000622847 001__ 622847
000622847 005__ 20250625130147.0
000622847 0247_ $$2doi$$a10.5194/ejm-36-1023-2024
000622847 0247_ $$2ISSN$$a0935-1221
000622847 0247_ $$2ISSN$$a1617-4011
000622847 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00527
000622847 0247_ $$2altmetric$$aaltmetric:172247107
000622847 0247_ $$2WOS$$aWOS:001379934000001
000622847 037__ $$aPUBDB-2025-00527
000622847 041__ $$aEnglish
000622847 082__ $$a550
000622847 1001_ $$0P:(DE-H253)PIP1016610$$aKoch-Mueller, Monika$$b0$$eCorresponding author
000622847 245__ $$aThe coesite–stishovite transition of hydrous, Al-bearing SiO$_2$ : an in situ synchrotron X-ray study
000622847 260__ $$aGöttingen$$bCopernicus Publications$$c2024
000622847 3367_ $$2DRIVER$$aarticle
000622847 3367_ $$2DataCite$$aOutput Types/Journal article
000622847 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738231451_3826136
000622847 3367_ $$2BibTeX$$aARTICLE
000622847 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000622847 3367_ $$00$$2EndNote$$aJournal Article
000622847 520__ $$aWe examined the influence of Al$_2$O$_3$ and H$_2$O on the position of the coesite–stishovite transition by means of in situ X-ray diffraction measurements with the large-volume press at the PETRA III synchrotron in Hamburg. The position of the transition was determined by several reversal experiments and was found to be shifted almost in parallel by about 1.5 GPa to lower pressures compared to results for the pure SiO$_2$ system reported by Ono et al. (2017). Two further reversal experiments with either additional Al$_2$O$_3$ or additional H$_2$O added to SiO$_2$ showed smaller changes compared to the results of Ono et al. (2017), indicating the effect of the coupled Al and H incorporation in coesite and stishovite on their transition. Further investigations of the solid quenched products and of products from additional multi-anvil experiments performed at the GFZ Helmholtz-Zentrum für Geoforschung in Potsdam were done by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), electron probe micro-analysis (EPMA), and Fourier transform infrared (FTIR) and Raman spectroscopy. Generally, the recovered samples of the in situ experiments contained less stishovite than expected from the last in situ XRD pattern before quenching. Thus, these investigations clearly show that hydrous, Al-rich stishovite that formed at high pressure (P) and temperature (T) could, at least partly, not be quenched to room conditions and transformed to coesite with unusually high (Al, H) contents. As result of this, conventional quench experiments would lead to erroneous results of the transition in the (Al, H)-bearing SiO2 system. We observed two kinds of coesite in the experiments: one relatively Al-poor coesite transformed under equilibrium conditions at P and T from stishovite over a certain time frame and an Al-richer one, sometimes pseudomorphically replacing former stishovite during the decompression process to room conditions. Within both types of coesite, nanometre-sized kyanite inclusions and relicts or remnants of stishovite were observed by TEM. These observations resemble those of Yang et al. (2007) on ophiolites with identical textures and phases and were interpreted as result of a stishovite transition back to coesite during retrograde metamorphism. Our results clearly indicate that the coesite–stishovite transition is sharp but can considerably vary in depth by the addition of Al and H to the SiO$_2$ system. This has consequences for the assignment and interpretation of the depth variation of the seismic X discontinuity.  
