000622842 001__ 622842
000622842 005__ 20251017165936.0
000622842 0247_ $$2doi$$a10.1038/s42005-024-01900-6
000622842 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00522
000622842 0247_ $$2altmetric$$aaltmetric:172183126
000622842 0247_ $$2WOS$$aWOS:001380084800001
000622842 0247_ $$2openalex$$aopenalex:W4405511922
000622842 037__ $$aPUBDB-2025-00522
000622842 041__ $$aEnglish
000622842 082__ $$a530
000622842 1001_ $$0P:(DE-H253)PIP1028636$$aFerreira de Lima, Danilo Enoque$$b0$$eCorresponding author
000622842 245__ $$aMachine-learning-enhanced automatic spectral characterization of x-ray pulses from a free-electron laser
000622842 260__ $$aLondon$$bSpringer Nature$$c2024
000622842 3367_ $$2DRIVER$$aarticle
000622842 3367_ $$2DataCite$$aOutput Types/Journal article
000622842 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738577565_2940589
000622842 3367_ $$2BibTeX$$aARTICLE
000622842 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000622842 3367_ $$00$$2EndNote$$aJournal Article
000622842 520__ $$aA reliable characterization of x-ray pulses is critical to optimally exploit advanced photon sources, such as free-electron lasers. In this paper, we present a method based on machine learning, the virtual spectrometer, that improves the resolution of non-invasive spectral diagnostics at the European XFEL by up to 40%, and significantly increases its signal-to-noise ratio. This improves the reliability of quasi-real-time monitoring, which is critical to steer the experiment, as well as the interpretation of experimental outcomes. Furthermore, the virtual spectrometer streamlines and automates the calibration of the spectral diagnostic device, which is otherwise a complex and time-consuming task, by virtue of its underlying detection principles. Additionally, the provision of robust quality metrics and uncertainties enable a transparent and reliable validation of the tool during its operation. A complete characterization of the virtual spectrometer under a diverse set of experimental and simulated conditions is provided in the manuscript, detailing advantages and limits, as well as its robustness with respect to the different test cases.
000622842 536__ $$0G:(DE-HGF)POF4-6G13$$a6G13 - Accelerator of European XFEL (POF4-6G13)$$cPOF4-6G13$$fPOF IV$$x0
000622842 536__ $$0G:(EU-Grant)101017915$$aDIGIPREDICT - Edge AI-deployed DIGItal Twins for PREDICTing disease progression and need for early intervention in infectious and cardiovascular diseases beyond COVID-19 (101017915)$$c101017915$$fH2020-FETPROACT-2020-2$$x1
000622842 536__ $$0G:(EU-Grant)101034253$$aNETCO-PD - NETCO-PD: 14 experienced researchers in network science for Europe (101034253)$$c101034253$$fH2020-MSCA-COFUND-2020$$x2
000622842 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000622842 693__ $$0EXP:(DE-H253)XFEL-Exp-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL-Exp-20150101$$aXFEL$$eExperiments at XFEL$$x0
000622842 7001_ $$aDavtyan, Arman$$b1
000622842 7001_ $$aLaksman, Joakim$$b2
000622842 7001_ $$aGerasimova, Natalia$$b3
000622842 7001_ $$aMaltezopoulos, Theophilos$$b4
000622842 7001_ $$0P:(DE-H253)PIP1019426$$aLiu, Jia$$b5
000622842 7001_ $$aSchmidt, Philipp$$b6
000622842 7001_ $$aMichelat, Thomas$$b7
000622842 7001_ $$aMazza, Tommaso$$b8
000622842 7001_ $$aMeyer, Michael$$b9
000622842 7001_ $$aGrünert, Jan$$b10
000622842 7001_ $$aGelisio, Luca$$b11
000622842 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-024-01900-6$$gVol. 7, no. 1, p. 400$$n1$$p400$$tCommunications Physics$$v7$$x2399-3650$$y2024
000622842 8564_ $$uhttps://bib-pubdb1.desy.de/record/622842/files/s42005-024-01900-6.pdf$$yOpenAccess
000622842 8564_ $$uhttps://bib-pubdb1.desy.de/record/622842/files/s42005-024-01900-6.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000622842 8767_ $$92024-12-10$$d2025-01-29$$eAPC$$jDEAL$$lSpringerNature$$v10.40$$zXFEL, Einzelnachweis Rechnung SN-2024-01603-b
000622842 8767_ $$8SN-2025-01342-e$$92025-09-25$$d2025-01-29$$ePayment fee$$jDEAL$$lSpringerNature$$v0.35$$zMPDL Gebühr
000622842 8767_ $$92024-12-10$$d2025-01-29$$eAPC$$jStorniert$$lSpringerNature$$zDFG OAPK (Projekt) verrechnet mit -V3-
000622842 8767_ $$92024-12-10$$d2025-01-29$$eAPC$$jZahlung erfolgt$$lSpringerNature$$zDFG OAPK (Projekt) verrechnet mit -V3-
000622842 909CO $$ooai:bib-pubdb1.desy.de:622842$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000622842 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1028636$$aEuropean XFEL$$b0$$kXFEL.EU
000622842 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1019426$$aEuropean XFEL$$b5$$kXFEL.EU
000622842 9131_ $$0G:(DE-HGF)POF4-6G13$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vAccelerator of European XFEL$$x0
000622842 9141_ $$y2024
000622842 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000622842 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000622842 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000622842 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000622842 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN PHYS-UK : 2022$$d2024-12-20
000622842 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN PHYS-UK : 2022$$d2024-12-20
000622842 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:49Z
000622842 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:49Z
000622842 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000622842 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-20
000622842 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000622842 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000622842 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000622842 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-20
000622842 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
000622842 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000622842 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000622842 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000622842 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000622842 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000622842 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000622842 9201_ $$0I:(DE-H253)XFEL_DO_DD_DA-20210408$$kXFEL_DO_DD_DA$$lData Analysis$$x0
000622842 980__ $$ajournal
000622842 980__ $$aVDB
000622842 980__ $$aUNRESTRICTED
000622842 980__ $$aI:(DE-H253)XFEL_DO_DD_DA-20210408
000622842 980__ $$aAPC
000622842 9801_ $$aAPC
000622842 9801_ $$aFullTexts