TY  - EJOUR
AU  - Ilchen, Markus
AU  - Allaria, Enrico
AU  - Ribič, Primož Rebernik
AU  - Nuhn, Heinz-Dieter
AU  - Lutman, Alberto
AU  - Schneidmiller, Evgeny
AU  - Tischer, Markus
AU  - Yurkov, Mikail
AU  - Calvi, Marco
AU  - Prat, Eduard
AU  - Reiche, Sven
AU  - Schmidt, Thomas
AU  - Geloni, Gianluca Aldo
AU  - Karabekyan, Suren
AU  - Yan, Jiawei
AU  - Serkez, Svitozar
AU  - Gao, Zhangfeng
AU  - Deng, Bangjie
AU  - Feng, Chao
AU  - Deng, Haixiao
AU  - Helml, Wolfram
AU  - Funke, Lars
AU  - Larsson, Mats
AU  - Vitali
AU  - Zhaunerchyk
AU  - Meyer, Michael
AU  - Mazza, Tommaso
AU  - Jahnke, Till
AU  - Doerner, Reinhard
AU  - Calegari, Francesca
AU  - Smirnova, Olga
AU  - Vozzi, Caterina
AU  - De Ninno, Giovanni
AU  - Waetzel, Jonas
AU  - Berakdar, Jamal
AU  - Sadia
AU  - Bari
AU  - Schwob, Lucas
AU  - Rouxel, Jérémy R.
AU  - Mukamel, Shaul
AU  - Bartschat, Klaus
AU  - Hamilton, Kathryn
AU  - Argenti, Luca
AU  - Douguet, Nicolas
AU  - Novikovskiy, Nikolay M.
AU  - Demekhin, Philipp V.
AU  - Walter, Peter
TI  - Opportunities for Gas-Phase Science at Short-Wavelength Free-Electron Lasers with Undulator-Based Polarization Control
IS  - arXiv:2311.11519
M1  - PUBDB-2025-00602
M1  - arXiv:2311.11519
PY  - 2025
AB  - Free-electron lasers (FELs) are the world's most brilliant light sources with rapidly evolving technological capabilities in terms of ultrabright and ultrashort pulses over a large range of accessible photon energies. Their revolutionary and innovative developments have opened new fields of science regarding nonlinear light-matter interaction, the investigation of ultrafast processes from specific observer sites, and approaches to imaging matter with atomic resolution. A core aspect of FEL science is the study of isolated and prototypical systems in the gas phase with the possibility of addressing well-defined electronic transitions or particular atomic sites in molecules. Notably for polarization-controlled short-wavelength FELs, the gas phase offers new avenues for investigations of nonlinear and ultrafast phenomena in spin orientated systems, for decoding the function of the chiral building blocks of life as well as steering reactions and particle emission dynamics in otherwise inaccessible ways. This roadmap comprises descriptions of technological capabilities of facilities worldwide, innovative diagnostics and instrumentation, as well as recent scientific highlights, novel methodology and mathematical modeling. The experimental and theoretical landscape of using polarization controllable FELs for dichroic light-matter interaction in the gas phase will be discussed and comprehensively outlined to stimulate and strengthen global collaborative efforts of all disciplines.
LB  - PUB:(DE-HGF)25
DO  - DOI:10.3204/PUBDB-2025-00602
UR  - https://bib-pubdb1.desy.de/record/623115
ER  -