000622847 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000622847 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000622847 536__ $$0G:(DE-H253)I-20220780$$aFS-Proposal: I-20220780 (I-20220780)$$cI-20220780$$x2
000622847 542__ $$2Crossref$$i2024-12-19$$uhttps://creativecommons.org/licenses/by/4.0/
000622847 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000622847 693__ $$0EXP:(DE-H253)P-P61.2-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P61.2-20150101$$aPETRA III$$fPETRA Beamline P61.2$$x0
000622847 7001_ $$0P:(DE-H253)PIP1002121$$aLathe, Christian$$b1
000622847 7001_ $$0P:(DE-H253)PIP1016617$$aWunder, Bernd$$b2
000622847 7001_ $$aAppelt, Oona$$b3
000622847 7001_ $$0P:(DE-H253)PIP1015084$$aBhat, Shrikant$$b4
000622847 7001_ $$0P:(DE-H253)PIP1087072$$aEbert, Andreas$$b5
000622847 7001_ $$0P:(DE-H253)PIP1080589$$aFarla, Robert$$b6
000622847 7001_ $$aRoddatis, Vladimir$$b7
000622847 7001_ $$aSchreiber, Anja$$b8
000622847 7001_ $$aWirth, Richard$$b9
000622847 77318 $$2Crossref$$3journal-article$$a10.5194/ejm-36-1023-2024$$bCopernicus GmbH$$d2024-12-19$$n6$$p1023-1036$$tEuropean Journal of Mineralogy$$v36$$x1617-4011$$y2024
000622847 773__ $$0PERI:(DE-600)2039451-2$$a10.5194/ejm-36-1023-2024$$gVol. 36, no. 6, p. 1023 - 1036$$n6$$p1023-1036$$tEuropean journal of mineralogy$$v36$$x1617-4011$$y2024
000622847 8564_ $$uhttps://bib-pubdb1.desy.de/record/622847/files/ejm-36-1023-2024.pdf$$yOpenAccess
000622847 8564_ $$uhttps://bib-pubdb1.desy.de/record/622847/files/ejm-36-1023-2024.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000622847 909CO $$ooai:bib-pubdb1.desy.de:622847$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000622847 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1016610$$aExternal Institute$$b0$$kExtern
000622847 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1002121$$aExternal Institute$$b1$$kExtern
000622847 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1016617$$aExternal Institute$$b2$$kExtern
000622847 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1015084$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000622847 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015084$$aExternal Institute$$b4$$kExtern
000622847 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087072$$aExternal Institute$$b5$$kExtern
000622847 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1080589$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000622847 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000622847 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000622847 9141_ $$y2024
000622847 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000622847 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000622847 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000622847 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J MINERAL : 2022$$d2025-01-07
000622847 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-17T15:13:10Z
000622847 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-17T15:13:10Z
000622847 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000622847 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-07
000622847 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000622847 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07
000622847 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000622847 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2022-09-17T15:13:10Z
000622847 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-07
000622847 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
000622847 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000622847 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000622847 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000622847 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x1
000622847 980__ $$ajournal
000622847 980__ $$aVDB
000622847 980__ $$aUNRESTRICTED
000622847 980__ $$aI:(DE-H253)HAS-User-20120731
000622847 980__ $$aI:(DE-H253)FS-PET-D-20190712
000622847 9801_ $$aFullTexts
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/358322a0$$uAngel, R. J., Chopelas, A., and Ross, N. L.: Stability of high-density clinoenstatite at upper-mantle pressures, Nature, 358, 322–324, https://doi.org/10.1038/358322a0, 1992.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2138/am.2011.3748$$uAkaogi, M., Oohata, M., Kojitani, H., and Kawaji, H.: Thermodynamic properties of stishovite by low-temperature heat capacity measurements and the coesite-stishovite transition boundary, Am. Mineral., 96, 1325–1330, https://doi.org/10.2138/am.2011.3748, 2011.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/B978-0-444-41015-3.50016-1$$uAkimoto, S.: The system MgO-FeO-SiO2 at high pressures and temperatures – phase equilibria and elastic properties, Tectonophysics, 13, 161–187, https://doi.org/10.1016/B978-0-444-41015-3.50016-1, 1972.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.pepi.2008.06.024$$uBolfan-Casanova, N., Andrault, D., Amiguet, E., and Guignot, N.: Equation of state and post-stishovite transformation of Al-bearing silica up to 100 GPa and 3000 K, Phys. Earth Planet. Inter., 174, 70–77, https://doi.org/10.1016/j.pepi.2008.06.024, 2009.