001     622276
005     20250625130036.0
024 7 _ |a 10.1140/epja/s10050-024-01282-x
|2 doi
024 7 _ |a 1434-6001
|2 ISSN
024 7 _ |a 1434-601X
|2 ISSN
024 7 _ |a WOS:001325234200001
|2 WOS
037 _ _ |a PUBDB-2025-00314
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Accardi, A.
|b 0
245 _ _ |a Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab
260 _ _ |a Heidelberg
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737990619_2170208
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
542 _ _ |i 2024-09-04
|2 Crossref
|u https://www.springernature.com/gp/researchers/text-and-data-mining
542 _ _ |i 2024-09-04
|2 Crossref
|u https://www.springernature.com/gp/researchers/text-and-data-mining
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Achenbach, P.
|b 1
700 1 _ |a Adhikari, D.
|b 2
700 1 _ |a Afanasev, A.
|b 3
700 1 _ |a Akondi, C. S.
|b 4
700 1 _ |a Akopov, N.
|b 5
700 1 _ |a Albaladejo, M.
|b 6
700 1 _ |a Albataineh, H.
|b 7
700 1 _ |a Albrecht, M.
|b 8
700 1 _ |a Almeida-Zamora, B.
|b 9
700 1 _ |a Amaryan, M.
|b 10
700 1 _ |a Androić, D.
|b 11
700 1 _ |a Armstrong, W.
|b 12
700 1 _ |a Armstrong, D. S.
|b 13
700 1 _ |a Arratia, M.
|b 14
700 1 _ |a Arrington, J.
|b 15
700 1 _ |a Asaturyan, A.
|b 16
700 1 _ |a Austregesilo, A.
|b 17
700 1 _ |a Avakian, H.
|b 18
700 1 _ |a Averett, T.
|b 19
700 1 _ |a Gayoso, C. Ayerbe
|b 20
700 1 _ |a Bacchetta, A.
|b 21
700 1 _ |a Balantekin, A. B.
|b 22
700 1 _ |a Baltzell, N.
|b 23
700 1 _ |a Barion, L.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Barry, P. C.
|b 25
700 1 _ |a Bashir, A.
|b 26
700 1 _ |a Battaglieri, M.
|b 27
700 1 _ |a Bellini, V.
|b 28
700 1 _ |a Belov, I.
|b 29
700 1 _ |a Benhar, O.
|b 30
700 1 _ |a Benkel, B.
|b 31
700 1 _ |a Benmokhtar, F.
|b 32
700 1 _ |a Bentz, W.
|b 33
700 1 _ |a Bertone, V.
|b 34
700 1 _ |a Bhatt, H.
|b 35
700 1 _ |a Bianconi, A.
|b 36
700 1 _ |a Bibrzycki, L.
|b 37
700 1 _ |a Bijker, R.
|b 38
700 1 _ |a Binosi, D.
|b 39
700 1 _ |a Biswas, D.
|b 40
700 1 _ |a Boër, M.
|b 41
700 1 _ |a Boeglin, W.
|b 42
700 1 _ |a Bogacz, S. A.
|b 43
700 1 _ |a Boglione, M.
|b 44
700 1 _ |a Bondí, M.
|b 45
700 1 _ |a Boos, E. E.
|b 46
700 1 _ |a Bosted, P.
|b 47
700 1 _ |a Bozzi, G.
|b 48
700 1 _ |a Brash, E. J.
|b 49
700 1 _ |a Briceño, R. A.
|b 50
700 1 _ |a Brindza, P. D.
|b 51
700 1 _ |a Briscoe, W. J.
|b 52
700 1 _ |a Brodsky, S. J.
|b 53
700 1 _ |a Brooks, W. K.
|b 54
700 1 _ |a Burkert, V. D.
|b 55
700 1 _ |a Camsonne, A.
|b 56
700 1 _ |a Cao, T.
|b 57
700 1 _ |a Cardman, L. S.
|b 58
700 1 _ |a Carman, D. S.
|b 59
700 1 _ |a Carpinelli, M.
|b 60
700 1 _ |a Cates, G. D.
|b 61
700 1 _ |a Caylor, J.
|b 62
700 1 _ |a Celentano, A.
|b 63
700 1 _ |a Celiberto, F. G.
|b 64
700 1 _ |a Cerutti, M.
|b 65
700 1 _ |a Chang, L.
|b 66
700 1 _ |a Chatagnon, P.
|b 67
700 1 _ |a Chen, C.
|b 68
700 1 _ |a Chen, J.-P.
|b 69
700 1 _ |a Chetry, T.
|b 70
700 1 _ |a Christopher, A.
|b 71
700 1 _ |a Christy, E.
|b 72
700 1 _ |a Chudakov, E.
|b 73
700 1 _ |a Cisbani, E.
|b 74
700 1 _ |a Cloët, I. C.
|b 75
700 1 _ |a Cobos-Martinez, J. J.
|b 76
700 1 _ |a Cohen, E. O.
|b 77
700 1 _ |a Colangelo, P.
|b 78
700 1 _ |a Cole, P. L.
|b 79
700 1 _ |a Constantinou, M.
|b 80
700 1 _ |a Contalbrigo, M.
|b 81
700 1 _ |a Costantini, G.
|b 82
700 1 _ |a Cosyn, W.
|b 83
700 1 _ |a Cotton, C.
|b 84
700 1 _ |a Courtoy, A.
|b 85
700 1 _ |a Dusa, S. Covrig
|b 86
700 1 _ |a Crede, V.
|b 87
700 1 _ |a Cui, Z.-F.
|b 88
700 1 _ |a D’Angelo, A.
|b 89
700 1 _ |a Döring, M.
|b 90
700 1 _ |a Dalton, M. M.
|b 91
700 1 _ |a Danilkin, I.
|b 92
700 1 _ |a Davydov, M.
|b 93
700 1 _ |a Day, D.
|b 94
700 1 _ |a De Fazio, F.
|b 95
700 1 _ |a De Napoli, M.
|b 96
700 1 _ |a De Vita, R.
|b 97
700 1 _ |a Dean, D. J.
|b 98
700 1 _ |a Defurne, M.
|b 99
700 1 _ |a de Paula, W.
|b 100
700 1 _ |a de Téramond, G. F.
|b 101
700 1 _ |a Deur, A.
|b 102
700 1 _ |a Devkota, B.
|b 103
700 1 _ |a Dhital, S.
|b 104
700 1 _ |a Di Nezza, P.
|b 105
700 1 _ |a Diefenthaler, M.
|b 106
700 1 _ |a Diehl, S.
|b 107
700 1 _ |a Dilks, C.
|b 108
700 1 _ |a Ding, M.
|b 109
700 1 _ |a Djalali, C.
|b 110
700 1 _ |a Dobbs, S.
|b 111
700 1 _ |a Dupré, R.
|b 112
700 1 _ |a Dutta, D.
|b 113
700 1 _ |a Edwards, R. G.
|b 114
700 1 _ |a Egiyan, H.
|b 115
700 1 _ |a Ehinger, L.
|b 116
700 1 _ |a Eichmann, G.
|b 117
700 1 _ |a Elaasar, M.
|b 118
700 1 _ |a Elouadrhiri, L.
|b 119
700 1 _ |a Alaoui, A. El
|b 120
700 1 _ |a Fassi, L. El
|b 121
700 1 _ |a Emmert, A.
|b 122
700 1 _ |a Engelhardt, M.
|b 123
700 1 _ |a Ent, R.
|b 124
700 1 _ |a Ernst, D. J.
|b 125
700 1 _ |a Eugenio, P.
|b 126
700 1 _ |a Evans, G.
|b 127
700 1 _ |a Fanelli, C.
|b 128
700 1 _ |a Fegan, S.
|b 129
700 1 _ |a Fernández-Ramírez, C.
|b 130
700 1 _ |a Fernandez, L. A.
|b 131
700 1 _ |a Fernando, I. P.
|b 132
700 1 _ |a Filippi, A.
|b 133
700 1 _ |a Fischer, C. S.
|b 134
700 1 _ |a Fogler, C.
|b 135
700 1 _ |a Fomin, N.
|b 136
700 1 _ |a Frankfurt, L.
|b 137
700 1 _ |a Frederico, T.
|b 138
700 1 _ |a Freese, A.
|b 139
700 1 _ |a Fu, Y.
|b 140
700 1 _ |a Gamberg, L.
|b 141
700 1 _ |a Gan, L.
|b 142
700 1 _ |a Gao, F.
|b 143
700 1 _ |a Garcia-Tecocoatzi, H.
|b 144
700 1 _ |a Gaskell, D.
|b 145
700 1 _ |a Gasparian, A.
|b 146
700 1 _ |a Gates, K.
|b 147
700 1 _ |a Gavalian, G.
|b 148
700 1 _ |a Ghoshal, P. K.
|b 149
700 1 _ |a Giachino, A.
|b 150
700 1 _ |a Giacosa, F.
|b 151
700 1 _ |a Giannuzzi, F.
|b 152
700 1 _ |a Gilfoyle, G.-P.
|b 153
700 1 _ |a Girod, F.-X.
|b 154
700 1 _ |a Glazier, D. I.
|b 155
700 1 _ |a Gleason, C.
|b 156
700 1 _ |a Godfrey, S.
|b 157
700 1 _ |a Goity, J. L.
|b 158
700 1 _ |a Golubenko, A. A.
|b 159
700 1 _ |a Gonzàlez-Solís, S.
|b 160
700 1 _ |a Gothe, R. W.
|b 161
700 1 _ |a Gotra, Y.
|b 162
700 1 _ |a Griffioen, K.
|b 163
700 1 _ |a Grocholski, Oskar
|0 P:(DE-H253)PIP1097931
|b 164
700 1 _ |a Grube, B.
|b 165
700 1 _ |a Guèye, P.
