000623250 001__ 623250
000623250 005__ 20250715151535.0
000623250 0247_ $$2doi$$a10.1002/aenm.202404280
000623250 0247_ $$2ISSN$$a1614-6832
000623250 0247_ $$2ISSN$$a1614-6840
000623250 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00675
000623250 0247_ $$2WOS$$aWOS:001470281000013
000623250 0247_ $$2openalex$$aopenalex:W4407149179
000623250 037__ $$aPUBDB-2025-00675
000623250 041__ $$aEnglish
000623250 082__ $$a050
000623250 1001_ $$0P:(DE-H253)PIP1027141$$aJooss, Christian$$b0$$eCorresponding author
000623250 245__ $$aAdvancing Energy Materials by In Situ Atomic Scale Methods
000623250 260__ $$aWeinheim$$bWiley-VCH$$c2025
000623250 3367_ $$2DRIVER$$aarticle
000623250 3367_ $$2DataCite$$aOutput Types/Journal article
000623250 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1741350899_3799492
000623250 3367_ $$2BibTeX$$aARTICLE
000623250 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000623250 3367_ $$00$$2EndNote$$aJournal Article
000623250 520__ $$aDespite significant advancements in materials design for renewable energy devices, the fundamental understanding of the underlying processes in many materials remains limited, particularly in complex, inhomogeneous systems and interfaces. In such cases, in situ studies with high spatial and energy resolution are essential for uncovering new insights into excitation, dissipation, and conversion processes. Recent progress in in situ atomic scale methods has greatly enhanced the understanding of energy materials. Here, key advances are reviewed, including in situ, environmental and ultra-fast transmission electron microscopy, scanning probe techniques, single-photon-resolved infrared spectroscopy, velocity-resolved molecular kinetics, and in situ grazing-incidence X-ray spectroscopy. These techniques enable the study of energy conversion with spatial resolution from nanometers down to individual atoms, energy resolution down to meV, and single-quantum detection. Especially they enable access to processes that involve multiple degrees of freedom, strong coupling, or spatial inhomogeneities. They have driven a qualitative leap in the fundamental understanding of energy conversion processes, opening new avenues for improving existing materials and designing novel clean and efficient energy materials in photovoltaics, friction, and surface chemistry and (photo-)electrochemistry.
000623250 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000623250 536__ $$0G:(DE-HGF)POF4-6G2$$a6G2 - FLASH (DESY) (POF4-6G2)$$cPOF4-6G2$$fPOF IV$$x1
000623250 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x2
000623250 536__ $$0G:(GEPRIS)240157516$$aSFB 1073 A01 - Reibung unter aktiver Kontrolle in Systemen mit optimierten Freiheitsgraden (A01) (240157516)$$c240157516$$x3
000623250 536__ $$0G:(GEPRIS)240159337$$aSFB 1073 A04 - Kontrolle von Energiedissipation an Oberflächen mittels einstellbaren Eigenschaften von Grenzflächen (A04) (240159337)$$c240159337$$x4
000623250 536__ $$0G:(GEPRIS)240159667$$aSFB 1073 A05 - Nanoskalige Untersuchung raumzeitlicher Relaxation in heterogenen Systemen (A05) (240159667)$$c240159667$$x5
000623250 536__ $$0G:(GEPRIS)240163630$$aSFB 1073 B02 - Photonen-getriebener Energietransfer über Grenzflächen zwischen Materialien mit starken Korrelationen (B02) (240163630)$$c240163630$$x6
000623250 536__ $$0G:(GEPRIS)240172646$$aSFB 1073 C02 - In-situ hochauflösende Untersuchung des aktiven Zustands bei der (photo-) elektrochemischen Wasserspaltung (C02) (240172646)$$c240172646$$x7
000623250 536__ $$0G:(GEPRIS)240173028$$aSFB 1073 C04 - Untersuchung und Kontrolle photochemischer Reaktionen durch lokale optische Anregung im Rastertunnelmikroskop (C04) (240173028)$$c240173028$$x8
000623250 536__ $$0G:(GEPRIS)385358159$$aSFB 1073 Z02 - Kontrolle von Grenzflächen auf atomarer Skala (Z02) (385358159)$$c385358159$$x9
000623250 536__ $$0G:(GEPRIS)217133147$$aDFG project G:(GEPRIS)217133147 - SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen (217133147)$$c217133147$$x10
000623250 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000623250 693__ $$0EXP:(DE-H253)P-P04-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P04-20150101$$aPETRA III$$fPETRA Beamline P04$$x0
