001     622847
005     20250625130147.0
024 7 _ |a 10.5194/ejm-36-1023-2024
|2 doi
024 7 _ |a 0935-1221
|2 ISSN
024 7 _ |a 1617-4011
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-00527
|2 datacite_doi
024 7 _ |a altmetric:172247107
|2 altmetric
024 7 _ |a WOS:001379934000001
|2 WOS
037 _ _ |a PUBDB-2025-00527
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Koch-Mueller, Monika
|0 P:(DE-H253)PIP1016610
|b 0
|e Corresponding author
245 _ _ |a The coesite–stishovite transition of hydrous, Al-bearing SiO$_2$ : an in situ synchrotron X-ray study
260 _ _ |a Göttingen
|c 2024
|b Copernicus Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738231451_3826136
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We examined the influence of Al$_2$O$_3$ and H$_2$O on the position of the coesite–stishovite transition by means of in situ X-ray diffraction measurements with the large-volume press at the PETRA III synchrotron in Hamburg. The position of the transition was determined by several reversal experiments and was found to be shifted almost in parallel by about 1.5 GPa to lower pressures compared to results for the pure SiO$_2$ system reported by Ono et al. (2017). Two further reversal experiments with either additional Al$_2$O$_3$ or additional H$_2$O added to SiO$_2$ showed smaller changes compared to the results of Ono et al. (2017), indicating the effect of the coupled Al and H incorporation in coesite and stishovite on their transition. Further investigations of the solid quenched products and of products from additional multi-anvil experiments performed at the GFZ Helmholtz-Zentrum für Geoforschung in Potsdam were done by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), electron probe micro-analysis (EPMA), and Fourier transform infrared (FTIR) and Raman spectroscopy. Generally, the recovered samples of the in situ experiments contained less stishovite than expected from the last in situ XRD pattern before quenching. Thus, these investigations clearly show that hydrous, Al-rich stishovite that formed at high pressure (P) and temperature (T) could, at least partly, not be quenched to room conditions and transformed to coesite with unusually high (Al, H) contents. As result of this, conventional quench experiments would lead to erroneous results of the transition in the (Al, H)-bearing SiO2 system. We observed two kinds of coesite in the experiments: one relatively Al-poor coesite transformed under equilibrium conditions at P and T from stishovite over a certain time frame and an Al-richer one, sometimes pseudomorphically replacing former stishovite during the decompression process to room conditions. Within both types of coesite, nanometre-sized kyanite inclusions and relicts or remnants of stishovite were observed by TEM. These observations resemble those of Yang et al. (2007) on ophiolites with identical textures and phases and were interpreted as result of a stishovite transition back to coesite during retrograde metamorphism. Our results clearly indicate that the coesite–stishovite transition is sharp but can considerably vary in depth by the addition of Al and H to the SiO$_2$ system. This has consequences for the assignment and interpretation of the depth variation of the seismic X discontinuity.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20220780 (I-20220780)
|0 G:(DE-H253)I-20220780
|c I-20220780
|x 2
542 _ _ |i 2024-12-19
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P61.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P61.2-20150101
|6 EXP:(DE-H253)P-P61.2-20150101
|x 0
700 1 _ |a Lathe, Christian
|0 P:(DE-H253)PIP1002121
|b 1
700 1 _ |a Wunder, Bernd
|0 P:(DE-H253)PIP1016617
|b 2
700 1 _ |a Appelt, Oona
|b 3
700 1 _ |a Bhat, Shrikant
|0 P:(DE-H253)PIP1015084
|b 4
700 1 _ |a Ebert, Andreas
|0 P:(DE-H253)PIP1087072
|b 5
700 1 _ |a Farla, Robert
|0 P:(DE-H253)PIP1080589
|b 6
700 1 _ |a Roddatis, Vladimir
|b 7
700 1 _ |a Schreiber, Anja
|b 8
700 1 _ |a Wirth, Richard
|b 9
773 1 8 |a 10.5194/ejm-36-1023-2024
|b Copernicus GmbH
|d 2024-12-19
|n 6
|p 1023-1036
|3 journal-article
|2 Crossref
|t European Journal of Mineralogy
|v 36
|y 2024
|x 1617-4011
773 _ _ |a 10.5194/ejm-36-1023-2024
|g Vol. 36, no. 6, p. 1023 - 1036
|0 PERI:(DE-600)2039451-2
|n 6
|p 1023-1036
|t European journal of mineralogy
|v 36
|y 2024
|x 1617-4011
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/622847/files/ejm-36-1023-2024.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/622847/files/ejm-36-1023-2024.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:622847
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1016610
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1002121
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1016617
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1015084
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1015084
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1087072
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1080589
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J MINERAL : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-17T15:13:10Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-17T15:13:10Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2022-09-17T15:13:10Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 1 _ |a FullTexts
999 C 5 |a 10.1038/358322a0
|9 -- missing cx lookup --
|2 Crossref
|u Angel, R. J., Chopelas, A., and Ross, N. L.: Stability of high-density clinoenstatite at upper-mantle pressures, Nature, 358, 322–324, https://doi.org/10.1038/358322a0, 1992.