|b 166
700 1 _ |a Guo, F.-K.
|b 167
700 1 _ |a Guo, Y.
|b 168
700 1 _ |a Guo, L.
|b 169
700 1 _ |a Hague, T. J.
|b 170
700 1 _ |a Hammoud, N.
|b 171
700 1 _ |a Hansen, J.-O.
|b 172
700 1 _ |a Hattawy, M.
|b 173
700 1 _ |a Hauenstein, F.
|b 174
700 1 _ |a Hayward, T.
|b 175
700 1 _ |a Heddle, D.
|b 176
700 1 _ |a Heinrich, N.
|b 177
700 1 _ |a Hen, O.
|b 178
700 1 _ |a Higinbotham, D. W.
|b 179
700 1 _ |a Higuera-Angulo, I. M.
|b 180
700 1 _ |a Hiller Blin, A. N.
|b 181
700 1 _ |a Hobart, A.
|b 182
700 1 _ |a Hobbs, T.
|b 183
700 1 _ |a Holmberg, D. E.
|b 184
700 1 _ |a Horn, T.
|b 185
700 1 _ |a Hoyer, P.
|b 186
700 1 _ |a Huber, G. M.
|b 187
700 1 _ |a Hurck, P.
|b 188
700 1 _ |a Hutauruk, P. T. P.
|b 189
700 1 _ |a Ilieva, Y.
|b 190
700 1 _ |a Illari, I.
|b 191
700 1 _ |a Ireland, D. G.
|b 192
700 1 _ |a Isupov, E. L.
|b 193
700 1 _ |a Italiano, A.
|b 194
700 1 _ |a Jaegle, I.
|b 195
700 1 _ |a Jarvis, N. S.
|b 196
700 1 _ |a Jenkins, D. J.
|b 197
700 1 _ |a Jeschonnek, S.
|b 198
700 1 _ |a Ji, C.-R.
|b 199
700 1 _ |a Jo, H. S.
|b 200
700 1 _ |a Jones, M.
|b 201
700 1 _ |a Jones, R. T.
|b 202
700 1 _ |a Jones, D. C.
|b 203
700 1 _ |a Joo, K.
|b 204
700 1 _ |a Junaid, M.
|b 205
700 1 _ |a Kageya, T.
|b 206
700 1 _ |a Kalantarians, N.
|b 207
700 1 _ |a Karki, A.
|b 208
700 1 _ |a Karyan, G.
|b 209
700 1 _ |a Katramatou, A. T.
|b 210
700 1 _ |a Kay, S. J. D.
|b 211
700 1 _ |a Kazimi, R.
|b 212
700 1 _ |a Keith, C. D.
|b 213
700 1 _ |a Keppel, C.
|b 214
700 1 _ |a Kerbizi, A.
|b 215
700 1 _ |a Khachatryan, V.
|b 216
700 1 _ |a Khanal, A.
|b 217
700 1 _ |a Khandaker, M.
|b 218
700 1 _ |a Kim, A.
|b 219
700 1 _ |a Kinney, E. R.
|b 220
700 1 _ |a Kohl, M.
|b 221
700 1 _ |a Kotzinian, A.
|b 222
700 1 _ |a Kriesten, B. T.
|b 223
700 1 _ |a Kubarovsky, V.
|b 224
700 1 _ |a Kubis, B.
|b 225
700 1 _ |a Kuhn, S. E.
|b 226
700 1 _ |a Kumar, V.
|b 227
700 1 _ |a Kutz, T.
|b 228
700 1 _ |a Leali, M.
|b 229
700 1 _ |a Lebed, R. F.
|b 230
700 1 _ |a Lenisa, P.
|b 231
700 1 _ |a Leskovec, L.
|b 232
700 1 _ |a Li, S.
|b 233
700 1 _ |a Li, X.
|b 234
700 1 _ |a Liao, J.
|b 235
700 1 _ |a Lin, H.-W.
|b 236
700 1 _ |a Liu, L.
|b 237
700 1 _ |a Liuti, S.
|b 238
700 1 _ |a Liyanage, N.
|b 239
700 1 _ |a Lu, Y.
|b 240
700 1 _ |a MacGregor, I. J. D.
|b 241
700 1 _ |a Mack, D. J.
|b 242
700 1 _ |a Maiani, L.
|b 243
700 1 _ |a Mamo, K. A.
|b 244
700 1 _ |a Mandaglio, G.
|b 245
700 1 _ |a Mariani, C.
|b 246
700 1 _ |a Markowitz, P.
|b 247
700 1 _ |a Marukyan, H.
|b 248
700 1 _ |a Mascagna, V.
|b 249
700 1 _ |a Mathieu, V.
|b 250
700 1 _ |a Maxwell, J.
|b 251
700 1 _ |a Mazouz, M.
|b 252
700 1 _ |a McCaughan, M.
|b 253
700 1 _ |a McKeown, R. D.
|b 254
700 1 _ |a McKinnon, B.
|b 255
700 1 _ |a Meekins, D.
|b 256
700 1 _ |a Melnitchouk, W.
|b 257
700 1 _ |a Metz, A.
|b 258
700 1 _ |a Meyer, C. A.
|b 259
700 1 _ |a Meziani, Z.-E.
|b 260
700 1 _ |a Mezrag, C.
|b 261
700 1 _ |a Michaels, R.
|b 262
700 1 _ |a Miller, G. A.
|b 263
700 1 _ |a Mineeva, T.
|b 264
700 1 _ |a Miramontes, A. S.
|b 265
700 1 _ |a Mirazita, M.
|b 266
700 1 _ |a Mizutani, K.
|b 267
700 1 _ |a Mkrtchyan, A.
|b 268
700 1 _ |a Mkrtchyan, H.
|b 269
700 1 _ |a Moffit, B.
|b 270
700 1 _ |a Mohanmurthy, P.
|b 271
700 1 _ |a Mokeev, V. I.
|b 272
700 1 _ |a Monaghan, P.
|b 273
700 1 _ |a Montaña, G.
|b 274
700 1 _ |a Montgomery, R.
|b 275
700 1 _ |a Moretti, A.
|b 276
700 1 _ |a Chàvez, J. M. Morgado
|b 277
700 1 _ |a Mosel, U.
|b 278
700 1 _ |a Movsisyan, A.
|b 279
700 1 _ |a Musico, P.
|b 280
700 1 _ |a Nadeeshani, S. A.
|b 281
700 1 _ |a Nadolsky, P. M.
|b 282
700 1 _ |a Nakamura, S. X.
|b 283
700 1 _ |a Nazeer, J.
|b 284
700 1 _ |a Nefediev, A. V.
|b 285
700 1 _ |a Neupane, K.
|b 286
700 1 _ |a Nguyen, D.
|b 287
700 1 _ |a Niccolai, S.
|b 288
700 1 _ |a Niculescu, I.
|b 289
700 1 _ |a Niculescu, G.
|b 290
700 1 _ |a Nocera, E. R.
|b 291
700 1 _ |a Nycz, M.
|b 292
700 1 _ |a Olness, F. I.
|b 293
700 1 _ |a Ortega, P. G.
|b 294
700 1 _ |a Osipenko, M.
|b 295
700 1 _ |a Pace, E.
|b 296
700 1 _ |a Pandey, B.
|b 297
700 1 _ |a Pandey, P.
|b 298
700 1 _ |a Papandreou, Z.
|b 299
700 1 _ |a Papavassiliou, J.
|b 300
700 1 _ |a Pappalardo, L. L.
|b 301
700 1 _ |a Paredes-Torres, G.
|b 302
700 1 _ |a Paremuzyan, R.
|b 303
700 1 _ |a Park, S.
|b 304
700 1 _ |a Parsamyan, B.
|b 305
700 1 _ |a Paschke, K. D.
|b 306
700 1 _ |a Pasquini, B.
|b 307
700 1 _ |a Passemar, E.
|b 308
700 1 _ |a Pasyuk, E.
|b 309
700 1 _ |a Patel, T.
|b 310
700 1 _ |a Paudel, C.
|b 311
700 1 _ |a Paul, S. J.
|b 312
700 1 _ |a Peng, J.-C.
|b 313
700 1 _ |a Pentchev, L.
|b 314
700 1 _ |a Perrino, R.
|b 315
700 1 _ |a Perry, R. J.
|b 316
700 1 _ |a Peters, K.
|b 317
700 1 _ |a Petratos, G. G.
|b 318
700 1 _ |a Phelps, W.
|b 319
700 1 _ |a Piasetzky, E.
|b 320
700 1 _ |a Pilloni, A.
|b 321
700 1 _ |a Pire, B.
|b 322
700 1 _ |a Pitonyak, D.
|b 323
700 1 _ |a Pitt, M. L.
|b 324
700 1 _ |a Polosa, A. D.
|b 325
700 1 _ |a Pospelov, M.
|b 326
700 1 _ |a Postuma, A. C.
|b 327
700 1 _ |a Poudel, J.
|b 328
700 1 _ |a Preet, L.
|b 329
700 1 _ |a Prelovsek, S.
|b 330
700 1 _ |a Price, J. W.
|b 331
700 1 _ |a Prokudin, A.
|b 332
700 1 _ |a Puckett, A. J. R.
|b 333
700 1 _ |a Pybus, J. R.
|b 334
700 1 _ |a Qin, S.-X.
|b 335
700 1 _ |a Qiu, J.-W.
|b 336
700 1 _ |a Radici, M.
|b 337
700 1 _ |a Rashidi, H.
|b 338
700 1 _ |a Rathnayake, A. D.
|b 339
700 1 _ |a Raue, B. A.
|b 340
700 1 _ |a Reed, T.
|b 341
700 1 _ |a Reimer, P. E.
|b 342
700 1 _ |a Reinhold, J.
