Home > Publications database > Switchable 3D Photonic Crystals Based on the Insulator-to-Metal Transition in VO$_2$ > print |
001 | 622465 | ||
005 | 20250715171238.0 | ||
024 | 7 | _ | |a 10.1021/acsami.4c13789 |2 doi |
024 | 7 | _ | |a 1944-8244 |2 ISSN |
024 | 7 | _ | |a 1944-8252 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2025-00328 |2 datacite_doi |
024 | 7 | _ | |a 39622080 |2 pmid |
024 | 7 | _ | |a WOS:001368389400001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4404912128 |
037 | _ | _ | |a PUBDB-2025-00328 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Peng, Jun |b 0 |
245 | _ | _ | |a Switchable 3D Photonic Crystals Based on the Insulator-to-Metal Transition in VO$_2$ |
260 | _ | _ | |a Washington, DC |c 2024 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738076299_2503397 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Photonic crystals (PhCs) are optical structures characterized by the spatial modulation of the dielectric function, which results in the formation of a photonic band gap (PBG) in the frequency spectrum. This PBG blocks the propagation of light, enabling filtering, confinement, and manipulation of light. Most of the research in this field has concentrated on static PhCs, which have fixed structural and material parameters, leading to a constant PBG. However, the growing demand for adaptive photonic devices has led to an increased interest in switchable PhCs, where the PBG can be reversibly activated or shifted. Vanadium dioxide (VO2) is particularly notable for its near-room-temperature insulator-to-metal transition (IMT), which is accompanied by significant changes in its optical properties. Here, we demonstrate a fabrication strategy for switchable three-dimensional (3D) PhCs, involving sacrificial templates and a VO2 atomic layer deposition (ALD) process in combination with an accurately controlled annealing procedure. The resulting VO2 inverse opal (IO) PhC achieves substantial control over PBG in the near-infrared (NIR) region. Specifically, the synthesized VO$_2$ IO PhC exhibits PBGs near 1.49 and 1.03 μm in the dielectric and metallic states of the VO$_2$ material, respectively, which can be reversibly switched by adjusting the external temperature. Furthermore, a temperature-dependent switch from a narrow-band NIR reflector to a broad-band absorber is revealed. This work highlights the potential of integrating VO$_2$ into 3D templates in the development of switchable photonics with complex 3D structures, offering a promising avenue for the advancement of photonic devices with adaptable functionalities. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)192346071 - SFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3 (192346071) |0 G:(GEPRIS)192346071 |c 192346071 |x 1 |
542 | _ | _ | |i 2024-12-02 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Brandt, Julia |0 0009-0002-1698-6612 |b 1 |
700 | 1 | _ | |a Pfeiffer, Maurice |0 0009-0002-3767-6672 |b 2 |
700 | 1 | _ | |a G. Maragno, Laura |b 3 |
700 | 1 | _ | |a Krekeler, Tobias |b 4 |
700 | 1 | _ | |a T. James, Nithin |0 0009-0001-3292-0405 |b 5 |
700 | 1 | _ | |a Henf, Julius |b 6 |
700 | 1 | _ | |a Heyn, Christian |b 7 |
700 | 1 | _ | |a Ritter, Martin |b 8 |
700 | 1 | _ | |a Eich, Manfred |b 9 |
700 | 1 | _ | |a Petrov, Alexander Yu. |b 10 |
700 | 1 | _ | |a P. Furlan, Kaline |b 11 |
700 | 1 | _ | |a Blick, Robert |0 P:(DE-H253)PIP1027258 |b 12 |
700 | 1 | _ | |a Zierold, Robert |0 P:(DE-H253)PIP1083711 |b 13 |e Corresponding author |
773 | 1 | 8 | |a 10.1021/acsami.4c13789 |b American Chemical Society (ACS) |d 2024-12-02 |n 49 |p 67106-67115 |3 journal-article |2 Crossref |t ACS Applied Materials & Interfaces |v 16 |y 2024 |x 1944-8244 |
773 | _ | _ | |a 10.1021/acsami.4c13789 |g Vol. 16, no. 49, p. 67106 - 67115 |0 PERI:(DE-600)2467494-1 |n 49 |p 67106-67115 |t ACS applied materials & interfaces |v 16 |y 2024 |x 1944-8244 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/622465/files/peng-et-al-2024-switchable-3d-photonic-crystals-based-on-the-insulator-to-metal-transition-in-vo2.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/622465/files/peng-et-al-2024-switchable-3d-photonic-crystals-based-on-the-insulator-to-metal-transition-in-vo2.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:622465 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 P:(DE-H253)PIP1027258 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 12 |6 P:(DE-H253)PIP1027258 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 13 |6 P:(DE-H253)PIP1083711 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-13 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2022 |d 2024-12-13 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2022 |d 2024-12-13 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-13 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-13 |
920 | 1 | _ | |0 I:(DE-H253)FS-PS-20131107 |k FS-PS |l FS-Photon Science |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-PS-20131107 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1038/386143a0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.2307/j.ctvcm4gz9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41578-019-0167-3 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/natrevmats.2017.10 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41586-020-2764-0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.isci.2022.104727 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.chemrev.2c00171 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nphoton.2017.126 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/sciadv.abc2709 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.3.34 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRev.155.851 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.11.4383 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1150124 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nphys2733 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/sciadv.aav6815 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.abc0652 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.chemrev.2c00546 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.3389/fmats.2024.1341518 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1149/2.0541514jes |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/5.0028093 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acsami.6b12175 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/lsa.2016.173 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41566-023-01324-8 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1134/1.1507288 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1464-4258/10/12/125202 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1149/1.2779080 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.tsf.2013.10.039 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/adfm.201402687 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/C6RA25742A |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/C2RA22820C |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1116/6.0000353 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1557/jmr.2016.303 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.apsusc.2016.10.044 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.mtchem.2019.03.004 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.3390/coatings8120431 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/adfm.201600482 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/cm020357x |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.surfin.2023.103766 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.nanolett.3c02681 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/sciadv.adg9376 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/D0NR04776G |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41598-019-39529-z |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1147724 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.1496506 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/jrs.5616 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1515/zkri-2018-2112 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.42.3164 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acsami.6b00827 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nnano.2012.70 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/2053-1591/aaed74 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acsami.3c08493 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/andp.201900188 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/978-3-031-02022-3 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/0-387-37825-1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.jeurceramsoc.2021.02.007 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.jeurceramsoc.2015.04.041 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.apmt.2018.10.002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1230512 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/D1CP00642H |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/admi.201700912 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/9780470060193 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|