999 C 5 |a 10.2138/am.2011.3748
|9 -- missing cx lookup --
|2 Crossref
|u Akaogi, M., Oohata, M., Kojitani, H., and Kawaji, H.: Thermodynamic properties of stishovite by low-temperature heat capacity measurements and the coesite-stishovite transition boundary, Am. Mineral., 96, 1325–1330, https://doi.org/10.2138/am.2011.3748, 2011.
999 C 5 |a 10.1016/B978-0-444-41015-3.50016-1
|9 -- missing cx lookup --
|2 Crossref
|u Akimoto, S.: The system MgO-FeO-SiO2 at high pressures and temperatures – phase equilibria and elastic properties, Tectonophysics, 13, 161–187, https://doi.org/10.1016/B978-0-444-41015-3.50016-1, 1972.
999 C 5 |a 10.1016/j.pepi.2008.06.024
|9 -- missing cx lookup --
|2 Crossref
|u Bolfan-Casanova, N., Andrault, D., Amiguet, E., and Guignot, N.: Equation of state and post-stishovite transformation of Al-bearing silica up to 100 GPa and 3000 K, Phys. Earth Planet. Inter., 174, 70–77, https://doi.org/10.1016/j.pepi.2008.06.024, 2009.
999 C 5 |a 10.2138/am-2003-0113
|9 -- missing cx lookup --
|2 Crossref
|u Bromiley, G. D. and Pawley, A. R.: The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): The effects of Al3+ substitution on high-pressure stability, Am. Mineral., 88, 99–108, https://doi.org/10.2138/am-2003-0113, 2003.
999 C 5 |a 10.1007/s00269-006-0107-9
|9 -- missing cx lookup --
|2 Crossref
|u Bromiley, G. D., Bromiley, F. A., and Bromiley, D. W.: On the mechanism for H and Al incorporation in stishovite, Phys. Chem. Minerals, 33, 613–621, https://doi.org/10.1007/s00269-006-0107-9, 2006.
999 C 5 |a 10.5194/se-15-215-2024
|9 -- missing cx lookup --
|2 Crossref
|u Chen, M., Yin, C., Chen, D., Tian, L., Liu, L., and King, L.: Hydrogen solubility of stishovite provides insights into water transportation to the deep Earth, Solid Earth, 15, 215–227, https://doi.org/10.5194/se-15-215-2024, 2024.
999 C 5 |a 10.1016/j.epsl.2014.12.025
|9 -- missing cx lookup --
|2 Crossref
|u Chen, T., Gwanmesia, G. D., Wang, X., Zou, Y., Liebermann, R. C., Michaut, X., and Li, B.: Anomalous elastic properties of coesite at high pressure and implications for the upper mantle X-discontinuity, Earth Plant. Sci. Lett., 412, 42–51, https://doi.org/10.1016/j.epsl.2014.12.025, 2015.
999 C 5 |a 10.1126/science.286.5441.940
|9 -- missing cx lookup --
|2 Crossref
|u Chinnery, N. J., Pawley, A. R., and Clark, S. M.: In situ observation of the formation of 10Å phase from talc + H2O at mantle pressures and temperatures, Science, 286, 940–942, https://doi.org/10.1126/science.286.5441.940, 1999.
999 C 5 |a 10.1038/nature11731
|9 -- missing cx lookup --
|2 Crossref
|u Dasgupta, R., Mallik, A., Tsuno, K., Withers, A. C., Hirth, G., and Hirschmann, M. M.: Carbon-dioxid-rich melt in the Earth's upper mantle, Nature, 493, 211–215, https://doi.org/10.1038/nature11731, 2013.
