESY) (POF4-6G3) / SFB 1073 A01 - Reibung unter
aktiver Kontrolle in Systemen mit optimierten
Freiheitsgraden (A01) (240157516) / SFB 1073 A04 - Kontrolle
von Energiedissipation an Oberflächen mittels einstellbaren
Eigenschaften von Grenzflächen (A04) (240159337) / SFB 1073
A05 - Nanoskalige Untersuchung raumzeitlicher Relaxation in
heterogenen Systemen (A05) (240159667) / SFB 1073 B02 -
Photonen-getriebener Energietransfer über Grenzflächen
zwischen Materialien mit starken Korrelationen (B02)
(240163630) / SFB 1073 C02 - In-situ hochauflösende
Untersuchung des aktiven Zustands bei der (photo-)
elektrochemischen Wasserspaltung (C02) (240172646) / SFB
1073 C04 - Untersuchung und Kontrolle photochemischer
Reaktionen durch lokale optische Anregung im
Rastertunnelmikroskop (C04) (240173028) / SFB 1073 Z02 -
Kontrolle von Grenzflächen auf atomarer Skala (Z02)
(385358159) / DFG project G:(GEPRIS)217133147 - SFB 1073:
Kontrolle von Energiewandlung auf atomaren Skalen
(217133147)},
pid = {G:(DE-HGF)POF4-632 / G:(DE-HGF)POF4-6G2 /
G:(DE-HGF)POF4-6G3 / G:(GEPRIS)240157516 /
G:(GEPRIS)240159337 / G:(GEPRIS)240159667 /
G:(GEPRIS)240163630 / G:(GEPRIS)240172646 /
G:(GEPRIS)240173028 / G:(GEPRIS)385358159 /
G:(GEPRIS)217133147},
experiment = {EXP:(DE-H253)P-P04-20150101},
typ = {PUB:(DE-HGF)16},
UT = {WOS:001470281000013},
doi = {10.1002/aenm.202404280},
url = {https://bib-pubdb1.desy.de/record/623250},
}