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2138/am-2003-0113$$uBromiley, G. D. and Pawley, A. R.: The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): The effects of Al3+ substitution on high-pressure stability, Am. Mineral., 88, 99–108, https://doi.org/10.2138/am-2003-0113, 2003.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00269-006-0107-9$$uBromiley, G. D., Bromiley, F. A., and Bromiley, D. W.: On the mechanism for H and Al incorporation in stishovite, Phys. Chem. Minerals, 33, 613–621, https://doi.org/10.1007/s00269-006-0107-9, 2006.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5194/se-15-215-2024$$uChen, M., Yin, C., Chen, D., Tian, L., Liu, L., and King, L.: Hydrogen solubility of stishovite provides insights into water transportation to the deep Earth, Solid Earth, 15, 215–227, https://doi.org/10.5194/se-15-215-2024, 2024.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.epsl.2014.12.025$$uChen, T., Gwanmesia, G. D., Wang, X., Zou, Y., Liebermann, R. C., Michaut, X., and Li, B.: Anomalous elastic properties of coesite at high pressure and implications for the upper mantle X-discontinuity, Earth Plant. Sci. Lett., 412, 42–51, https://doi.org/10.1016/j.epsl.2014.12.025, 2015.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.286.5441.940$$uChinnery, N. J., Pawley, A. R., and Clark, S. M.: In situ observation of the formation of 10Å phase from talc + H2O at mantle pressures and temperatures, Science, 286, 940–942, https://doi.org/10.1126/science.286.5441.940, 1999.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature11731$$uDasgupta, R., Mallik, A., Tsuno, K., Withers, A. C., Hirth, G., and Hirschmann, M. M.: Carbon-dioxid-rich melt in the Earth's upper mantle, Nature, 493, 211–215, https://doi.org/10.1038/nature11731, 2013.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/1999JB900364$$uDewaele, A., Fiquet, G., Andrault, D., and Hausermann, D.: P-V-T equation of state of periclase from synchrotron radiation measurements, J. Geophys. Res.-Solid Earth, 105, 2869–2877, https://doi.org/10.1029/1999JB900364, 2000.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.134108$$uDewaele, A., Stutzmann, V., Bouchet, J., Bottin, F., Occelli, F., and Mezouar, M.: High pressure-temperature phase diagram and equation of state of titanium, Phys. Review B, 91, 134108, https://doi.org/10.1103/PhysRevB.91.134108, 2015.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2005JB003910$$uGanguly, J. and Frost, D. J.: Stability of anhydrous phase B: Experimental studies and implications for phase relations in subducting slab and the X discontinuity in the mantle, J. Geophys. Res., 111, B06203, https://doi.org/10.1029/2005JB003910, 2006.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/j100296a027$$uGeisinger, K. L., Spackman, M. A., and Gibbs, G. V.: Exploring of structure, electron density distribution, and bonding in coesite with Fourier and pseudoatom refinement methods using single-crystal X-ray diffraction data, J. Phys. Chem., 91, 3237–3244, 1987.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/2015JB011933$$uKnapp, N., Woodland, A. B., and Klimm, K.: Experimental constraints on coesite abundances in eclogite and implications for the X seismic discontinuity, J. Geophys. Res.-Solid Earth, 120, 4910–4930, https://doi.org/10.1002/2015JB011933, 2015.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s002690100195$$uKoch-Müller, M., Fei, Y., Hauri, E., and Liu, Z.: Location and quantitative analysis of OH in coesite, Phys. Chem. Minerals, 28, 693–705, https://doi.org/10.1007/s002690100195, 2001.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2138/am-2003-1007$$uKoch-Müller, M., Dera, P., Fei, Y., Reno, B., Sobolev, N., Hauri, E., and Wysoczanski, R.: OH− in synthetic and natural coesite, Am. Mineral., 88, 1436–1445, https://doi.org/10.2138/am-2003-1007, 2003.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/zaac.200300122$$uKroll, P., and Milko, M.: Theoretical investigation of the solid-state reaction of silicon nitride and silicon dioxid forming silicon oxynitride (Si2N2O) under pressure, Z. Anorg. Allg. Chem., 629, 1737–1750, https://doi.org/10.1002/zaac.200300122, 2003.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00410-023-02028-6$$uKueter, N., Brugman, K., Miozzi, F., Cody, F., Yang, J., Strobel, T. A., and Walter, M. J.: Water speciation and hydrogen isotopes in hydrous stishovite: implications for the deep Earth water cycle, Contrib. Min. Petrol., 178, 48, https://doi.org/10.1007/s00410-023-02028-6, 2023.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00269-005-0016-3$$uLakshtanov, D. L., Vanpeteghem, C. B., Jackson, J. M., Bass, J. D., Shen, G., Prakapenka, V. B., Litasov, K., and Ohtani, E.: The equation of state of Al,H-bearing SiO2 stishovite to 58 GPa, Phys. Chem. Minerals, 32, 466–470, https://doi.org/10.1007/s00269-005-0016-3, 2005.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00269-006-0113-y$$uLakshtanov, D. L., Sinogeikin, S. V., and Bass, J. D.: High-temperature phase transitions and elasticity of silica polymorphs, Phys. Chem. Minerals, 34, 11–22, https://doi.org/10.1007/s00269-006-0113-y, 2007.