999 C 5 |a 10.1029/1999JB900364
|9 -- missing cx lookup --
|2 Crossref
|u Dewaele, A., Fiquet, G., Andrault, D., and Hausermann, D.: P-V-T equation of state of periclase from synchrotron radiation measurements, J. Geophys. Res.-Solid Earth, 105, 2869–2877, https://doi.org/10.1029/1999JB900364, 2000.
999 C 5 |a 10.1103/PhysRevB.91.134108
|9 -- missing cx lookup --
|2 Crossref
|u Dewaele, A., Stutzmann, V., Bouchet, J., Bottin, F., Occelli, F., and Mezouar, M.: High pressure-temperature phase diagram and equation of state of titanium, Phys. Review B, 91, 134108, https://doi.org/10.1103/PhysRevB.91.134108, 2015.
999 C 5 |a 10.1029/2005JB003910
|9 -- missing cx lookup --
|2 Crossref
|u Ganguly, J. and Frost, D. J.: Stability of anhydrous phase B: Experimental studies and implications for phase relations in subducting slab and the X discontinuity in the mantle, J. Geophys. Res., 111, B06203, https://doi.org/10.1029/2005JB003910, 2006.
999 C 5 |a 10.1021/j100296a027
|9 -- missing cx lookup --
|2 Crossref
|u Geisinger, K. L., Spackman, M. A., and Gibbs, G. V.: Exploring of structure, electron density distribution, and bonding in coesite with Fourier and pseudoatom refinement methods using single-crystal X-ray diffraction data, J. Phys. Chem., 91, 3237–3244, 1987.
999 C 5 |a 10.1002/2015JB011933
|9 -- missing cx lookup --
|2 Crossref
|u Knapp, N., Woodland, A. B., and Klimm, K.: Experimental constraints on coesite abundances in eclogite and implications for the X seismic discontinuity, J. Geophys. Res.-Solid Earth, 120, 4910–4930, https://doi.org/10.1002/2015JB011933, 2015.
999 C 5 |a 10.1007/s002690100195
|9 -- missing cx lookup --
|2 Crossref
|u Koch-Müller, M., Fei, Y., Hauri, E., and Liu, Z.: Location and quantitative analysis of OH in coesite, Phys. Chem. Minerals, 28, 693–705, https://doi.org/10.1007/s002690100195, 2001.
999 C 5 |a 10.2138/am-2003-1007
|9 -- missing cx lookup --
|2 Crossref
|u Koch-Müller, M., Dera, P., Fei, Y., Reno, B., Sobolev, N., Hauri, E., and Wysoczanski, R.: OH− in synthetic and natural coesite, Am. Mineral., 88, 1436–1445, https://doi.org/10.2138/am-2003-1007, 2003.
999 C 5 |a 10.1002/zaac.200300122
|9 -- missing cx lookup --
|2 Crossref
|u Kroll, P., and Milko, M.: Theoretical investigation of the solid-state reaction of silicon nitride and silicon dioxid forming silicon oxynitride (Si2N2O) under pressure, Z. Anorg. Allg. Chem., 629, 1737–1750, https://doi.org/10.1002/zaac.200300122, 2003.
999 C 5 |a 10.1007/s00410-023-02028-6
|9 -- missing cx lookup --
|2 Crossref
|u Kueter, N., Brugman, K., Miozzi, F., Cody, F., Yang, J., Strobel, T. A., and Walter, M. J.: Water speciation and hydrogen isotopes in hydrous stishovite: implications for the deep Earth water cycle, Contrib. Min. Petrol., 178, 48, https://doi.org/10.1007/s00410-023-02028-6, 2023.
999 C 5 |a 10.1007/s00269-005-0016-3
|9 -- missing cx lookup --
|2 Crossref
|u Lakshtanov, D. L., Vanpeteghem, C. B., Jackson, J. M., Bass, J. D., Shen, G., Prakapenka, V. B., Litasov, K., and Ohtani, E.: The equation of state of Al,H-bearing SiO2 stishovite to 58 GPa, Phys. Chem. Minerals, 32, 466–470, https://doi.org/10.1007/s00269-005-0016-3, 2005.
