000623162 001__ 623162
000623162 005__ 20250715170927.0
000623162 0247_ $$2doi$$a10.1021/acsami.4c10726
000623162 0247_ $$2ISSN$$a1944-8244
000623162 0247_ $$2ISSN$$a1944-8252
000623162 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00628
000623162 0247_ $$2altmetric$$aaltmetric:166079411
000623162 0247_ $$2pmid$$apmid:39013146
000623162 0247_ $$2WOS$$aWOS:001270055100001
000623162 0247_ $$2openalex$$aopenalex:W4400674740
000623162 037__ $$aPUBDB-2025-00628
000623162 041__ $$aEnglish
000623162 082__ $$a600
000623162 1001_ $$0P:(DE-H253)PIP1092535$$aGuan, Tianfu$$b0
000623162 245__ $$aHigh-Power Impulse Magnetron Sputter Deposition of Ag on Self-Assembled Au Nanoparticle Arrays at Low-Temperature Dewetting Conditions
000623162 260__ $$aWashington, DC$$bSoc.$$c2024
000623162 3367_ $$2DRIVER$$aarticle
000623162 3367_ $$2DataCite$$aOutput Types/Journal article
000623162 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738839490_3032436
000623162 3367_ $$2BibTeX$$aARTICLE
000623162 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000623162 3367_ $$00$$2EndNote$$aJournal Article
000623162 520__ $$aPlasmons have facilitated diverse analytical applications due to the boosting signal detectability by hot spots. In practical applications, it is crucial to fabricate straightforward, large-scale, and reproducible plasmonic substrates. Dewetting treatment, via applying direct thermal annealing of metal films, has been used as a straightforward method in the fabrication of such plasmonic nanostructures. However, tailoring the evolution of the dewetting process of metal films poses considerable experimental complexities, mainly due to nanoscale structure formation. Here, we use grazing-incidence small- and wide-angle X-ray scattering for the in situ investigation of the high-power impulse magnetron sputter deposition of Ag on self-assembled Au nanoparticle arrays at low-temperature dewetting conditions. This approach allows us to examine both the direct formation of binary Au/Ag nanostructure and the consequential impact of the dewetting process on the spatial arrangement of the bimetallic nanoparticles. It is observed that the dewetting at 100 °C is sufficient to favor the establishment of a homogenized structural configuration of bimetallic nanostructures, which is beneficial for localized surface plasmon resonances (LSPRs). The fabricated metal nanostructures show potential application for the surface-enhanced Raman scattering (SERS) detection of rhodamine 6G molecules. As SERS platform, bimetallic nanostructures formed with dewetting conditions turn out to be superior to those without dewetting conditions. The method in this work is envisioned as a facile strategy for the fabrication of plasmonic nanostructures.
000623162 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000623162 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000623162 536__ $$0G:(GEPRIS)390776260$$aDFG project G:(GEPRIS)390776260 - EXC 2089: e-conversion (390776260)$$c390776260$$x2
000623162 536__ $$0G:(GEPRIS)459798762$$aDFG project G:(GEPRIS)459798762 - In situ Untersuchungen von Keimbildungs- und Wachstumsprozessen bei niedriger Temperatur während des Hochleistungs-Impuls-Magnetron-Sputterns (459798762)$$c459798762$$x3
000623162 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000623162 693__ $$0EXP:(DE-H253)P-P03-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P03-20150101$$aPETRA III$$fPETRA Beamline P03$$x0
000623162 7001_ $$0P:(DE-H253)PIP1090405$$aLiang, Suzhe$$b1
000623162 7001_ $$0P:(DE-HGF)0$$aKang, Yicui$$b2
000623162 7001_ $$0P:(DE-HGF)0$$aPensa, Evangelina$$b3
000623162 7001_ $$0P:(DE-H253)PIP1092232$$aLi, Dongqi$$b4
000623162 7001_ $$0P:(DE-HGF)0$$aLiang, Wenkai$$b5
000623162 7001_ $$0P:(DE-HGF)0$$aLiang, Zhiqiang$$b6
000623162 7001_ $$0P:(DE-H253)PIP1098114$$aBulut, Yusuf$$b7$$udesy
000623162 7001_ $$0P:(DE-H253)PIP1098070$$aReck, Kristian$$b8
000623162 7001_ $$0P:(DE-H253)PIP1089768$$aXIAO, TIANXIAO$$b9
000623162 7001_ $$0P:(DE-H253)PIP1088515$$aGuo, Renjun$$b10
000623162 7001_ $$0P:(DE-H253)PIP1084544$$aDrewes, Jonas$$b11
