Home > Publications database > Machine-learning-enhanced automatic spectral characterization of x-ray pulses from a free-electron laser > print |
001 | 622842 | ||
005 | 20250804160532.0 | ||
024 | 7 | _ | |a 10.1038/s42005-024-01900-6 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2025-00522 |2 datacite_doi |
024 | 7 | _ | |a altmetric:172183126 |2 altmetric |
024 | 7 | _ | |a WOS:001380084800001 |2 WOS |
037 | _ | _ | |a PUBDB-2025-00522 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Ferreira de Lima, Danilo Enoque |0 P:(DE-H253)PIP1028636 |b 0 |e Corresponding author |
245 | _ | _ | |a Machine-learning-enhanced automatic spectral characterization of x-ray pulses from a free-electron laser |
260 | _ | _ | |a London |c 2024 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738577565_2940589 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A reliable characterization of x-ray pulses is critical to optimally exploit advanced photon sources, such as free-electron lasers. In this paper, we present a method based on machine learning, the virtual spectrometer, that improves the resolution of non-invasive spectral diagnostics at the European XFEL by up to 40%, and significantly increases its signal-to-noise ratio. This improves the reliability of quasi-real-time monitoring, which is critical to steer the experiment, as well as the interpretation of experimental outcomes. Furthermore, the virtual spectrometer streamlines and automates the calibration of the spectral diagnostic device, which is otherwise a complex and time-consuming task, by virtue of its underlying detection principles. Additionally, the provision of robust quality metrics and uncertainties enable a transparent and reliable validation of the tool during its operation. A complete characterization of the virtual spectrometer under a diverse set of experimental and simulated conditions is provided in the manuscript, detailing advantages and limits, as well as its robustness with respect to the different test cases. |
536 | _ | _ | |a 6G13 - Accelerator of European XFEL (POF4-6G13) |0 G:(DE-HGF)POF4-6G13 |c POF4-6G13 |f POF IV |x 0 |
536 | _ | _ | |a DIGIPREDICT - Edge AI-deployed DIGItal Twins for PREDICTing disease progression and need for early intervention in infectious and cardiovascular diseases beyond COVID-19 (101017915) |0 G:(EU-Grant)101017915 |c 101017915 |f H2020-FETPROACT-2020-2 |x 1 |
536 | _ | _ | |a NETCO-PD - NETCO-PD: 14 experienced researchers in network science for Europe (101034253) |0 G:(EU-Grant)101034253 |c 101034253 |f H2020-MSCA-COFUND-2020 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a XFEL |e Experiments at XFEL |1 EXP:(DE-H253)XFEL-20150101 |0 EXP:(DE-H253)XFEL-Exp-20150101 |5 EXP:(DE-H253)XFEL-Exp-20150101 |x 0 |
700 | 1 | _ | |a Davtyan, Arman |b 1 |
700 | 1 | _ | |a Laksman, Joakim |b 2 |
700 | 1 | _ | |a Gerasimova, Natalia |b 3 |
700 | 1 | _ | |a Maltezopoulos, Theophilos |b 4 |
700 | 1 | _ | |a Liu, Jia |0 P:(DE-H253)PIP1019426 |b 5 |
700 | 1 | _ | |a Schmidt, Philipp |b 6 |
700 | 1 | _ | |a Michelat, Thomas |b 7 |
700 | 1 | _ | |a Mazza, Tommaso |b 8 |
700 | 1 | _ | |a Meyer, Michael |b 9 |
700 | 1 | _ | |a Grünert, Jan |b 10 |
700 | 1 | _ | |a Gelisio, Luca |b 11 |
773 | _ | _ | |a 10.1038/s42005-024-01900-6 |g Vol. 7, no. 1, p. 400 |0 PERI:(DE-600)2921913-9 |n 1 |p 400 |t Communications Physics |v 7 |y 2024 |x 2399-3650 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/622842/files/s42005-024-01900-6.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/622842/files/s42005-024-01900-6.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:622842 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 0 |6 P:(DE-H253)PIP1028636 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 5 |6 P:(DE-H253)PIP1019426 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G13 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator of European XFEL |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-20 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-20 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMMUN PHYS-UK : 2022 |d 2024-12-20 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b COMMUN PHYS-UK : 2022 |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-10T15:36:49Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-10T15:36:49Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-20 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-20 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | 1 | _ | |0 I:(DE-H253)XFEL_DO_DD_DA-20210408 |k XFEL_DO_DD_DA |l Data Analysis |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)XFEL_DO_DD_DA-20210408 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|