999 C 5 |a 10.1007/s00269-006-0113-y
|9 -- missing cx lookup --
|2 Crossref
|u Lakshtanov, D. L., Sinogeikin, S. V., and Bass, J. D.: High-temperature phase transitions and elasticity of silica polymorphs, Phys. Chem. Minerals, 34, 11–22, https://doi.org/10.1007/s00269-006-0113-y, 2007.
999 C 5 |2 Crossref
|u Larson, A. C. and von Dreele, R. B.: Generalized structure analysis system. Alamos National Laboratory Report LAUR 96-748, Los Alamos National Laboratory, New Mexico, 1987 pp., 2004.
999 C 5 |a 10.5194/ejm-34-201-2022
|9 -- missing cx lookup --
|2 Crossref
|u Lathe, C., Koch-Müller, M., Wunder, B., Appelt, O., Bhat, S., and Farla, R.: In situ reinvestigation of reaction phase A plus high-pressure clinoenstatite to forsterite plus water in the system MgO-SiO2-H2O (MSH), Eur. J. Mineral., 34, 201–213, https://doi.org/10.5194/ejm-34-201-2022, 2022.
999 C 5 |a 10.2138/am-2022-7989
|9 -- missing cx lookup --
|2 Crossref
|u Li, X., Speziale, S., Glazyrin, K., Wilke, F., Liermann, H.-P., and Koch-Müller, M.: Synthesis, structure refinement and single-crystal elasticity of Al-bearing superhydrous phase B, Amer. Mineral., 107, 885–895, https://doi.org/10.2138/am-2022-7989, 2022a.
999 C 5 |a 10.1029/2022GL098353
|9 -- missing cx lookup --
|2 Crossref
|u Li, X., Speziale, S., Koch-Müller, M., Husband, R. J., and Liermann, H.-P.: Phase stability of Al-bearing dense hydrous magnesium silicates at topmost lower mantle conditions: Implications for water transport in the mantle, Geophys. Res. Lett., 49, e2022GL098353, https://doi.org/10.1029/2022GL098353, 2022b.
999 C 5 |a 10.1016/j.pepi.2004.10.010
|9 -- missing cx lookup --
|2 Crossref
|u Litasov, K. D. and Ohtani, E.: Phase relations in hydrous MORB at 18-28 GPa: implications for heterogeneity of the lower mantle, Phys. Earth Planet. Inter., 150, 239–263, https://doi.org/10.1016/j.pepi.2004.10.010, 2005.
999 C 5 |a 10.1016/j.epsl.2007.08.015
|9 -- missing cx lookup --
|2 Crossref
|u Litasov, K. D., Kagi, H., Shatskiy, A., Ohtani, E., Lakshtanov, D. L., Bass, J. D., and Ito, E.: High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle, Earth Planet. Sci. Lett., 262, 620–634, https://doi.org/10.1016/j.epsl.2007.08.015, 2007.
999 C 5 |a 10.1016/0031-9201(87)90138-5
|9 -- missing cx lookup --
|2 Crossref
|u Liu, L.: Effects of H2O on the phase behaviour of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth, Phys. Earth Planet. Int., 49, 142–167, https://doi.org/10.1016/0031-9201(87)90138-5, 1987.
999 C 5 |a 10.6028/NBS.SP.326
|9 -- missing cx lookup --
|2 Crossref
|u Lloyd, E. C.: Editorial introduction and summary to: accurate characterization of the high-pressure environment, US Natl. Bur. Stand. Spec. Publ., 326, 1–3, 1971.
999 C 5 |a 10.2138/am-2015-5312
|9 -- missing cx lookup --
|2 Crossref
|u Mookherjee, M., Speziale, S., Marquardt, H., Jahn, S., Wunder, B., Koch-Müller, M., and Liermann, H.-P.: Equation of state and elasticity of the 3.65Å phase: Implications for the X-discontinuity, Am. Mineral., 100, 2199–2208, https://doi.org/10.2138/am-2015-5312, 2015.
999 C 5 |a 10.1126/science.265.5176.1202
|9 -- missing cx lookup --
|2 Crossref
|u Morishima, H., Kato, T., Urakawa, S., Utsumi, W., Suto, M., Suzuki, A., Yamazaki, D., Ohtani, E., Shimomura, O. and Kikegawa, T.: The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation, Science, 265, 1202–1203, 1994.
