001     623232
005     20250723105737.0
024 7 _ |a Daza:2025cwg
|2 INSPIRETeX
024 7 _ |a inspire:2878488
|2 inspire
024 7 _ |a arXiv:2502.06573
|2 arXiv
024 7 _ |a 10.1088/1748-0221/20/06/C06037
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-00664
|2 datacite_doi
024 7 _ |a openalex:W4411448272
|2 openalex
037 _ _ |a PUBDB-2025-00664
041 _ _ |a English
082 _ _ |a 610
088 _ _ |a arXiv:2502.06573
|2 arXiv
100 1 _ |a Ruiz Daza, Sara
|0 P:(DE-H253)PIP1099054
|b 0
|e Corresponding author
111 2 _ |a Eleventh International Workshop on Semiconductor Pixel Detectors for Particles and Imaging
|g (PIXEL)
|c Strasbourg
|d 2024-11-18 - 2024-11-22
|w France
245 _ _ |a The H2M Monolithic Active Pixel Sensor — characterizing non-uniform in-pixel response in a 65 nm CMOS imaging technology
260 _ _ |a London
|c 2025
|b Inst. of Physics
300 _ _ |a 5
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1751960778_1761947
|2 PUB:(DE-HGF)
520 _ _ |a The high energy physics community recently gained access to the TPSCo 65 nm ISC (Image Sensor CMOS), which enables a higher in-pixel logic density in monolithic active pixel sensors (MAPS) compared to processes with larger feature sizes. To explore this novel technology, the Hybrid-to-Monolithic (H2M) test chip has been designed and manufactured. The design followed a digital-on-top design workflow and ports a hybrid pixel-detector architecture, with digital pulse processing in each pixel, into a monolithic chip. The chip matrix consists of 64×16 square pixels with a size of 35×35 μm2, and a total active area of approximately 1.25 mm2. The chip has been successfully integrated into the Caribou DAQ system. It is fully functional, and the measured threshold dispersion and noise agree with the expectation from front-end simulations. However, a non-uniform in-pixel response related to the size and location of the n-wells in the analog circuitry has been observed in test beam measurements and will be discussed in this contribution. This asymmetry in the pixel response, enhanced by the 35 μm pixel pitch — larger than in other prototypes — and certain features of the readout circuit, has not been observed in prototypes with smaller pixel pitches in this technology.
536 _ _ |a 622 - Detector Technologies and Systems (POF4-622)
|0 G:(DE-HGF)POF4-622
|c POF4-622
|f POF IV
|x 0
536 _ _ |a AIDAinnova - Advancement and Innovation for Detectors at Accelerators (101004761)
|0 G:(EU-Grant)101004761
|c 101004761
|f H2020-INFRAINNOV-2020-2
|x 1
588 _ _ |a Dataset connected to INSPIRE
693 _ _ |a LHC
|e LHC: ATLAS
|1 EXP:(DE-588)4398783-7
|0 EXP:(DE-H253)LHC-Exp-ATLAS-20150101
|5 EXP:(DE-H253)LHC-Exp-ATLAS-20150101
|x 0
700 1 _ |a Ballabriga, Rafael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Buschmann, Eric
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Campbell, Michael
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mohr, Raimon Casanova
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dannheim, Dominik
|0 P:(DE-H253)PIP1087629
|b 5
700 1 _ |a Dilg, Jona
|0 P:(DE-H253)PIP1110068
|b 6
700 1 _ |a Dorda, Ana
|0 P:(DE-HGF)0
|b 7
700 1 _ |a King, Finn
|0 P:(DE-H253)PIP1019720
|b 8
700 1 _ |a Feyens, Ono
|0 P:(DE-H253)PIP1111403
|b 9
700 1 _ |a Gadow, Paul Philipp
|0 P:(DE-H253)PIP1080597
|b 10
700 1 _ |a Gregor, Ingrid-Maria
|0 P:(DE-H253)PIP1004563
|b 11
700 1 _ |a Hansen, Karsten
|0 P:(DE-H253)PIP1003149
|b 12
700 1 _ |a He, Yajun
|0 P:(DE-H253)PIP1088897
|b 13
700 1 _ |a Huth, Lennart
|0 P:(DE-H253)PIP1024990
|b 14
700 1 _ |a Kremastiotis, Iraklis
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Lemoine, Corentin
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Maffessanti, Stefano
|0 P:(DE-H253)PIP1080645
|b 17
700 1 _ |a Mendes, Larissa
|0 P:(DE-H253)PIP1097577
|b 18
700 1 _ |a Otarid, Younes
|0 P:(DE-H253)PIP1080805
|b 19
700 1 _ |a Reckleben, Christian
|0 P:(DE-H253)PIP1001714
|b 20
700 1 _ |a Rettie, Sébastien