000623250 7001_ $$00000-0002-9908-400X$$aSeibt, Michael$$b1$$eCorresponding author
000623250 7001_ $$00000-0001-9663-3512$$aWenderoth, Martin$$b2
000623250 7001_ $$00000-0001-9837-6548$$aBünermann, Oliver$$b3
000623250 7001_ $$00000-0002-4792-4169$$aBunjes, Ole$$b4
000623250 7001_ $$00000-0002-9641-726X$$aDomröse, Till$$b5
000623250 7001_ $$00000-0001-7888-2574$$aEckel, Christian$$b6
000623250 7001_ $$00009-0007-3319-7240$$aFalorsi, Francesca$$b7
000623250 7001_ $$00000-0002-6384-568X$$aFlathmann, Christoph$$b8
000623250 7001_ $$00009-0000-4147-3259$$ade Azagra, Monica Kolek Martinez$$b9
000623250 7001_ $$00000-0001-5015-935X$$aKrüger, Matthias$$b10
000623250 7001_ $$00000-0002-0902-2105$$aLindner, Jonas$$b11
000623250 7001_ $$aMeyer, Tobias$$b12
000623250 7001_ $$00000-0002-9539-3817$$aRopers, Claus$$b13
000623250 7001_ $$00000-0002-0909-6948$$aRoss, Ulrich$$b14
000623250 7001_ $$0P:(DE-H253)PIP1007948$$aRossnagel, Kai$$b15
000623250 7001_ $$00009-0007-3217-7424$$aLalithambika, Sreeju Sreekantan Nair$$b16
000623250 7001_ $$0P:(DE-H253)PIP1008775$$aTechert, Simone$$b17
000623250 7001_ $$00000-0003-4286-7895$$aTraeger, Georg A.$$b18
000623250 7001_ $$00000-0001-6676-8758$$aVolkert, Cynthia$$b19
000623250 7001_ $$00000-0001-5404-7355$$aWeitz, R. Thomas$$b20
000623250 7001_ $$00000-0002-6509-2183$$aWodtke, Alec M.$$b21
000623250 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202404280$$gp. 2404280$$p2404280$$tAdvanced energy materials$$v1$$x1614-6832$$y2025
000623250 8564_ $$uhttps://bib-pubdb1.desy.de/record/623250/files/Advanced%20Energy%20Materials%20-%202025%20-%20Jooss%20-%20Advancing%20Energy%20Materials%20by%20In%20Situ%20Atomic%20Scale%20Methods.pdf$$yOpenAccess
000623250 8564_ $$uhttps://bib-pubdb1.desy.de/record/623250/files/Advanced%20Energy%20Materials%20-%202025%20-%20Jooss%20-%20Advancing%20Energy%20Materials%20by%20In%20Situ%20Atomic%20Scale%20Methods.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000623250 909CO $$ooai:bib-pubdb1.desy.de:623250$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000623250 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1027141$$aExternal Institute$$b0$$kExtern
000623250 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007948$$aDeutsches Elektronen-Synchrotron$$b15$$kDESY
000623250 9101_ $$0I:(DE-588b)2008985-5$$60009-0007-3217-7424$$aDeutsches Elektronen-Synchrotron$$b16$$kDESY
000623250 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1008775$$aDeutsches Elektronen-Synchrotron$$b17$$kDESY
000623250 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1008775$$aEuropean XFEL$$b17$$kXFEL.EU
000623250 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000623250 9131_ $$0G:(DE-HGF)POF4-6G2$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFLASH (DESY)$$x1
000623250 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x2
000623250 9141_ $$y2025
000623250 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000623250 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000623250 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-12$$wger
000623250 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
000623250 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
000623250 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
000623250 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-12
000623250 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-12
000623250 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
000623250 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
000623250 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
000623250 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2022$$d2024-12-12
000623250 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
000623250 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
000623250 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2022$$d2024-12-12
000623250 9201_ $$0I:(DE-H253)FS-SCS-20131031$$kFS-SCS$$lStrukturdynamik Chemischer Systeme$$x0
000623250 9201_ $$0I:(DE-H253)FS-SXQM-20190201$$kFS-SXQM$$lFS-SXQM$$x1
000623250 980__ $$ajournal
000623250 980__ $$aVDB
000623250 980__ $$aI:(DE-H253)FS-SCS-20131031
000623250 980__ $$aI:(DE-H253)FS-SXQM-20190201
000623250 980__ $$aUNRESTRICTED
000623250 9801_ $$aFullTexts