999 C 5 |a 10.2138/am-2017-5831
|9 -- missing cx lookup --
|2 Crossref
|u Müller, J., Koch-Müller, M., Rhede, D., Wilke, F., and Wirth, R.: Melting relations in the system CaCO3-MgCO3 at 6 GPa, Am. Mineral., 102, 2440–2449, https://doi.org/10.2138/am-2017-5831, 2017.
999 C 5 |a 10.2138/am-2017-5944
|9 -- missing cx lookup --
|2 Crossref
|u Nisr, C., Shim, S. H., Leinenweber, K., and Chizmeshya, A.: Raman spectroscopy of water-rich stishovite and dense high-pressure silica up to 55 GPa, Am. Mineral., 102, 2180–2189, https://doi.org/10.2138/am-2017-5944, 2017.
999 C 5 |a 10.1016/j.pepi.2017.01.003
|9 -- missing cx lookup --
|2 Crossref
|u Ono, S., Kikegawa, T., Higo, Y., and Tange, Y.: Precise determination of the phase boundary between coesite and stishovite in SiO2, Phys. Earth Planet. Inter., 264, 1–6, https://doi.org/10.1016/j.pepi.2017.01.003, 2017.
999 C 5 |a 10.1038/ngeo2306
|9 -- missing cx lookup --
|2 Crossref
|u Pamato, M. G., Myhill, R., Boffa Ballaran, T., Frost, D. J., Heidelbach, F., and Miyajima, N.: Lower-mantle reservoir implied by the extreme stability of a hydrous aluminosilicate, Nat. Geoscie., 8, 75–79, https://doi.org/10.1038/ngeo2306, 2015.
999 C 5 |a 10.1126/science.261.5124.1024
|9 -- missing cx lookup --
|2 Crossref
|u Pawley, A. R., McMillan, P. F., and Holloway, J. R.: Hydrogen in stishovite with implications of mantle water content, Science, 261, 1024–1026, https://doi.org/10.1126/science.261.5124.1024, 1993.
999 C 5 |a 10.1063/1.1134381
|9 -- missing cx lookup --
|2 Crossref
|u Piermarini, G. J. and Block, S.: Ultra high-pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to fixed point pressure scale, Rev. Sci. Instrum., 46, 973–980, 1975.
999 C 5 |a 10.1016/j.epsl.2021.116813
|9 -- missing cx lookup --
|2 Crossref
|u Pugh, S., Jenkins, J., Boyce, A., and Cottar, S.: Global receiver function observations of the X-discontinuity reveal recycled basalt beneath hotspots, Earth Planet. Sci. Lett., 561, 116813, https://doi.org/10.1016/j.epsl.2021.116813, 2021.
999 C 5 |a 10.1029/2023GL104029
|9 -- missing cx lookup --
|2 Crossref
|u Purevjav, N., Fei, H., Ishii, T., Crinit, G., Lin, Y., Mao, H.-K., and Katsura, T.: Temperature dependence of H2O solubility in Al-free stishovite, Geophys. Res. Lett., 51, e2023GL104029, https://doi.org/10.1029/2023GL104029, 2024.
999 C 5 |a 10.1029/91JB01487
|9 -- missing cx lookup --
|2 Crossref
|u Revenaugh, J. and Jordan, T. H.: Mantle layering from ScS reverberations: 3. The upper mantle, J. Geophys. Res.-Solid Earth, 96, 19781–19810, https://doi.org/10.1029/91JB01487, 1991.
999 C 5 |a 10.2138/am-2016-5609
|9 -- missing cx lookup --
|2 Crossref
|u Spector, K., Nylen, J., Mathew, R., Edén, M., Stoyanov, A., Leinenweber, K., and Häussermann, U.: Formation of hydrous stishovite from coesite in high-pressure hydrothermal environments, Am. Mineral., 101, 2514–2524, https://doi.org/10.2138/am-2016-5609, 2016.
999 C 5 |a 10.1029/2021JB021890
|9 -- missing cx lookup --
|2 Crossref
|u Srinu, U., Kumar, P., Haldar, C., Kumar, M. R., Srinagesh, D., and Illa, B.: X-discontinuity beneath the Indian shield-Evidence for Remnant Tethyan oceanic Lithosphere in the Mantle, JGR: Solid Earth, 126, e2021JB021890, https://doi.org/10.1029/2021JB021890, 2021.