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Viera, Manuel Alejandro del Rio
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Schlaadt, Judith
|0 P:(DE-H253)PIP1102373
|b 23
700 1 _ |a Simancas, Adriana
|0 P:(DE-H253)PIP1094798
|b 24
700 1 _ |a Snoeys, Walter
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Spannagel, Simon
|0 P:(DE-H253)PIP1018940
|b 26
700 1 _ |a Vanat, Tomas
|0 P:(DE-H253)PIP1087423
|b 27
700 1 _ |a Velyka, Anastasiia
|0 P:(DE-H253)PIP1021838
|b 28
700 1 _ |a Vignola, Gianpiero
|0 P:(DE-H253)PIP1099070
|b 29
700 1 _ |a Wennloef, Hakan Lennart Olov
|0 P:(DE-H253)PIP1097675
|b 30
773 _ _ |a 10.1088/1748-0221/20/06/C06037
|g Vol. 20, no. 06, p. C06037 -
|0 PERI:(DE-600)2235672-1
|n 06
|p C06037
|t Journal of Instrumentation
|v 20
|y 2025
|x 1748-0221
787 0 _ |a Ruiz Daza, Sara et.al.
|d 2025
|i IsParent
|0 PUBDB-2025-02221
|r arXiv:2502.06573
|t The H2M Monolithic Active Pixel Sensor -- characterizing non-uniform in-pixel response in a 65 nm CMOS imaging technology
856 4 _ |u https://bib-pubdb1.desy.de/record/623232/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/623232/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/623232/files/Ruiz_Daza_2025_J._Inst._20_C06037.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/623232/files/Ruiz_Daza_2025_J._Inst._20_C06037.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:623232
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1099054
910 1 _ |a CERN
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Brookhaven National Laboratory
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1087629
910 1 _ |a CERN
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-H253)PIP1087629
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1110068
910 1 _ |a CERN
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1019720
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1111403
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1080597
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1080597
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1004563
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1003149
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1088897
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 14
|6 P:(DE-H253)PIP1024990
910 1 _ |a CERN
|0 I:(DE-HGF)0
|b 15
|6 P:(DE-HGF)0
910 1 _ |a CERN
|0 I:(DE-HGF)0
|b 16
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 17
|6 P:(DE-H253)PIP1080645
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 18
|6 P:(DE-H253)PIP1097577
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-H253)PIP1080805
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 20
|6 P:(DE-H253)PIP1001714
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 22
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 23
|6 P:(DE-H253)PIP1102373
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 23
|6 P:(DE-H253)PIP1102373
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 24
|6 P:(DE-H253)PIP1094798
910 1 _ |a CERN
|0 I:(DE-HGF)0
|b 25
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 26
|6 P:(DE-H253)PIP1018940
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 27
|6 P:(DE-H253)PIP1087423
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 28
|6 P:(DE-H253)PIP1021838
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 29
|6 P:(DE-H253)PIP1099070
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 30
|6 P:(DE-H253)PIP1097675
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-622
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Detector Technologies and Systems
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J INSTRUM : 2022
|d 2024-12-06
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a TIB: IOP Publishing 2022
|2 APC
|0 PC:(DE-HGF)0107
920 1 _ |0 I:(DE-H253)ATLAS-20120731
|k ATLAS
|l LHC/ATLAS Experiment
|x 0
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-H253)ATLAS-20120731
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21