|b 343
700 1 _ |a Richard, J.-M.
|b 344
700 1 _ |a Rinaldi, M.
|b 345
700 1 _ |a Ringer, F.
|b 346
700 1 _ |a Ripani, M.
|b 347
700 1 _ |a Ritman, J.
|b 348
700 1 _ |a West, J. Rittenhouse
|b 349
700 1 _ |a Rivero-Acosta, A.
|b 350
700 1 _ |a Roberts, C. D.
|b 351
700 1 _ |a Rodas, A.
|b 352
700 1 _ |a Rodini, S.
|0 P:(DE-H253)PIP1098620
|b 353
700 1 _ |a Rodríguez-Quintero, J.
|b 354
700 1 _ |a Rogers, T. C.
|b 355
700 1 _ |a Rojo, J.
|0 P:(DE-HGF)0
|b 356
700 1 _ |a Rossi, P.
|0 P:(DE-HGF)0
|b 357
|e Corresponding author
700 1 _ |a Rossi, G. C.
|b 358
700 1 _ |a Salmè, G.
|b 359
700 1 _ |a Santiesteban, S. N.
|b 360
700 1 _ |a Santopinto, E.
|b 361
700 1 _ |a Sargsian, M.
|b 362
700 1 _ |a Sato, N.
|b 363
700 1 _ |a Schadmand, S.
|b 364
700 1 _ |a Schmidt, A.
|b 365
700 1 _ |a Schmidt, S. M.
|b 366
700 1 _ |a Schnell, G.
|b 367
700 1 _ |a Schumacher, R. A.
|b 368
700 1 _ |a Schweitzer, P.
|b 369
700 1 _ |a Scimemi, I.
|b 370
700 1 _ |a Scott, K. C.
|b 371
700 1 _ |a Seay, D. A.
|b 372
700 1 _ |a Segovia, J.
|b 373
700 1 _ |a Semenov-Tian-Shansky, K.
|b 374
700 1 _ |a Seryi, A.
|b 375
700 1 _ |a Sharda, A. S.
|b 376
700 1 _ |a Shepherd, M. R.
|b 377
700 1 _ |a Shirokov, E. V.
|b 378
700 1 _ |a Shrestha, S.
|b 379
700 1 _ |a Shrestha, U.
|b 380
700 1 _ |a Shvedunov, V. I.
|b 381
700 1 _ |a Signori, A.
|b 382
700 1 _ |a Slifer, K. J.
|b 383
700 1 _ |a Smith, W. A.
|b 384
700 1 _ |a Somov, A.
|b 385
700 1 _ |a Souder, P.
|b 386
700 1 _ |a Sparveris, N.
|b 387
700 1 _ |a Spizzo, F.
|b 388
700 1 _ |a Spreafico, M.
|b 389
700 1 _ |a Stepanyan, S.
|b 390
700 1 _ |a Stevens, J. R.
|b 391
700 1 _ |a Strakovsky, I. I.
|b 392
700 1 _ |a Strauch, S.
|b 393
700 1 _ |a Strikman, M.
|b 394
700 1 _ |a Su, S.
|b 395
700 1 _ |a Sumner, B. C. L.
|b 396
700 1 _ |a Sun, E.
|b 397
700 1 _ |a Suresh, M.
|b 398
700 1 _ |a Sutera, C.
|b 399
700 1 _ |a Swanson, E. S.
|b 400
700 1 _ |a Szczepaniak, A. P.
|b 401
700 1 _ |a Sznajder, P.
|b 402
700 1 _ |a Szumila-Vance, H.
|b 403
700 1 _ |a Szymanowski, L.
|b 404
700 1 _ |a Tadepalli, A.-S.
|b 405
700 1 _ |a Tadevosyan, V.
|b 406
700 1 _ |a Tamang, B.
|b 407
700 1 _ |a Tarasov, V. V.
|b 408
700 1 _ |a Thiel, A.
|b 409
700 1 _ |a Tong, X.-B.
|b 410
700 1 _ |a Tyson, R.
|b 411
700 1 _ |a Ungaro, M.
|b 412
700 1 _ |a Urciuoli, G. M.
|b 413
700 1 _ |a Usman, A.
|b 414
700 1 _ |a Valcarce, A.
|b 415
700 1 _ |a Vallarino, S.
|b 416
700 1 _ |a Vaquera-Araujo, C. A.
|b 417
700 1 _ |a Venturelli, L.
|b 418
700 1 _ |a Vera, F.
|b 419
700 1 _ |a Vladimirov, A.
|b 420
700 1 _ |a Vossen, A.
|b 421
700 1 _ |a Wagner, J.
|b 422
700 1 _ |a Wei, X.
|b 423
700 1 _ |a Weinstein, L. B.
|b 424
700 1 _ |a Weiss, C.
|b 425
700 1 _ |a Williams, R.
|b 426
700 1 _ |a Winney, D.
|b 427
700 1 _ |a Wojtsekhowski, B.
|b 428
700 1 _ |a Wood, M. H.
|b 429
700 1 _ |a Xiao, T.
|b 430
700 1 _ |a Xu, S.-S.
|b 431
700 1 _ |a Ye, Z.
|b 432
700 1 _ |a Yero, C.
|b 433
700 1 _ |a Yuan, C.-P.
|0 P:(DE-H253)PIP1103338
|b 434
700 1 _ |a Yurov, M.
|b 435
700 1 _ |a Zachariou, N.
|b 436
700 1 _ |a Zhang, Z.
|b 437
700 1 _ |a Zhao, Y.
|b 438
700 1 _ |a Zhao, Z. W.
|b 439
700 1 _ |a Zheng, X.
|b 440
700 1 _ |a Zhou, X.
|b 441
700 1 _ |a Ziegler, V.
|b 442
700 1 _ |a Zihlmann, B.
|b 443
773 1 8 |a 10.1140/epja/s10050-024-01282-x
|b Springer Science and Business Media LLC
|d 2024-09-04
|n 9
|p 173
|3 journal-article
|2 Crossref
|t The European Physical Journal A
|v 60
|y 2024
|x 1434-601X
773 _ _ |a 10.1140/epja/s10050-024-01282-x
|g Vol. 60, no. 9, p. 173
|0 PERI:(DE-600)1459066-9
|n 9
|p 173
|t The European physical journal / A
|v 60
|y 2024
|x 1434-601X
856 4 _ |u https://bib-pubdb1.desy.de/record/622276/files/s10050-024-01282-x.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/622276/files/s10050-024-01282-x.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:622276
|p VDB
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 164
|6 P:(DE-H253)PIP1097931
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 353
|6 P:(DE-H253)PIP1098620
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 434
|6 P:(DE-H253)PIP1103338
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-21
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
920 1 _ |0 I:(DE-H253)T-20120731
|k T
|l Theorie-Gruppe
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)T-20120731
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1016/j.ppnp.2022.103985
|1 J Arrington
|9 -- missing cx lookup --
|2 Crossref
|u J. Arrington et al., Physics with CEBAF at 12 GeV and future opportunities. Prog. Part. Nucl. Phys. 127, 103985 (2022). https://doi.org/10.1016/j.ppnp.2022.103985. arXiv:2112.00060
|t Prog. Part. Nucl. Phys.
|v 127
|y 2022
999 C 5 |2 Crossref
|u J. Bulava, et al., Hadron Spectroscopy with Lattice QCD, in: Snowmass 2021, (2022). arXiv:2203.03230
999 C 5 |a 10.1016/j.ppnp.2015.03.001
|9 -- missing cx lookup --
|1 CA Meyer
|p 21 -
|2 Crossref
|u C.A. Meyer, E.S. Swanson, Hybrid Mesons. Prog. Part. Nucl. Phys. 82, 21–58 (2015). https://doi.org/10.1016/j.ppnp.2015.03.001. arXiv:1502.07276
|t Prog. Part. Nucl. Phys.
|v 82
|y 2015
999 C 5 |a 10.1103/PhysRevLett.122.042002
|1 A Rodas
|9 -- missing cx lookup --
|2 Crossref
|u A. Rodas et al., Determination of the pole position of the lightest hybrid meson candidate. Phys. Rev. Lett. 122(4), 042002 (2019). https://doi.org/10.1103/PhysRevLett.122.042002. arXiv:1810.04171
|t Phys. Rev. Lett.
|v 122
|y 2019
999 C 5 |a 10.1103/PhysRevLett.129.192002
|9 -- missing cx lookup --
|2 Crossref
|u M. Ablikim, et al., Observation of an Isoscalar Resonance with Exotic JPC=1-+ Quantum Numbers in $$\text{J}/\psi \rightarrow \gamma \eta \eta $$’, Phys. Rev. Lett. 129 (19) (2022) 192002, [Erratum: Phys.Rev.Lett. 130, 159901 (2023)]. arXiv:2202.00621, https://doi.org/10.1103/PhysRevLett.129.192002
999 C 5 |a 10.1103/RevModPhys.90.015003
|9 -- missing cx lookup --
|2 Crossref
|u S.L. Olsen, T. Skwarnicki, D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence. Rev. Mod. Phys. 90(1), 015003 (2018). https://doi.org/10.1103/RevModPhys.90.015003. arXiv:1708.04012
999 C 5 |a 10.1016/j.ppnp.2016.11.003
|9 -- missing cx lookup --
|1 RF Lebed
|p 143 -
|2 Crossref
|u R.F. Lebed, R.E. Mitchell, E.S. Swanson, Heavy-Quark QCD Exotica. Prog. Part. Nucl. Phys. 93, 143–194 (2017). https://doi.org/10.1016/j.ppnp.2016.11.003. arXiv:1610.04528
|t Prog. Part. Nucl. Phys.
