000622465 001__ 622465
000622465 005__ 20250715171238.0
000622465 0247_ $$2doi$$a10.1021/acsami.4c13789
000622465 0247_ $$2ISSN$$a1944-8244
000622465 0247_ $$2ISSN$$a1944-8252
000622465 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00328
000622465 0247_ $$2pmid$$a39622080
000622465 0247_ $$2WOS$$aWOS:001368389400001
000622465 0247_ $$2openalex$$aopenalex:W4404912128
000622465 037__ $$aPUBDB-2025-00328
000622465 041__ $$aEnglish
000622465 082__ $$a600
000622465 1001_ $$aPeng, Jun$$b0
000622465 245__ $$aSwitchable 3D Photonic Crystals Based on the Insulator-to-Metal Transition in VO$_2$
000622465 260__ $$aWashington, DC$$bSoc.$$c2024
000622465 3367_ $$2DRIVER$$aarticle
000622465 3367_ $$2DataCite$$aOutput Types/Journal article
000622465 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738076299_2503397
000622465 3367_ $$2BibTeX$$aARTICLE
000622465 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000622465 3367_ $$00$$2EndNote$$aJournal Article
000622465 520__ $$aPhotonic crystals (PhCs) are optical structures characterized by the spatial modulation of the dielectric function, which results in the formation of a photonic band gap (PBG) in the frequency spectrum. This PBG blocks the propagation of light, enabling filtering, confinement, and manipulation of light. Most of the research in this field has concentrated on static PhCs, which have fixed structural and material parameters, leading to a constant PBG. However, the growing demand for adaptive photonic devices has led to an increased interest in switchable PhCs, where the PBG can be reversibly activated or shifted. Vanadium dioxide (VO2) is particularly notable for its near-room-temperature insulator-to-metal transition (IMT), which is accompanied by significant changes in its optical properties. Here, we demonstrate a fabrication strategy for switchable three-dimensional (3D) PhCs, involving sacrificial templates and a VO2 atomic layer deposition (ALD) process in combination with an accurately controlled annealing procedure. The resulting VO2 inverse opal (IO) PhC achieves substantial control over PBG in the near-infrared (NIR) region. Specifically, the synthesized VO$_2$ IO PhC exhibits PBGs near 1.49 and 1.03 μm in the dielectric and metallic states of the VO$_2$ material, respectively, which can be reversibly switched by adjusting the external temperature. Furthermore, a temperature-dependent switch from a narrow-band NIR reflector to a broad-band absorber is revealed. This work highlights the potential of integrating VO$_2$ into 3D templates in the development of switchable photonics with complex 3D structures, offering a promising avenue for the advancement of photonic devices with adaptable functionalities.  
000622465 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000622465 536__ $$0G:(GEPRIS)192346071$$aDFG project G:(GEPRIS)192346071 - SFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3 (192346071)$$c192346071$$x1
000622465 542__ $$2Crossref$$i2024-12-02$$uhttps://creativecommons.org/licenses/by/4.0/
000622465 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000622465 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000622465 7001_ $$00009-0002-1698-6612$$aBrandt, Julia$$b1
000622465 7001_ $$00009-0002-3767-6672$$aPfeiffer, Maurice$$b2
000622465 7001_ $$aG. Maragno, Laura$$b3
000622465 7001_ $$aKrekeler, Tobias$$b4
000622465 7001_ $$00009-0001-3292-0405$$aT. James, Nithin$$b5
000622465 7001_ $$aHenf, Julius$$b6
000622465 7001_ $$aHeyn, Christian$$b7
000622465 7001_ $$aRitter, Martin$$b8
000622465 7001_ $$aEich, Manfred$$b9
000622465 7001_ $$aPetrov, Alexander Yu.$$b10
000622465 7001_ $$aP. Furlan, Kaline$$b11
000622465 7001_ $$0P:(DE-H253)PIP1027258$$aBlick, Robert$$b12
000622465 7001_ $$0P:(DE-H253)PIP1083711$$aZierold, Robert$$b13$$eCorresponding author
000622465 77318 $$2Crossref$$3journal-article$$a10.1021/acsami.4c13789$$bAmerican Chemical Society (ACS)$$d2024-12-02$$n49$$p67106-67115$$tACS Applied Materials & Interfaces$$v16$$x1944-8244$$y2024
000622465 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.4c13789$$gVol. 16, no. 49, p. 67106 - 67115$$n49$$p67106-67115$$tACS applied materials & interfaces$$v16$$x1944-8244$$y2024
000622465 8564_ $$uhttps://bib-pubdb1.desy.de/record/622465/files/peng-et-al-2024-switchable-3d-photonic-crystals-based-on-the-insulator-to-metal-transition-in-vo2.pdf$$yOpenAccess
000622465 8564_ $$uhttps://bib-pubdb1.desy.de/record/622465/files/peng-et-al-2024-switchable-3d-photonic-crystals-based-on-the-insulator-to-metal-transition-in-vo2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000622465 909CO $$ooai:bib-pubdb1.desy.de:622465$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000622465 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1027258$$aExternal Institute$$b12$$kExtern
000622465 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027258$$aDeutsches Elektronen-Synchrotron$$b12$$kDESY
000622465 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083711$$aExternal Institute$$b13$$kExtern
000622465 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000622465 9141_ $$y2024
000622465 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000622465 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000622465 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-13
000622465 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000622465 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2022$$d2024-12-13
000622465 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2022$$d2024-12-13
000622465 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000622465 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000622465 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000622465 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
000622465 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000622465 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000622465 9201_ $$0I:(DE-H253)FS-PS-20131107$$kFS-PS$$lFS-Photon Science$$x0
000622465 980__ $$ajournal
000622465 980__ $$aVDB
000622465 980__ $$aUNRESTRICTED
000622465 980__ $$aI:(DE-H253)FS-PS-20131107
000622465 9801_ $$aFullTexts
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/386143a0
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2307/j.ctvcm4gz9
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41578-019-0167-3
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/natrevmats.2017.10
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2764-0
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.isci.2022.104727
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.2c00171
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2017.126
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.abc2709
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.3.34
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.155.851
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.11.4383
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1150124
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2733
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.aav6815
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abc0652
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.2c00546
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/fmats.2024.1341518
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1149/2.0541514jes
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0028093
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsami.6b12175
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/lsa.2016.173
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-023-01324-8
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1134/1.1507288
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1464-4258/10/12/125202
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1149/1.2779080
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tsf.2013.10.039
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.201402687
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C6RA25742A
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C2RA22820C
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/6.0000353
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1557/jmr.2016.303
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.apsusc.2016.10.044
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mtchem.2019.03.004
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/coatings8120431
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.201600482
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cm020357x
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.surfin.2023.103766
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.3c02681
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.adg9376
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D0NR04776G
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-019-39529-z
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1147724
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1496506
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/jrs.5616
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1515/zkri-2018-2112
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.42.3164
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsami.6b00827
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2012.70
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/2053-1591/aaed74
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsami.3c08493
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/andp.201900188
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-031-02022-3
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/0-387-37825-1
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jeurceramsoc.2021.02.007
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jeurceramsoc.2015.04.041
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.apmt.2018.10.002
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1230512
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D1CP00642H
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/admi.201700912
000622465 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/9780470060193