999 C 5 |a 10.1007/s00269-015-0739-8
|9 -- missing cx lookup --
|2 Crossref
|u Stagno, V., Mandal, M., Landskron, K. and Fei, Y.: High pressure synthesis of mesoporous stishovite: potential applications in mineral physics, Phys. Chem. Minerals., 42, 509–515, https://doi.org/10.1007/s00269-015-0739-8, 2015.
999 C 5 |a 10.1029/GL012i010p00729
|9 -- missing cx lookup --
|2 Crossref
|u Susaki, J., Akaogi, M., Akimoto, S., and Shimomura, O.: Garnet–perovskite transformation in CaGeO3; in-situ X-ray measurements using synchrotron radiation, Geophys. Res. Lett., 12, 729–732, 1985.
999 C 5 |a 10.1029/2008JB005813
|9 -- missing cx lookup --
|2 Crossref
|u Tange, Y., Nishihara, Y., and Tsuchiya, T.: Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments, J. Geophys. Res., 114, B03208, https://doi.org/10.1029/2008JB005813, 2009.
999 C 5 |a 10.1007/s00269-009-0295-1
|9 -- missing cx lookup --
|2 Crossref
|u Thomas, S.-M., Koch-Müller, M., Reichart, P., Rhede, D., Thomas, R., Wirth, R., and Matsyuk, S.: IR-calibration for water determination of olivine, r-GeO2, and SiO2-polymorphs, Phys. Chem. Minerals, 36, 489–509, https://doi.org/10.1007/s00269-009-0295-1, 2009.
999 C 5 |a 10.1029/JB087iB06p04740
|9 -- missing cx lookup --
|2 Crossref
|u Weidner, D. J., Bass, J. D., Ringwood, A. E., and Sinclair, W.: The single crystal moduli of stishovite, J. Geophys. Res., 87, 1334–1346, 1982.
999 C 5 |a 10.1130/G20968.1
|9 -- missing cx lookup --
|2 Crossref
|u Williams, Q. and Revenaugh, J.: Ancient subduction, mantle eclogite, and the 300 km seismic discontinuity, Geology, 33, 1–4, https://doi.org/10.1130/G20968.1, 2005.
999 C 5 |a 10.1029/98GL00857
|9 -- missing cx lookup --
|2 Crossref
|u Woodland, A. B.: The orthorhombic to high-P monoclinic transition in Mg-Fe pyroxene: Can it produce a seismic discontinuity?, Geophys. Res. Lett., 25, 1241–1244, https://doi.org/10.1029/98GL00857, 1998.
999 C 5 |a 10.1107/S0021889810030499
|9 -- missing cx lookup --
|2 Crossref
|u Wojdyr, M.: Fityk: a general-purpose peak fitting program, J. Appl. Crystallogr., 43, 1126–1128, https://doi.org/10.1107/S0021889810030499, 2010.
999 C 5 |a 10.1007/s00269-021-01156-4
|9 -- missing cx lookup --
|2 Crossref
|u Xu, C., Inoue, T., Kakizawa, S., Noda, M., and Gao, J.: Effect of Al on the stability of dense hydrous magnesium silicate phases to the uppermost lower mantle: Implications for water transportation into the deep mantle, Phys. Chem. Minerals, 48, 31, https://doi.org/10.1007/s00269-021-01156-4, 2021.
999 C 5 |a 10.1016/0040-1951(76)90042-1
|9 -- missing cx lookup --
|2 Crossref
|u Yagi, T. and Akimoto, S.-I.: Direct determination of coesite-stishovite transition by in-situ X-ray measurements, Tectonophysics, 35, 259–270, 1976.
999 C 5 |a 10.1130/G23766A.1
|9 -- missing cx lookup --
|2 Crossref
|u Yang, J.-S., Dobrzhinetskaya, L., Bai, W.-J., Fang, Q.-S., Robinson, T. T., Zhang, J., and Green II, H. W.: Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet, Geology, 35, 875–878, https://doi.org/10.1130/G23766A.1, 2007.
999 C 5 |a 10.1007/BF00202987
|9 -- missing cx lookup --
|2 Crossref
|u Zhang, J., Li, B., Utsumi, W., and Liebermann, R. C.: In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics, Phys. Chem. Minerals, 23, 1–10, https://doi.org/10.1007/BF00202987, 1996.


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21