|v 93
|y 2017
999 C 5 |a 10.1088/1674-1137/40/4/042001
|1 RA Briceno
|9 -- missing cx lookup --
|2 Crossref
|u R.A. Briceno et al., Issues and Opportunities in Exotic Hadrons. Chin. Phys. C 40(4), 042001 (2016). https://doi.org/10.1088/1674-1137/40/4/042001. arXiv:1511.06779
|t Chin. Phys. C
|v 40
|y 2016
999 C 5 |a 10.1103/PhysRevLett.110.252001
|1 M Ablikim
|9 -- missing cx lookup --
|2 Crossref
|u M. Ablikim et al., Observation of a Charged Charmoniumlike Structure in $$e^+e^- \rightarrow \pi ^+\pi ^- J/\psi $$ at $$\sqrt{s}$$ =4.26 GeV. Phys. Rev. Lett. 110, 252001 (2013). https://doi.org/10.1103/PhysRevLett.110.252001. arXiv:1303.5949
|t Phys. Rev. Lett.
|v 110
|y 2013
999 C 5 |a 10.1103/PhysRevLett.110.252002
|9 -- missing cx lookup --
|2 Crossref
|u Z. Q. Liu, et al., Study of $$e^+e^- \rightarrow \pi ^+ \pi ^- J/\psi $$ and Observation of a Charged Charmoniumlike State at Belle, Phys. Rev. Lett. 110 (2013) 252002, [Erratum: Phys.Rev.Lett. 111, 019901 (2013)]. arXiv:1304.0121, https://doi.org/10.1103/PhysRevLett.110.252002
999 C 5 |a 10.1103/PhysRevLett.108.122001
|1 A Bondar
|9 -- missing cx lookup --
|2 Crossref
|u A. Bondar et al., Observation of two charged bottomonium-like resonances in Y(5S) decays. Phys. Rev. Lett. 108, 122001 (2012). https://doi.org/10.1103/PhysRevLett.108.122001. arXiv:1110.2251
|t Phys. Rev. Lett.
|v 108
|y 2012
999 C 5 |a 10.1103/PhysRevLett.111.242001
|1 M Ablikim
|9 -- missing cx lookup --
|2 Crossref
|u M. Ablikim et al., Observation of a Charged Charmoniumlike Structure $$Z_c$$(4020) and Search for the $$Z_c$$(3900) in $$e^+e^- \rightarrow \pi ^+\pi ^- h_c$$. Phys. Rev. Lett. 111(24), 242001 (2013). https://doi.org/10.1103/PhysRevLett.111.242001. arXiv:1309.1896
|t Phys. Rev. Lett.
|v 111
|y 2013
999 C 5 |a 10.1016/j.nima.2020.163419
|1 VD Burkert
|9 -- missing cx lookup --
|2 Crossref
|u V.D. Burkert et al., The CLAS12 Spectrometer at Jefferson Laboratory. Nucl. Instrum. Meth. A 959, 163419 (2020). https://doi.org/10.1016/j.nima.2020.163419
|t Nucl. Instrum. Meth. A
|v 959
|y 2020
999 C 5 |a 10.1016/j.nima.2020.164807
|1 S Adhikari
|9 -- missing cx lookup --
|2 Crossref
|u S. Adhikari et al., The GLUEX beamline and detector. Nucl. Instrum. Meth. A 987, 164807 (2021). https://doi.org/10.1016/j.nima.2020.164807. arXiv:2005.14272
|t Nucl. Instrum. Meth. A
|v 987
|y 2021
999 C 5 |a 10.1103/PhysRevD.104.L091102
|9 -- missing cx lookup --
|2 Crossref
|u R. Aaij et al., Observation of excited $$\Omega _c^0$$ baryons in $$\Omega _b^- \rightarrow \Xi _c^+ K^-\pi ^-$$decays. Phys. Rev. D 104(9), L091102 (2021). https://doi.org/10.1103/PhysRevD.104.L091102. arXiv:2107.03419
999 C 5 |a 10.1103/PhysRevLett.112.222002
|1 R Aaij
|9 -- missing cx lookup --
|2 Crossref
|u R. Aaij et al., Observation of the resonant character of the $$Z(4430)^-$$ state. Phys. Rev. Lett. 112(22), 222002 (2014). https://doi.org/10.1103/PhysRevLett.112.222002. arXiv:1404.1903
|t Phys. Rev. Lett.
|v 112
|y 2014
999 C 5 |a 10.1103/PhysRevD.90.112009
|1 K Chilikin
|9 -- missing cx lookup --
|2 Crossref
|u K. Chilikin et al., Observation of a new charged charmoniumlike state in $${\bar{B}}^0 \rightarrow J/\psi K^- \pi ^+$$ decays. Phys. Rev. D 90(11), 112009 (2014). https://doi.org/10.1103/PhysRevD.90.112009. arXiv:1408.6457
|t Phys. Rev. D
|v 90
|y 2014
999 C 5 |a 10.1016/j.physrep.2016.05.004
|9 -- missing cx lookup --
|1 H-X Chen
|p 1 -
|2 Crossref
|u H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, The hidden-charm pentaquark and tetraquark states. Phys. Rept. 639, 1–121 (2016). https://doi.org/10.1016/j.physrep.2016.05.004. arXiv:1601.02092
|t Phys. Rept.
|v 639
|y 2016
999 C 5 |a 10.1016/j.physrep.2020.05.001
|9 -- missing cx lookup --
|2 Crossref
|u N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C.E. Thomas, A. Vairo, C.-Z. Yuan, The $$XYZ$$ states: experimental and theoretical status and perspectives. Phys. Rept. 873, 1–154 (2020). https://doi.org/10.1016/j.physrep.2020.05.001. arXiv:1907.07583
999 C 5 |a 10.1103/RevModPhys.90.015004
|9 -- missing cx lookup --
|2 Crossref
|u F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Hadronic molecules, Rev. Mod. Phys. 90 (1) (2018) 015004, [Erratum: Rev.Mod.Phys. 94, 029901 (2022)]. https://doi.org/10.1103/RevModPhys.90.015004. arXiv:1705.00141
999 C 5 |2 Crossref
|u S. Adhikari, et al., Measurement of the J/$$\psi $$ photoproduction cross section over the full near-threshold kinematic region (4 2023). arXiv:2304.03845
999 C 5 |a 10.1103/PhysRevD.94.034002
|1 AN Hiller Blin
|9 -- missing cx lookup --
|2 Crossref
|u A.N. Hiller Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V.I. Mokeev, A. Pilloni, A.P. Szczepaniak, Studying the $$\text{ P}_c$$(4450) resonance in J/$$\psi $$ photoproduction off protons. Phys. Rev. D 94(3), 034002 (2016). https://doi.org/10.1103/PhysRevD.94.034002. arXiv:1606.08912
|t Phys. Rev. D
|v 94
|y 2016
999 C 5 |a 10.1103/PhysRevD.106.094009
|1 D Winney
|9 -- missing cx lookup --
|2 Crossref
|u D. Winney, A. Pilloni, V. Mathieu, A.N. Hiller Blin, M. Albaladejo, W.A. Smith, A. Szczepaniak, XYZ spectroscopy at electron-hadron facilities. II. Semi-inclusive processes with pion exchange. Phys. Rev. D 106(9), 094009 (2022). https://doi.org/10.1103/PhysRevD.106.094009. arXiv:2209.05882
|t Phys. Rev. D
|v 106
|y 2022
999 C 5 |1 RL Workman
|y 2022
|2 Crossref
|u R.L. Workman et al., Review of Particle Physics. PTEP 2022, 083C01 (2022)
999 C 5 |a 10.1140/epja/i2016-16318-4
|9 -- missing cx lookup --
|1 F-K Guo
|p 318 -
|2 Crossref
|u F.-K. Guo, U.G. Meißner, J. Nieves, Z. Yang, Remarks on the $$P_c$$ structures and triangle singularities. Eur. Phys. J. A 52(10), 318 (2016). https://doi.org/10.1140/epja/i2016-16318-4. arXiv:1605.05113
|t Eur. Phys. J. A
|v 52
|y 2016
999 C 5 |a 10.1103/PhysRevD.94.074039
|1 M Bayar
|9 -- missing cx lookup --
|2 Crossref
|u M. Bayar, F. Aceti, F.-K. Guo, E. Oset, A Discussion on Triangle Singularities in the $$\Lambda _b \rightarrow J/\psi K^{-} p$$ Reaction. Phys. Rev. D 94(7), 074039 (2016). https://doi.org/10.1103/PhysRevD.94.074039. arXiv:1609.04133
|t Phys. Rev. D
|v 94
|y 2016
999 C 5 |a 10.1103/PhysRevD.103.L111503
|1 SX Nakamura
|9 -- missing cx lookup --
|2 Crossref
|u S.X. Nakamura, $$P_c(4312)^+$$, $$P_c(4380)^+$$, and $$P_c(4457)^+$$ as double triangle cusps. Phys. Rev. D 103, 111503 (2021). https://doi.org/10.1103/PhysRevD.103.L111503. arXiv:2103.06817
|t Phys. Rev. D
|v 103
|y 2021
999 C 5 |a 10.1016/j.ppnp.2020.103757
|1 F-K Guo
|9 -- missing cx lookup --
|2 Crossref
|u F.-K. Guo, X.-H. Liu, S. Sakai, Threshold cusps and triangle singularities in hadronic reactions. Prog. Part. Nucl. Phys. 112, 103757 (2020). https://doi.org/10.1016/j.ppnp.2020.103757. arXiv:1912.07030
|t Prog. Part. Nucl. Phys.
