TY - JOUR
AU - Ferreira de Lima, Danilo Enoque
AU - Davtyan, Arman
AU - Laksman, Joakim
AU - Gerasimova, Natalia
AU - Maltezopoulos, Theophilos
AU - Liu, Jia
AU - Schmidt, Philipp
AU - Michelat, Thomas
AU - Mazza, Tommaso
AU - Meyer, Michael
AU - Grünert, Jan
AU - Gelisio, Luca
TI - Machine-learning-enhanced automatic spectral characterization of x-ray pulses from a free-electron laser
JO - Communications Physics
VL - 7
IS - 1
SN - 2399-3650
CY - London
PB - Springer Nature
M1 - PUBDB-2025-00522
SP - 400
PY - 2024
AB - A reliable characterization of x-ray pulses is critical to optimally exploit advanced photon sources, such as free-electron lasers. In this paper, we present a method based on machine learning, the virtual spectrometer, that improves the resolution of non-invasive spectral diagnostics at the European XFEL by up to 40
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:001380084800001
DO - DOI:10.1038/s42005-024-01900-6
UR - https://bib-pubdb1.desy.de/record/622842
ER -