000623162 7001_ $$0P:(DE-H253)PIP1014940$$aStrunskus, Thomas$$b12
000623162 7001_ $$0P:(DE-H253)PIP1010504$$aSchwartzkopf, Matthias$$b13
000623162 7001_ $$0P:(DE-H253)PIP1024061$$aFaupel, Franz$$b14
000623162 7001_ $$0P:(DE-H253)PIP1003299$$aRoth, Stephan V.$$b15
000623162 7001_ $$0P:(DE-HGF)0$$aCortés, Emiliano$$b16
000623162 7001_ $$0P:(DE-HGF)0$$aJiang, Lin$$b17
000623162 7001_ $$0P:(DE-H253)PIP1007825$$aMueller-Buschbaum, Peter$$b18$$eCorresponding author
000623162 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.4c10726$$gVol. 16, no. 30, p. 40286 - 40296$$n30$$p40286 - 40296$$tACS applied materials & interfaces$$v16$$x1944-8244$$y2024
000623162 8564_ $$uhttps://bib-pubdb1.desy.de/record/623162/files/guan-et-al-2024-high-power-impulse-magnetron-sputter-deposition-of-ag-on-self-assembled-au-nanoparticle-arrays-at-low%20%281%29.pdf$$yOpenAccess
000623162 8564_ $$uhttps://bib-pubdb1.desy.de/record/623162/files/guan-et-al-2024-high-power-impulse-magnetron-sputter-deposition-of-ag-on-self-assembled-au-nanoparticle-arrays-at-low%20%281%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000623162 909CO $$ooai:bib-pubdb1.desy.de:623162$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000623162 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092535$$aExternal Institute$$b0$$kExtern
000623162 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090405$$aExternal Institute$$b1$$kExtern
000623162 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092232$$aExternal Institute$$b4$$kExtern
000623162 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1098114$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000623162 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098114$$aExternal Institute$$b7$$kExtern
000623162 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098070$$aExternal Institute$$b8$$kExtern
000623162 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089768$$aExternal Institute$$b9$$kExtern
000623162 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088515$$aExternal Institute$$b10$$kExtern
000623162 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1084544$$aExternal Institute$$b11$$kExtern
000623162 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014940$$aExternal Institute$$b12$$kExtern
000623162 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1010504$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY
000623162 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1024061$$aExternal Institute$$b14$$kExtern
000623162 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003299$$aDeutsches Elektronen-Synchrotron$$b15$$kDESY
000623162 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1003299$$aEuropean XFEL$$b15$$kXFEL.EU
000623162 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007825$$aExternal Institute$$b18$$kExtern
000623162 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000623162 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000623162 9141_ $$y2024
000623162 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000623162 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000623162 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-13
000623162 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000623162 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2022$$d2024-12-13
000623162 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2022$$d2024-12-13
000623162 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000623162 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000623162 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000623162 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
000623162 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000623162 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000623162 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000623162 9201_ $$0I:(DE-H253)FS-SMA-20220811$$kFS-SMA$$lSustainable Materials$$x1
000623162 980__ $$ajournal
000623162 980__ $$aVDB
000623162 980__ $$aUNRESTRICTED
000623162 980__ $$aI:(DE-H253)HAS-User-20120731
000623162 980__ $$aI:(DE-H253)FS-SMA-20220811
000623162 9801_ $$aFullTexts