|v 112
|y 2020
999 C 5 |a 10.1016/j.physletb.2017.06.030
|9 -- missing cx lookup --
|1 A Pilloni
|p 200 -
|2 Crossref
|u A. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, A.P. Szczepaniak, Amplitude analysis and the nature of the $$\text{ Z}_c$$(3900). Phys. Lett. B 772, 200–209 (2017). https://doi.org/10.1016/j.physletb.2017.06.030. arXiv:1612.06490
|t Phys. Lett. B
|v 772
|y 2017
999 C 5 |a 10.1103/PhysRevLett.91.262001
|1 SK Choi
|9 -- missing cx lookup --
|2 Crossref
|u S.K. Choi et al., Observation of a narrow charmonium-like state in exclusive $$B^\pm \rightarrow K^\pm \pi ^+ \pi ^- J/\psi $$ decays. Phys. Rev. Lett. 91, 262001 (2003). https://doi.org/10.1103/PhysRevLett.91.262001. arXiv:hep-ex/0309032
|t Phys. Rev. Lett.
|v 91
|y 2003
999 C 5 |a 10.1103/PhysRevLett.110.222001
|1 R Aaij
|9 -- missing cx lookup --
|2 Crossref
|u R. Aaij et al., Determination of the X(3872) meson quantum numbers. Phys. Rev. Lett. 110, 222001 (2013). https://doi.org/10.1103/PhysRevLett.110.222001. arXiv:1302.6269
|t Phys. Rev. Lett.
|v 110
|y 2013
999 C 5 |a 10.1016/j.physletb.2018.07.008
|9 -- missing cx lookup --
|1 M Aghasyan
|p 334 -
|2 Crossref
|u M. Aghasyan et al., Search for muoproduction of $$X (3872)$$ at COMPASS and indication of a new state $${\widetilde{X}}(3872)$$. Phys. Lett. B 783, 334–340 (2018). https://doi.org/10.1016/j.physletb.2018.07.008. arXiv:1707.01796
|t Phys. Lett. B
|v 783
|y 2018
999 C 5 |a 10.1093/ptep/ptac097
|9 -- missing cx lookup --
|1 RL Workman
|p 083C01 -
|2 Crossref
|u R.L. Workman et al., Review of Particle Physics. PTEP 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097
|t PTEP
|v 2022
|y 2022
999 C 5 |a 10.1103/PhysRevLett.115.072001
|1 R Aaij
|9 -- missing cx lookup --
|2 Crossref
|u R. Aaij et al., Observation of $$J/\psi p$$ Resonances Consistent with Pentaquark States in $$\Lambda _b^0 \rightarrow J/\psi K^- p$$ Decays. Phys. Rev. Lett. 115, 072001 (2015). https://doi.org/10.1103/PhysRevLett.115.072001. arXiv:1507.03414
|t Phys. Rev. Lett.
|v 115
|y 2015
999 C 5 |a 10.1103/PhysRevLett.122.222001
|1 R Aaij
|9 -- missing cx lookup --
|2 Crossref
|u R. Aaij et al., Observation of a narrow pentaquark state, $$P_c(4312)^+$$, and of two-peak structure of the $$P_c(4450)^+$$. Phys. Rev. Lett. 122(22), 222001 (2019). https://doi.org/10.1103/PhysRevLett.122.222001. arXiv:1904.03947
|t Phys. Rev. Lett.
|v 122
|y 2019
999 C 5 |2 Crossref
|u D. Winney, et al., Dynamics in near-threshold $$J/\psi $$ photoproduction (5 2023). arXiv:2305.01449
999 C 5 |a 10.1007/JHEP11(2017)033
|9 -- missing cx lookup --
|1 GKC Cheung
|p 033 -
|2 Crossref
|u G.K.C. Cheung, C.E. Thomas, J.J. Dudek, R.G. Edwards, Tetraquark operators in lattice QCD and exotic flavour states in the charm sector. JHEP 11, 033 (2017). https://doi.org/10.1007/JHEP11(2017)033. arXiv:1709.01417
|t JHEP
|v 11
|y 2017
999 C 5 |2 Crossref
|u Y. Lyu, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, J. Meng, Doubly charmed tetraquark $$T^+_{cc}$$ from Lattice QCD near Physical Point (2 2023). arXiv:2302.04505
999 C 5 |a 10.1103/PhysRevLett.129.032002
|1 M Padmanath
|9 -- missing cx lookup --
|2 Crossref
|u M. Padmanath, S. Prelovsek, Signature of a Doubly Charm Tetraquark Pole in DD* Scattering on the Lattice. Phys. Rev. Lett. 129(3), 032002 (2022). https://doi.org/10.1103/PhysRevLett.129.032002. arXiv:2202.10110
|t Phys. Rev. Lett.
|v 129
|y 2022
999 C 5 |a 10.1103/PhysRevD.99.054505
|1 A Francis
|9 -- missing cx lookup --
|2 Crossref
|u A. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Evidence for charm-bottom tetraquarks and the mass dependence of heavy-light tetraquark states from lattice QCD. Phys. Rev. D 99(5), 054505 (2019). https://doi.org/10.1103/PhysRevD.99.054505. arXiv:1810.10550
|t Phys. Rev. D
|v 99
|y 2019
999 C 5 |a 10.1103/PhysRevD.65.014013
|1 J Pumplin
|9 -- missing cx lookup --
|2 Crossref
|u J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk, H.L. Lai, W.K. Tung, Uncertainties of predictions from parton distribution functions. 2. The Hessian method. Phys. Rev. D 65, 014013 (2001). https://doi.org/10.1103/PhysRevD.65.014013. arXiv:hep-ph/0101032
|t Phys. Rev. D
|v 65
|y 2001
999 C 5 |1 PM Nadolsky
|y 2001
|2 Crossref
|u P.M. Nadolsky, Z. Sullivan, PDF Uncertainties in WH Production at Tevatron. eConf C010630, P510 (2001). arXiv:hep-ph/0110378
999 C 5 |a 10.1103/PhysRevD.78.013004
|1 PM Nadolsky
|9 -- missing cx lookup --
|2 Crossref
|u P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, C.P. Yuan, Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). https://doi.org/10.1103/PhysRevD.78.013004. arXiv:0802.0007
|t Phys. Rev. D
|v 78
|y 2008
999 C 5 |a 10.1103/PhysRevLett.106.252002
|1 W-C Chang
|9 -- missing cx lookup --
|2 Crossref
|u W.-C. Chang, J.-C. Peng, Flavor Asymmetry of the Nucleon Sea and the Five-Quark Components of the Nucleons. Phys. Rev. Lett. 106, 252002 (2011). https://doi.org/10.1103/PhysRevLett.106.252002. arXiv:1102.5631
|t Phys. Rev. Lett.
|v 106
|y 2011
999 C 5 |a 10.1016/0370-2693(80)90364-0
|9 -- missing cx lookup --
|1 SJ Brodsky
|p 451 -
|2 Crossref
|u S.J. Brodsky, P. Hoyer, C. Peterson, N. Sakai, The Intrinsic Charm of the Proton. Phys. Lett. B 93, 451–455 (1980). https://doi.org/10.1016/0370-2693(80)90364-0
|t Phys. Lett. B
|v 93
|y 1980
999 C 5 |a 10.1038/s41586-021-03282-z 10.1038/s41586-022-04707-z
|9 -- missing cx lookup --
|2 Crossref
|u J. Dove, et al., Publisher Correction: The asymmetry of antimatter in the proton [https://doi.org/10.1038/s41586-021-03282-z], Nature 590 (7847) (2021) 561–565. arXiv:2103.04024, https://doi.org/10.1038/s41586-022-04707-z
999 C 5 |a 10.1103/PhysRevD.64.052002
|1 RS Towell
|9 -- missing cx lookup --
|2 Crossref
|u R.S. Towell et al., Improved measurement of the dbar/ubar asymmetry in the nucleon sea. Phys. Rev. D 64, 052002 (2001). https://doi.org/10.1103/PhysRevD.64.052002
|t Phys. Rev. D
|v 64
|y 2001
999 C 5 |a 10.1103/PhysRevLett.81.5519
|9 -- missing cx lookup --
|1 K Ackerstaff
|p 5519 -
|2 Crossref
|u K. Ackerstaff et al., The Flavor asymmetry of the light quark sea from semiinclusive deep inelastic scattering. Phys. Rev. Lett. 81, 5519–5523 (1998). https://doi.org/10.1103/PhysRevLett.81.5519. arXiv:hep-ex/9807013
|t Phys. Rev. Lett.
|v 81
|y 1998
999 C 5 |a 10.22323/1.247.0005
|9 -- missing cx lookup --
|2 Crossref
|u A. M. Cooper-Sarkar, HERA Collider Results, PoS DIS2015 (2015) 005https://doi.org/10.22323/1.247.0005. arXiv:1507.03849
999 C 5 |a 10.1007/BF01571875
|9 -- missing cx lookup --
|1 AO Bazarko
|p 189 -
|2 Crossref
|u A.O. Bazarko et al., Determination of the strange quark content of the nucleon from a next-to-leading order QCD analysis of neutrino charm production. Z. Phys. C 65, 189–198 (1995). https://doi.org/10.1007/BF01571875. arXiv:hep-ex/9406007
|t Z. Phys. C
|v 65
|y 1995
999 C 5 |a 10.1103/PhysRevLett.99.192001
|1 D Mason
|9 -- missing cx lookup --
|2 Crossref
|u D. Mason et al., Measurement of the Nucleon Strange-Antistrange Asymmetry at Next-to-Leading Order in QCD from NuTeV Dimuon Data. Phys. Rev. Lett. 99, 192001 (2007). https://doi.org/10.1103/PhysRevLett.99.192001
|t Phys. Rev. Lett.
|v 99
|y 2007
999 C 5 |a 10.1088/1367-2630/13/9/093002
|1 A Kayis-Topaksu
|9 -- missing cx lookup --
|2 Crossref
|u A. Kayis-Topaksu et al., Measurement of charm production in neutrino charged-current interactions. New J. Phys. 13, 093002 (2011). https://doi.org/10.1088/1367-2630/13/9/093002. arXiv:1107.0613
|t New J. Phys.
