% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Jooss:623250,
      author       = {Jooss, Christian and Seibt, Michael and Wenderoth, Martin
                      and Bünermann, Oliver and Bunjes, Ole and Domröse, Till
                      and Eckel, Christian and Falorsi, Francesca and Flathmann,
                      Christoph and de Azagra, Monica Kolek Martinez and Krüger,
                      Matthias and Lindner, Jonas and Meyer, Tobias and Ropers,
                      Claus and Ross, Ulrich and Rossnagel, Kai and Lalithambika,
                      Sreeju Sreekantan Nair and Techert, Simone and Traeger,
                      Georg A. and Volkert, Cynthia and Weitz, R. Thomas and
                      Wodtke, Alec M.},
      title        = {{A}dvancing {E}nergy {M}aterials by {I}n {S}itu {A}tomic
                      {S}cale {M}ethods},
      journal      = {Advanced energy materials},
      volume       = {1},
      issn         = {1614-6832},
      address      = {Weinheim},
      publisher    = {Wiley-VCH},
      reportid     = {PUBDB-2025-00675},
      pages        = {2404280},
      year         = {2025},
      abstract     = {Despite significant advancements in materials design for
                      renewable energy devices, the fundamental understanding of
                      the underlying processes in many materials remains limited,
                      particularly in complex, inhomogeneous systems and
                      interfaces. In such cases, in situ studies with high spatial
                      and energy resolution are essential for uncovering new
                      insights into excitation, dissipation, and conversion
                      processes. Recent progress in in situ atomic scale methods
                      has greatly enhanced the understanding of energy materials.
                      Here, key advances are reviewed, including in situ,
                      environmental and ultra-fast transmission electron
                      microscopy, scanning probe techniques,
                      single-photon-resolved infrared spectroscopy,
                      velocity-resolved molecular kinetics, and in situ
                      grazing-incidence X-ray spectroscopy. These techniques
                      enable the study of energy conversion with spatial
                      resolution from nanometers down to individual atoms, energy
                      resolution down to meV, and single-quantum detection.
                      Especially they enable access to processes that involve
                      multiple degrees of freedom, strong coupling, or spatial
                      inhomogeneities. They have driven a qualitative leap in the
                      fundamental understanding of energy conversion processes,
                      opening new avenues for improving existing materials and
                      designing novel clean and efficient energy materials in
                      photovoltaics, friction, and surface chemistry and
                      (photo-)electrochemistry.},
      cin          = {FS-SCS / FS-SXQM},
      ddc          = {050},
      cid          = {I:(DE-H253)FS-SCS-20131031 / I:(DE-H253)FS-SXQM-20190201},
      pnm          = {632 - Materials – Quantum, Complex and Functional
                      Materials (POF4-632) / 6G2 - FLASH (DESY) (POF4-6G2) / 6G3 -
                      PETRA III (DESY) (POF4-6G3) / SFB 1073 A01 - Reibung unter
                      aktiver Kontrolle in Systemen mit optimierten
                      Freiheitsgraden (A01) (240157516) / SFB 1073 A04 - Kontrolle
                      von Energiedissipation an Oberflächen mittels einstellbaren
                      Eigenschaften von Grenzflächen (A04) (240159337) / SFB 1073
                      A05 - Nanoskalige Untersuchung raumzeitlicher Relaxation in
                      heterogenen Systemen (A05) (240159667) / SFB 1073 B02 -
                      Photonen-getriebener Energietransfer über Grenzflächen
                      zwischen Materialien mit starken Korrelationen (B02)
                      (240163630) / SFB 1073 C02 - In-situ hochauflösende
                      Untersuchung des aktiven Zustands bei der (photo-)
                      elektrochemischen Wasserspaltung (C02) (240172646) / SFB
                      1073 C04 - Untersuchung und Kontrolle photochemischer
                      Reaktionen durch lokale optische Anregung im
                      Rastertunnelmikroskop (C04) (240173028) / SFB 1073 Z02 -
                      Kontrolle von Grenzflächen auf atomarer Skala (Z02)
                      (385358159) / DFG project G:(GEPRIS)217133147 - SFB 1073:
                      Kontrolle von Energiewandlung auf atomaren Skalen
                      (217133147)},
      pid          = {G:(DE-HGF)POF4-632 / G:(DE-HGF)POF4-6G2 /
                      G:(DE-HGF)POF4-6G3 / G:(GEPRIS)240157516 /
                      G:(GEPRIS)240159337 / G:(GEPRIS)240159667 /
                      G:(GEPRIS)240163630 / G:(GEPRIS)240172646 /
                      G:(GEPRIS)240173028 / G:(GEPRIS)385358159 /
                      G:(GEPRIS)217133147},
      experiment   = {EXP:(DE-H253)P-P04-20150101},
      typ          = {PUB:(DE-HGF)16},
      UT           = {WOS:001470281000013},
      doi          = {10.1002/aenm.202404280},
      url          = {https://bib-pubdb1.desy.de/record/623250},
}