000622847 999C5 $$2Crossref$$uLarson, A. C. and von Dreele, R. B.: Generalized structure analysis system. Alamos National Laboratory Report LAUR 96-748, Los Alamos National Laboratory, New Mexico, 1987 pp., 2004.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5194/ejm-34-201-2022$$uLathe, C., Koch-Müller, M., Wunder, B., Appelt, O., Bhat, S., and Farla, R.: In situ reinvestigation of reaction phase A plus high-pressure clinoenstatite to forsterite plus water in the system MgO-SiO2-H2O (MSH), Eur. J. Mineral., 34, 201–213, https://doi.org/10.5194/ejm-34-201-2022, 2022.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2138/am-2022-7989$$uLi, X., Speziale, S., Glazyrin, K., Wilke, F., Liermann, H.-P., and Koch-Müller, M.: Synthesis, structure refinement and single-crystal elasticity of Al-bearing superhydrous phase B, Amer. Mineral., 107, 885–895, https://doi.org/10.2138/am-2022-7989, 2022a.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2022GL098353$$uLi, X., Speziale, S., Koch-Müller, M., Husband, R. J., and Liermann, H.-P.: Phase stability of Al-bearing dense hydrous magnesium silicates at topmost lower mantle conditions: Implications for water transport in the mantle, Geophys. Res. Lett., 49, e2022GL098353, https://doi.org/10.1029/2022GL098353, 2022b.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.pepi.2004.10.010$$uLitasov, K. D. and Ohtani, E.: Phase relations in hydrous MORB at 18-28 GPa: implications for heterogeneity of the lower mantle, Phys. Earth Planet. Inter., 150, 239–263, https://doi.org/10.1016/j.pepi.2004.10.010, 2005.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.epsl.2007.08.015$$uLitasov, K. D., Kagi, H., Shatskiy, A., Ohtani, E., Lakshtanov, D. L., Bass, J. D., and Ito, E.: High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle, Earth Planet. Sci. Lett., 262, 620–634, https://doi.org/10.1016/j.epsl.2007.08.015, 2007.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0031-9201(87)90138-5$$uLiu, L.: Effects of H2O on the phase behaviour of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth, Phys. Earth Planet. Int., 49, 142–167, https://doi.org/10.1016/0031-9201(87)90138-5, 1987.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.6028/NBS.SP.326$$uLloyd, E. C.: Editorial introduction and summary to: accurate characterization of the high-pressure environment, US Natl. Bur. Stand. Spec. Publ., 326, 1–3, 1971.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2138/am-2015-5312$$uMookherjee, M., Speziale, S., Marquardt, H., Jahn, S., Wunder, B., Koch-Müller, M., and Liermann, H.-P.: Equation of state and elasticity of the 3.65Å phase: Implications for the X-discontinuity, Am. Mineral., 100, 2199–2208, https://doi.org/10.2138/am-2015-5312, 2015.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.265.5176.1202$$uMorishima, H., Kato, T., Urakawa, S., Utsumi, W., Suto, M., Suzuki, A., Yamazaki, D., Ohtani, E., Shimomura, O. and Kikegawa, T.: The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation, Science, 265, 1202–1203, 1994.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2138/am-2017-5831$$uMüller, J., Koch-Müller, M., Rhede, D., Wilke, F., and Wirth, R.: Melting relations in the system CaCO3-MgCO3 at 6 GPa, Am. Mineral., 102, 2440–2449, https://doi.org/10.2138/am-2017-5831, 2017.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2138/am-2017-5944$$uNisr, C., Shim, S. H., Leinenweber, K., and Chizmeshya, A.: Raman spectroscopy of water-rich stishovite and dense high-pressure silica up to 55 GPa, Am. Mineral., 102, 2180–2189, https://doi.org/10.2138/am-2017-5944, 2017.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.pepi.2017.01.003$$uOno, S., Kikegawa, T., Higo, Y., and Tange, Y.: Precise determination of the phase boundary between coesite and stishovite in SiO2, Phys. Earth Planet. Inter., 264, 1–6, https://doi.org/10.1016/j.pepi.2017.01.003, 2017.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ngeo2306$$uPamato, M. G., Myhill, R., Boffa Ballaran, T., Frost, D. J., Heidelbach, F., and Miyajima, N.: Lower-mantle reservoir implied by the extreme stability of a hydrous aluminosilicate, Nat. Geoscie., 8, 75–79, https://doi.org/10.1038/ngeo2306, 2015.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.261.5124.1024$$uPawley, A. R., McMillan, P. F., and Holloway, J. R.: Hydrogen in stishovite with implications of mantle water content, Science, 261, 1024–1026, https://doi.org/10.1126/science.261.5124.1024, 1993.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1134381$$uPiermarini, G. J. and Block, S.: Ultra high-pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to fixed point pressure scale, Rev. Sci. Instrum., 46, 973–980, 1975.