|v 13
|y 2011
999 C 5 |a 10.1016/j.nuclphysb.2013.08.021
|9 -- missing cx lookup --
|1 O Samoylov
|p 339 -
|2 Crossref
|u O. Samoylov et al., A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment. Nucl. Phys. B 876, 339–375 (2013). https://doi.org/10.1016/j.nuclphysb.2013.08.021. arXiv:1308.4750
|t Nucl. Phys. B
|v 876
|y 2013
999 C 5 |a 10.1103/PhysRevC.96.032201
|1 N Kalantarians
|9 -- missing cx lookup --
|2 Crossref
|u N. Kalantarians, C. Keppel, M.E. Christy, Comparison of the Structure Function F2 as Measured by Charged Lepton and Neutrino Scattering from Iron Targets. Phys. Rev. C 96(3), 032201 (2017). https://doi.org/10.1103/PhysRevC.96.032201. arXiv:1706.02002
|t Phys. Rev. C
|v 96
|y 2017
999 C 5 |a 10.1393/ncr/i2009-10048-0
|9 -- missing cx lookup --
|1 A Accardi
|p 439 -
|2 Crossref
|u A. Accardi, F. Arleo, W.K. Brooks, D. D’Enterria, V. Muccifora, Parton Propagation and Fragmentation in QCD Matter. Riv. Nuovo Cim. 32(9–10), 439–554 (2009). https://doi.org/10.1393/ncr/i2009-10048-0. arXiv:0907.3534
|t Riv. Nuovo Cim.
|v 32
|y 2009
999 C 5 |a 10.1016/j.ppnp.2010.09.001
|9 -- missing cx lookup --
|1 A Majumder
|p 41 -
|2 Crossref
|u A. Majumder, M. Van Leeuwen, The Theory and Phenomenology of Perturbative QCD Based Jet Quenching. Prog. Part. Nucl. Phys. 66, 41–92 (2011). https://doi.org/10.1016/j.ppnp.2010.09.001. arXiv:1002.2206
|t Prog. Part. Nucl. Phys.
|v 66
|y 2011
999 C 5 |a 10.1103/PhysRevLett.109.012001
|1 G Aad
|9 -- missing cx lookup --
|2 Crossref
|u G. Aad et al., Determination of the strange quark density of the proton from ATLAS measurements of the $$W \rightarrow \ell \nu $$ and $$Z \rightarrow \ell \ell $$ cross sections. Phys. Rev. Lett. 109, 012001 (2012). https://doi.org/10.1103/PhysRevLett.109.012001. arXiv:1203.4051
|t Phys. Rev. Lett.
|v 109
|y 2012
999 C 5 |a 10.1140/epjc/s10052-017-4911-9
|9 -- missing cx lookup --
|1 M Aaboud
|p 367 -
|2 Crossref
|u M. Aaboud et al., Precision measurement and interpretation of inclusive $$W^+$$, $$W^-$$ and $$Z/\gamma ^*$$ production cross sections with the ATLAS detector. Eur. Phys. J. C 77(6), 367 (2017). https://doi.org/10.1140/epjc/s10052-017-4911-9. arXiv:1612.03016
|t Eur. Phys. J. C
|v 77
|y 2017
999 C 5 |a 10.1103/PhysRevLett.80.3715
|9 -- missing cx lookup --
|1 EA Hawker
|p 3715 -
|2 Crossref
|u E.A. Hawker et al., Measurement of the light anti-quark flavor asymmetry in the nucleon sea. Phys. Rev. Lett. 80, 3715–3718 (1998). https://doi.org/10.1103/PhysRevLett.80.3715. arXiv:hep-ex/9803011
|t Phys. Rev. Lett.
|v 80
|y 1998
999 C 5 |a 10.1103/PhysRevD.64.052002
|1 RS Towell
|9 -- missing cx lookup --
|2 Crossref
|u R.S. Towell et al., Improved measurement of the anti-d / anti-u asymmetry in the nucleon sea. Phys. Rev. D 64, 052002 (2001). https://doi.org/10.1103/PhysRevD.64.052002. arXiv:hep-ex/0103030
|t Phys. Rev. D
|v 64
|y 2001
999 C 5 |a 10.1016/j.physletb.2009.04.033
|9 -- missing cx lookup --
|1 S Alekhin
|p 433 -
|2 Crossref
|u S. Alekhin, S.A. Kulagin, R. Petti, Determination of Strange Sea Distributions from Neutrino-Nucleon Deep Inelastic Scattering. Phys. Lett. B 675, 433–440 (2009). https://doi.org/10.1016/j.physletb.2009.04.033. arXiv:0812.4448
|t Phys. Lett. B
|v 675
|y 2009
999 C 5 |a 10.1103/PhysRevD.91.094002
|1 S Alekhin
|9 -- missing cx lookup --
|2 Crossref
|u S. Alekhin, J. Blumlein, L. Caminada, K. Lipka, K. Lohwasser, S. Moch, R. Petti, R. Placakyte, Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data. Phys. Rev. D 91(9), 094002 (2015). https://doi.org/10.1103/PhysRevD.91.094002. arXiv:1404.6469
|t Phys. Rev. D
|v 91
|y 2015
999 C 5 |a 10.1016/j.physletb.2017.12.024
|9 -- missing cx lookup --
|1 S Alekhin
|p 134 -
|2 Crossref
|u S. Alekhin, J. Blümlein, S. Moch, Strange sea determination from collider data. Phys. Lett. B 777, 134–140 (2018). https://doi.org/10.1016/j.physletb.2017.12.024. arXiv:1708.01067
|t Phys. Lett. B
|v 777
|y 2018
999 C 5 |a 10.1103/PhysRevD.96.014011
|1 S Alekhin
|9 -- missing cx lookup --
|2 Crossref
|u S. Alekhin, J. Blümlein, S. Moch, R. Placakyte, Parton distribution functions, $$\alpha _s$$, and heavy-quark masses for LHC Run II. Phys. Rev. D 96(1), 014011 (2017). https://doi.org/10.1103/PhysRevD.96.014011. arXiv:1701.05838
|t Phys. Rev. D
|v 96
|y 2017
999 C 5 |a 10.1103/PhysRevD.98.014027
|1 AM Cooper-Sarkar
|9 -- missing cx lookup --
|2 Crossref
|u A.M. Cooper-Sarkar, K. Wichmann, QCD analysis of the ATLAS and CMS $$W^{\pm }$$ and $$Z$$ cross-section measurements and implications for the strange sea density. Phys. Rev. D 98(1), 014027 (2018). https://doi.org/10.1103/PhysRevD.98.014027. arXiv:1803.00968
|t Phys. Rev. D
|v 98
|y 2018
999 C 5 |a 10.1016/j.physletb.2008.07.090
|9 -- missing cx lookup --
|1 A Airapetian
|p 446 -
|2 Crossref
|u A. Airapetian et al., Measurement of Parton Distributions of Strange Quarks in the Nucleon from Charged-Kaon Production in Deep-Inelastic Scattering on the Deuteron. Phys. Lett. B 666, 446–450 (2008). https://doi.org/10.1016/j.physletb.2008.07.090. arXiv:0803.2993
|t Phys. Lett. B
|v 666
|y 2008
999 C 5 |a 10.1103/PhysRevD.89.097101
|1 A Airapetian
|9 -- missing cx lookup --
|2 Crossref
|u A. Airapetian et al., Reevaluation of the parton distribution of strange quarks in the nucleon. Phys. Rev. D 89(9), 097101 (2014). https://doi.org/10.1103/PhysRevD.89.097101. arXiv:1312.7028
|t Phys. Rev. D
|v 89
|y 2014
999 C 5 |a 10.1103/PhysRevD.82.114018
|1 E Leader
|9 -- missing cx lookup --
|2 Crossref
|u E. Leader, A.V. Sidorov, D.B. Stamenov, Determination of Polarized PDFs from a QCD Analysis of Inclusive and Semi-inclusive Deep Inelastic Scattering Data. Phys. Rev. D 82, 114018 (2010). https://doi.org/10.1103/PhysRevD.82.114018. arXiv:1010.0574
|t Phys. Rev. D
|v 82
|y 2010
999 C 5 |a 10.1103/PhysRevD.84.014002
|1 E Leader
|9 -- missing cx lookup --
|2 Crossref
|u E. Leader, A.V. Sidorov, D.B. Stamenov, A Possible Resolution of the Strange Quark Polarization Puzzle? Phys. Rev. D 84, 014002 (2011). https://doi.org/10.1103/PhysRevD.84.014002. arXiv:1103.5979
|t Phys. Rev. D
|v 84
|y 2011
999 C 5 |a 10.1103/PhysRevD.94.114004
|1 N Sato
|9 -- missing cx lookup --
|2 Crossref
