000622910 001__ 622910
000622910 005__ 20250407222511.0
000622910 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00559
000622910 0247_ $$2URN$$aurn:nbn:de:gbv:18-ediss-124512
000622910 037__ $$aPUBDB-2025-00559
000622910 041__ $$aEnglish
000622910 088__ $$2DESY$$aDESY-THESIS-2025-001
000622910 1001_ $$0P:(DE-H253)PIP1095138$$aMusa, Elaf Salah Hassan$$b0$$eCorresponding author$$gfemale
000622910 245__ $$aOptics measurement and correctionfor future electron circular colliders$$f2021-06-07 - 2024-09-30
000622910 260__ $$aHamburg$$bVerlag Deutsches Elektronen-Synchrotron DESY$$c2024
000622910 300__ $$a176
000622910 3367_ $$2DataCite$$aOutput Types/Dissertation
000622910 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000622910 3367_ $$2ORCID$$aDISSERTATION
000622910 3367_ $$2BibTeX$$aPHDTHESIS
000622910 3367_ $$02$$2EndNote$$aThesis
000622910 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1744017251_1668330
000622910 3367_ $$2DRIVER$$adoctoralThesis
000622910 4900_ $$aDESY-THESIS
000622910 502__ $$aDissertation, Universität Hamburg, 2024$$bDissertation$$cUniversität Hamburg$$d2024$$o2024-12-11
000622910 520__ $$aThe development of ultra-low emittance storage rings, such as the e+/e- Future CircularCollider (FCC-ee) with a circumference of about 90 km, aims to achieve unprecedentedluminosity and beam size. One significant challenge is correcting the optics, which becomesincreasingly difficult as we target lower emittances. The use of stronger quadrupolesand sextupoles makes these machines particularly sensitive to misalignments, which canseverely impact performance. This study investigates optics correction methods to addressthese challenges. We examined the impact of arc and Interaction Region (IR) magnetalignment errors in two optics design options for the FCC-ee, called Baseline and LocalChromatic Correction Optics (LCCO). To establish realistic alignment tolerances, we developeda sequence of correction steps using the Python Accelerator Toolbox (PyAT) tocorrect the lattice optics, achieve nominal emittance, and large Dynamic Aperture (DA).We focused initially on the Linear Optics from Closed Orbit (LOCO) method, which fitsthe measured Orbit Response Matrix (ORM) to the lattice model to determine optimalparameters such as quadrupole strengths. We implemented a Python-based numerical codefor LOCO correction and evaluated its effectiveness for the FCC-ee. Preliminary resultsindicate successful optics corrections. We also compared LOCO with phase advance +ηx and coupling Resonance Driving Terms (RDTs) + ηy optics correction, finding thatthe latter performed better in achieving design emittance values and a large DA area forrealistic alignment tolerances, for the studied cases. The code was further optimized andexpanded to include more realistic scenarios. Additionally, we applied LOCO to PETRAIV -a fourth generation light source upgrade, and integrated the code into the PythonSimulated Commissioning toolkit for Synchrotrons (PySC).v
000622910 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000622910 536__ $$0G:(DE-HGF)2015_IFV-VH-GS-500$$aPHGS, VH-GS-500 - PIER Helmholtz Graduate School (2015_IFV-VH-GS-500)$$c2015_IFV-VH-GS-500$$x1
000622910 693__ $$0EXP:(DE-H253)FCC-20190101$$5EXP:(DE-H253)FCC-20190101$$eFuture Circular Collider$$x0
000622910 7001_ $$0P:(DE-H253)PIP1032393$$aHillert, Wolfgang$$b1$$eThesis advisor
000622910 7001_ $$0P:(DE-H253)PIP1011647$$aAgapov, Ilya$$b2$$eThesis advisor$$udesy
000622910 8564_ $$uhttps://bib-pubdb1.desy.de/record/622910/files/PhD_thesis_Elaf_Musa.pdf$$yOpenAccess
000622910 8564_ $$uhttps://bib-pubdb1.desy.de/record/622910/files/desy-thesis-25-001.title.pdf$$yOpenAccess
000622910 8564_ $$uhttps://bib-pubdb1.desy.de/record/622910/files/PhD_thesis_Elaf_Musa.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000622910 8564_ $$uhttps://bib-pubdb1.desy.de/record/622910/files/desy-thesis-25-001.title.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000622910 909CO $$ooai:bib-pubdb1.desy.de:622910$$pVDB$$pdriver$$purn$$popen_access$$pdnbdelivery$$popenaire
000622910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1095138$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000622910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1032393$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000622910 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1032393$$aExternal Institute$$b1$$kExtern
000622910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011647$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000622910 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000622910 9141_ $$y2024
000622910 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000622910 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000622910 920__ $$lyes
000622910 9201_ $$0I:(DE-H253)MPY-20120731$$kMPY$$lBeschleunigerphysik$$x0
000622910 980__ $$aphd
000622910 980__ $$aVDB
000622910 980__ $$aUNRESTRICTED
000622910 980__ $$abook
000622910 980__ $$aI:(DE-H253)MPY-20120731
000622910 9801_ $$aFullTexts