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.epsl.2021.116813$$uPugh, S., Jenkins, J., Boyce, A., and Cottar, S.: Global receiver function observations of the X-discontinuity reveal recycled basalt beneath hotspots, Earth Planet. Sci. Lett., 561, 116813, https://doi.org/10.1016/j.epsl.2021.116813, 2021.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2023GL104029$$uPurevjav, N., Fei, H., Ishii, T., Crinit, G., Lin, Y., Mao, H.-K., and Katsura, T.: Temperature dependence of H2O solubility in Al-free stishovite, Geophys. Res. Lett., 51, e2023GL104029, https://doi.org/10.1029/2023GL104029, 2024.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/91JB01487$$uRevenaugh, J. and Jordan, T. H.: Mantle layering from ScS reverberations: 3. The upper mantle, J. Geophys. Res.-Solid Earth, 96, 19781–19810, https://doi.org/10.1029/91JB01487, 1991.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2138/am-2016-5609$$uSpector, K., Nylen, J., Mathew, R., Edén, M., Stoyanov, A., Leinenweber, K., and Häussermann, U.: Formation of hydrous stishovite from coesite in high-pressure hydrothermal environments, Am. Mineral., 101, 2514–2524, https://doi.org/10.2138/am-2016-5609, 2016.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2021JB021890$$uSrinu, U., Kumar, P., Haldar, C., Kumar, M. R., Srinagesh, D., and Illa, B.: X-discontinuity beneath the Indian shield-Evidence for Remnant Tethyan oceanic Lithosphere in the Mantle, JGR: Solid Earth, 126, e2021JB021890, https://doi.org/10.1029/2021JB021890, 2021.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00269-015-0739-8$$uStagno, V., Mandal, M., Landskron, K. and Fei, Y.: High pressure synthesis of mesoporous stishovite: potential applications in mineral physics, Phys. Chem. Minerals., 42, 509–515, https://doi.org/10.1007/s00269-015-0739-8, 2015.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/GL012i010p00729$$uSusaki, J., Akaogi, M., Akimoto, S., and Shimomura, O.: Garnet–perovskite transformation in CaGeO3; in-situ X-ray measurements using synchrotron radiation, Geophys. Res. Lett., 12, 729–732, 1985.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2008JB005813$$uTange, Y., Nishihara, Y., and Tsuchiya, T.: Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments, J. Geophys. Res., 114, B03208, https://doi.org/10.1029/2008JB005813, 2009.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00269-009-0295-1$$uThomas, S.-M., Koch-Müller, M., Reichart, P., Rhede, D., Thomas, R., Wirth, R., and Matsyuk, S.: IR-calibration for water determination of olivine, r-GeO2, and SiO2-polymorphs, Phys. Chem. Minerals, 36, 489–509, https://doi.org/10.1007/s00269-009-0295-1, 2009.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/JB087iB06p04740$$uWeidner, D. J., Bass, J. D., Ringwood, A. E., and Sinclair, W.: The single crystal moduli of stishovite, J. Geophys. Res., 87, 1334–1346, 1982.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1130/G20968.1$$uWilliams, Q. and Revenaugh, J.: Ancient subduction, mantle eclogite, and the 300 km seismic discontinuity, Geology, 33, 1–4, https://doi.org/10.1130/G20968.1, 2005.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/98GL00857$$uWoodland, A. B.: The orthorhombic to high-P monoclinic transition in Mg-Fe pyroxene: Can it produce a seismic discontinuity?, Geophys. Res. Lett., 25, 1241–1244, https://doi.org/10.1029/98GL00857, 1998.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889810030499$$uWojdyr, M.: Fityk: a general-purpose peak fitting program, J. Appl. Crystallogr., 43, 1126–1128, https://doi.org/10.1107/S0021889810030499, 2010.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00269-021-01156-4$$uXu, C., Inoue, T., Kakizawa, S., Noda, M., and Gao, J.: Effect of Al on the stability of dense hydrous magnesium silicate phases to the uppermost lower mantle: Implications for water transportation into the deep mantle, Phys. Chem. Minerals, 48, 31, https://doi.org/10.1007/s00269-021-01156-4, 2021.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0040-1951(76)90042-1$$uYagi, T. and Akimoto, S.-I.: Direct determination of coesite-stishovite transition by in-situ X-ray measurements, Tectonophysics, 35, 259–270, 1976.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1130/G23766A.1$$uYang, J.-S., Dobrzhinetskaya, L., Bai, W.-J., Fang, Q.-S., Robinson, T. T., Zhang, J., and Green II, H. W.: Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet, Geology, 35, 875–878, https://doi.org/10.1130/G23766A.1, 2007.
000622847 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00202987$$uZhang, J., Li, B., Utsumi, W., and Liebermann, R. C.: In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics, Phys. Chem. Minerals, 23, 1–10, https://doi.org/10.1007/BF00202987, 1996.