|u N. Sato, J.J. Ethier, W. Melnitchouk, M. Hirai, S. Kumano, A. Accardi, First Monte Carlo analysis of fragmentation functions from single-inclusive $$e^+ e^-$$ annihilation. Phys. Rev. D 94(11), 114004 (2016). https://doi.org/10.1103/PhysRevD.94.114004. arXiv:1609.00899
|t Phys. Rev. D
|v 94
|y 2016
999 C 5 |a 10.1103/PhysRevD.92.098102
|1 EC Aschenauer
|9 -- missing cx lookup --
|2 Crossref
|u E.C. Aschenauer, H.E. Jackson, S. Joosten, K. Rith, G. Schnell, C. Van Hulse, Reply to Comment on Reevaluation of the parton distribution of strange quarks in the nucleon. Phys. Rev. D 92(9), 098102 (2015). https://doi.org/10.1103/PhysRevD.92.098102. arXiv:1508.04020
|t Phys. Rev. D
|v 92
|y 2015
999 C 5 |a 10.1103/PhysRevD.96.094020
|1 I Borsa
|9 -- missing cx lookup --
|2 Crossref
|u I. Borsa, R. Sassot, M. Stratmann, Probing the Sea Quark Content of the Proton with One-Particle-Inclusive Processes. Phys. Rev. D 96(9), 094020 (2017). https://doi.org/10.1103/PhysRevD.96.094020
|t Phys. Rev. D
|v 96
|y 2017
999 C 5 |a 10.1103/PhysRevD.101.074020
|1 N Sato
|9 -- missing cx lookup --
|2 Crossref
|u N. Sato, C. Andres, J.J. Ethier, W. Melnitchouk, Strange quark suppression from a simultaneous Monte Carlo analysis of parton distributions and fragmentation functions. Phys. Rev. D 101(7), 074020 (2020). https://doi.org/10.1103/PhysRevD.101.074020. arXiv:1905.03788
|t Phys. Rev. D
|v 101
|y 2020
999 C 5 |a 10.1103/PhysRevD.84.074008
|9 -- missing cx lookup --
|2 Crossref
|u L. T. Brady, A. Accardi, T. J. Hobbs, W. Melnitchouk, Next-to leading order analysis of target mass corrections to structure functions and asymmetries, Phys. Rev. D 84 (2011) 074008, [Erratum: Phys.Rev.D 85, 039902 (2012)]. arXiv:1108.4734, https://doi.org/10.1103/PhysRevD.84.074008
999 C 5 |a 10.1103/PhysRevD.77.114023
|1 T Hobbs
|9 -- missing cx lookup --
|2 Crossref
|u T. Hobbs, W. Melnitchouk, Finite-Q**2 corrections to parity-violating DIS. Phys. Rev. D 77, 114023 (2008). https://doi.org/10.1103/PhysRevD.77.114023. arXiv:0801.4791
|t Phys. Rev. D
|v 77
|y 2008
999 C 5 |a 10.1103/PhysRevD.107.076018
|9 -- missing cx lookup --
|2 Crossref
|u T.-J. Hou, H.-W. Lin, M. Yan, C. P. Yuan, Impact of Lattice Strangeness Asymmetry Data in the CTEQ-TEA Global Analysis (11 2022). arXiv:2211.11064
999 C 5 |a 10.1103/PhysRevD.104.094033
|1 T Liu
|9 -- missing cx lookup --
|2 Crossref
|u T. Liu, W. Melnitchouk, J.-W. Qiu, N. Sato, Factorized approach to radiative corrections for inelastic lepton-hadron collisions. Phys. Rev. D 104(9), 094033 (2021). https://doi.org/10.1103/PhysRevD.104.094033. arXiv:2008.02895
|t Phys. Rev. D
|v 104
|y 2021
999 C 5 |a 10.1103/PhysRevD.106.L031502
|9 -- missing cx lookup --
|1 C Cocuzza
|p L031502 -
|2 Crossref
|u C. Cocuzza, W. Melnitchouk, A. Metz, N. Sato, Polarized antimatter in the proton from a global QCD analysis. Phys. Rev. D 106(3), L031502 (2022). https://doi.org/10.1103/PhysRevD.106.L031502. arXiv:2202.03372
|t Phys. Rev. D
|v 106
|y 2022
999 C 5 |a 10.1140/epjc/s10052-016-4469-y
|9 -- missing cx lookup --
|1 RD Ball
|p 647 -
|2 Crossref
|u R.D. Ball, V. Bertone, M. Bonvini, S. Carrazza, S. Forte, A. Guffanti, N.P. Hartland, J. Rojo, L. Rottoli, A Determination of the Charm Content of the Proton. Eur. Phys. J. C 76(11), 647 (2016). https://doi.org/10.1140/epjc/s10052-016-4469-y. arXiv:1605.06515
|t Eur. Phys. J. C
|v 76
|y 2016
999 C 5 |a 10.1038/s41586-022-04998-2
|9 -- missing cx lookup --
|1 RD Ball
|p 483 -
|2 Crossref
|u R.D. Ball, A. Candido, J. Cruz-Martinez, S. Forte, T. Giani, F. Hekhorn, K. Kudashkin, G. Magni, J. Rojo, Evidence for intrinsic charm quarks in the proton. Nature 608(7923), 483–487 (2022). https://doi.org/10.1038/s41586-022-04998-2. arXiv:2208.08372
|t Nature
|v 608
|y 2022
999 C 5 |a 10.1140/epjc/s10052-022-10328-7
|9 -- missing cx lookup --
|1 RD Ball
|p 428 -
|2 Crossref
|u R.D. Ball et al., The path to proton structure at 1% accuracy. Eur. Phys. J. C 82(5), 428 (2022). https://doi.org/10.1140/epjc/s10052-022-10328-7. arXiv:2109.02653
|t Eur. Phys. J. C
|v 82
|y 2022
999 C 5 |a 10.1103/PhysRevD.89.074008
|1 TJ Hobbs
|9 -- missing cx lookup --
|2 Crossref
|u T.J. Hobbs, J.T. Londergan, W. Melnitchouk, Phenomenology of nonperturbative charm in the nucleon. Phys. Rev. D 89(7), 074008 (2014). https://doi.org/10.1103/PhysRevD.89.074008. arXiv:1311.1578
|t Phys. Rev. D
|v 89
|y 2014
999 C 5 |a 10.1016/j.physletb.2023.137975
|9 -- missing cx lookup --
|2 Crossref
|u M. Guzzi, T. J. Hobbs, K. Xie, J. Huston, P. Nadolsky, C. P. Yuan, The persistent nonperturbative charm enigma (11 2022). arXiv:2211.01387
999 C 5 |a 10.1103/PhysRevD.104.054002
|1 M Kelsey
|9 -- missing cx lookup --
|2 Crossref
|u M. Kelsey, R. Cruz-Torres, X. Dong, Y. Ji, S. Radhakrishnan, E. Sichtermann, Constraints on gluon distribution functions in the nucleon and nucleus from open charm hadron production at the Electron-Ion Collider. Phys. Rev. D 104(5), 054002 (2021). https://doi.org/10.1103/PhysRevD.104.054002. arXiv:2107.05632
|t Phys. Rev. D
|v 104
|y 2021
999 C 5 |a 10.1016/j.nuclphysa.2022.122447
|1 R Abdul Khalek
|9 -- missing cx lookup --
|2 Crossref
|u R. Abdul Khalek et al., Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report. Nucl. Phys. A 1026, 122447 (2022). https://doi.org/10.1016/j.nuclphysa.2022.122447. arXiv:2103.05419
|t Nucl. Phys. A
|v 1026
|y 2022
999 C 5 |a 10.1103/PhysRevD.105.L011503
|9 -- missing cx lookup --
|1 J Gao
|p L011503 -
|2 Crossref
|u J. Gao, T.J. Hobbs, P.M. Nadolsky, C. Sun, C.P. Yuan, General heavy-flavor mass scheme for charged-current DIS at NNLO and beyond. Phys. Rev. D 105(1), L011503 (2022). https://doi.org/10.1103/PhysRevD.105.L011503. arXiv:2107.00460
|t Phys. Rev. D
|v 105
|y 2022
999 C 5 |a 10.1007/JHEP11(2015)009
|9 -- missing cx lookup --
|1 R Gauld
|p 009 -
|2 Crossref
|u R. Gauld, J. Rojo, L. Rottoli, J. Talbert, Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy. JHEP 11, 009 (2015). https://doi.org/10.1007/JHEP11(2015)009. arXiv:1506.08025
|t JHEP
|v 11
|y 2015
999 C 5 |a 10.1016/j.physrep.2018.03.002
|9 -- missing cx lookup --
|1 J Gao
|p 1 -
|2 Crossref
|u J. Gao, L. Harland-Lang, J. Rojo, The Structure of the Proton in the LHC Precision Era. Phys. Rept. 742, 1–121 (2018). https://doi.org/10.1016/j.physrep.2018.03.002. arXiv:1709.04922
|t Phys. Rept.
|v 742
|y 2018
999 C 5 |a 10.1088/1361-6471/ac7216
|1 RD Ball
|9 -- missing cx lookup --
|2 Crossref
|u R.D. Ball et al., The PDF4LHC21 combination of global PDF fits for the LHC Run III. J. Phys. G 49(8), 080501 (2022). https://doi.org/10.1088/1361-6471/ac7216. arXiv:2203.05506
|t J. Phys. G
|v 49
|y 2022
999 C 5 |a 10.1103/PhysRevD.103.014013
|1 T-J Hou
|9 -- missing cx lookup --
|2 Crossref
|u T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Phys. Rev. D 103(1), 014013 (2021). https://doi.org/10.1103/PhysRevD.103.014013. arXiv:1912.10053
|t Phys. Rev. D
|v 103
|y 2021
999 C 5 |a 10.1140/epjc/s10052-021-09057-0
|9 -- missing cx lookup --
|1 S Bailey
|p 341 -
|2 Crossref
|u S. Bailey, T. Cridge, L.A. Harland-Lang, A.D. Martin, R.S. Thorne, Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs. Eur. Phys. J. C 81(4), 341 (2021). https://doi.org/10.1140/epjc/s10052-021-09057-0. arXiv:2012.04684
|t Eur. Phys. J. C
|v 81
|y 2021
999 C 5 |a 10.1103/PhysRevD.16.2219
|9 -- missing cx lookup --
|1 JC Collins
|p 2219 -
|2 Crossref
|u J.C. Collins, D.E. Soper, Angular Distribution of Dileptons in High-Energy Hadron Collisions. Phys. Rev. D 16, 2219 (1977). https://doi.org/10.1103/PhysRevD.16.2219
|t Phys. Rev. D
|v 16
|y 1977
999 C 5 |a 10.1140/epjc/s10052-022-11133-y
|9 -- missing cx lookup --
|1 RD Ball
|p 1160 -
|2 Crossref
|u R.D. Ball, A. Candido, S. Forte, F. Hekhorn, E.R. Nocera, J. Rojo, C. Schwan, Parton distributions and new physics searches: the Drell-Yan forward-backward asymmetry as a case study. Eur. Phys. J. C 82(12), 1160 (2022). https://doi.org/10.1140/epjc/s10052-022-11133-y. arXiv:2209.08115
|t Eur. Phys. J. C
|v 82
|y 2022
999 C 5 |a 10.1007/JHEP07(2021)122
|9 -- missing cx lookup --
|1 A Greljo
|p 122 -
|2 Crossref
|u A. Greljo, S. Iranipour, Z. Kassabov, M. Madigan, J. Moore, J. Rojo, M. Ubiali, C. Voisey, Parton distributions in the SMEFT from high-energy Drell-Yan tails. JHEP 07, 122 (2021). https://doi.org/10.1007/JHEP07(2021)122. arXiv:2104.02723
|t JHEP
|v 07
|y 2021
999 C 5 |a 10.1007/JHEP05(2023)003
|9 -- missing cx lookup --
|1 J Gao
|p 003 -
|2 Crossref
|u J. Gao, M. Gao, T.J. Hobbs, D. Liu, X. Shen, Simultaneous CTEQ-TEA extraction of PDFs and SMEFT parameters from jet and $$ t{\overline{t}} $$ data. JHEP 05, 003 (2023). https://doi.org/10.1007/JHEP05(2023)003. arXiv:2211.01094
|t JHEP
|v 05
|y 2023
999 C 5 |a 10.2172/1865357
|9 -- missing cx lookup --
|2 Crossref
|u L. A. Ruso, et al., Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators (3 2022). arXiv:2203.09030
999 C 5 |a 10.1103/PhysRevLett.124.082003
|1 T Liu
|9 -- missing cx lookup --
|2 Crossref
|u T. Liu, R.S. Sufian, G.F. de Téramond, H.G. Dosch, S.J. Brodsky, A. Deur, Unified description of polarized and unpolarized quark distributions in the proton. Phys. Rev. Lett. 124, 082003 (2020). https://doi.org/10.1103/PhysRevLett.124.082003
|t Phys. Rev. Lett.
|v 124
|y 2020
999 C 5 |a 10.1016/j.ppnp.2016.04.003
|9 -- missing cx lookup --
|1 A Deur
|p 1 -
|2 Crossref
|u A. Deur, S.J. Brodsky, G.F. de Teramond, The QCD Running Coupling. Nucl. Phys. 90, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.04.003. arXiv:1604.08082
|t Nucl. Phys.
|v 90
|y 2016
999 C 5 |a 10.1093/ptep/ptaa104
|9 -- missing cx lookup --
|1 PA Zyla
|p 083C01 -
|2 Crossref
|u P.A. Zyla et al., Review of Particle Physics. PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104
|t PTEP
|v 2020
|y 2020
999 C 5 |2 Crossref
|u D. d’Enterria, et al., The strong coupling constant: State of the art and the decade ahead (3 2022). arXiv:2203.08271
999 C 5 |a 10.1103/PhysRev.148.1467
|9 -- missing cx lookup --
|1 JD Bjorken
|p 1467 -
|2 Crossref
|u J.D. Bjorken, Applications of the Chiral U(6) x (6) Algebra of Current Densities. Phys. Rev. 148, 1467–1478 (1966). https://doi.org/10.1103/PhysRev.148.1467
|t Phys. Rev.
|v 148
|y 1966
999 C 5 |2 Crossref
|u S. Kuhn, et al., The Longitudinal Spin Structure of the Nucleon Jlab experiment E12-06-109 ”. (2006). https://misportal.jlab.org/mis/physics/experiments/viewProposal.cfm?paperId=688
999 C 5 |a 10.1103/PhysRevD.50.R5469
|9 -- missing cx lookup --
|1 AL Kataev
|p R5469 -
|2 Crossref
|u A.L. Kataev, The Ellis-Jaffe sum rule: The Estimates of the next to next-to-leading order QCD corrections. Phys. Rev. D 50, R5469–R5472 (1994). https://doi.org/10.1103/PhysRevD.50.R5469. arXiv:hep-ph/9408248
|t Phys. Rev. D
|v 50
|y 1994
999 C 5 |2 Crossref
|u A. L. Kataev, private communication in S. Incerti, Ph. D dissertation “Mesure de la fonction de structure polarisée $$g_1^n$$ du neutron par l’experience e154 au slac”. (Jan. 1998). https://www.slac.stanford.edu/exp/e154/incerti_thesis.pdf
999 C 5 |a 10.1103/PhysRevD.90.012009
|1 A Deur
|9 -- missing cx lookup --
|2 Crossref
|u A. Deur, Y. Prok, V. Burkert, D. Crabb, F.X. Girod, K.A. Griffioen, N. Guler, S.E. Kuhn, N. Kvaltine, High precision determination of the $$Q^2$$ evolution of the Bjorken Sum. Phys. Rev. D 90(1), 012009 (2014). https://doi.org/10.1103/PhysRevD.90.012009. arXiv:1405.7854
|t Phys. Rev. D
|v 90
|y 2014
999 C 5 |a 10.1103/PhysRevLett.97.042001
|1 BA Kniehl
|9 -- missing cx lookup --
|2 Crossref
|u B.A. Kniehl, A.V. Kotikov, A.I. Onishchenko, O.L. Veretin, Strong-coupling constant with flavor thresholds at five loops in the anti-MS scheme. Phys. Rev. Lett. 97, 042001 (2006). https://doi.org/10.1103/PhysRevLett.97.042001. arXiv:hep-ph/0607202
|t Phys. Rev. Lett.
|v 97
|y 2006
999 C 5 |a 10.3390/particles5020015
|9 -- missing cx lookup --
|1 A Deur
|p 171 -
|2 Crossref
|u A. Deur, V. Burkert, J.P. Chen, W. Korsch, Experimental determination of the QCD effective charge $$\alpha _{g_1}(Q)$$. Particles 5, 171 (2022). https://doi.org/10.3390/particles5020015. arXiv:2205.01169
|t Particles
|v 5
|y 2022
999 C 5 |a 10.1103/PhysRevD.81.096010
|1 SJ Brodsky
|9 -- missing cx lookup --
|2 Crossref
|u S.J. Brodsky, G.F. de Teramond, A. Deur, Nonperturbative QCD Coupling and its $$\beta $$-function from Light-Front Holography. Phys. Rev. D 81, 096010 (2010). https://doi.org/10.1103/PhysRevD.81.096010. arXiv:1002.3948
|t Phys. Rev. D
|v 81
|y 2010
999 C 5 |a 10.1088/1674-1137/44/8/083102
|1 Z-F Cui
|9 -- missing cx lookup --
|2 Crossref
|u Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, S. Zafeiropoulos, Effective charge from lattice QCD. Chin. Phys. C 44(8), 083102 (2020). https://doi.org/10.1088/1674-1137/44/8/083102. arXiv:1912.08232
|t Chin. Phys. C
|v 44
|y 2020
999 C 5 |a 10.1103/PhysRevD.108.L091504
|9 -- missing cx lookup --
|2 Crossref
|u P. C. Barry, L. Gamberg, W. Melnitchouk, E. Moffat, D. Pitonyak, A. Prokudin, N. Sato, Tomography of pions and protons via transverse momentum dependent distributions (2 2023). arXiv:2302.01192
999 C 5 |a 10.1103/PhysRevD.103.114014
|1 NY Cao
|9 -- missing cx lookup --
|2 Crossref
|u N.Y. Cao, P.C. Barry, N. Sato, W. Melnitchouk, Towards the three-dimensional parton structure of the pion: Integrating transverse momentum data into global QCD analysis. Phys. Rev. D 103(11), 114014 (2021). https://doi.org/10.1103/PhysRevD.103.114014. arXiv:2103.02159
|t Phys. Rev. D
|v 103
|y 2021
999 C 5 |2 Crossref
|u C. E. Keppel, et al., C12-15-006 JLab experiment: Measurement of tagged deep inelastic scattering (2015)
999 C 5 |2 Crossref
|u K. Park, et al., C12-15-006A JLab run group: Measurement of kaon structure through tagged deep inelastic scattering (2017)
999 C 5 |a 10.1007/BF01550243
|9 -- missing cx lookup --
|1 B Betev
|p 9 -
|2 Crossref
|u B. Betev et al., Differential Cross-section of High Mass Muon Pairs Produced by a 194-GeV/$$c \pi ^-$$ Beam on a Tungsten Target. Z. Phys. C 28, 9 (1985). https://doi.org/10.1007/BF01550243
|t Z. Phys. C
|v 28
|y 1985
999 C 5 |a 10.1103/PhysRevD.39.92
|9 -- missing cx lookup --
|1 JS Conway
|p 92 -
|2 Crossref
|u J.S. Conway et al., Experimental Study of Muon Pairs Produced by 252-GeV Pions on Tungsten. Phys. Rev. D 39, 92–122 (1989). https://doi.org/10.1103/PhysRevD.39.92
|t Phys. Rev. D
|v 39
|y 1989
999 C 5 |a 10.1140/epjc/s10052-010-1369-4
|9 -- missing cx lookup --
|1 FD Aaron
|p 381 -
|2 Crossref
|u F.D. Aaron et al., Measurement of Leading Neutron Production in Deep-Inelastic Scattering at HERA. Eur. Phys. J. C 68, 381–399 (2010). https://doi.org/10.1140/epjc/s10052-010-1369-4. arXiv:1001.0532
|t Eur. Phys. J. C
|v 68
|y 2010
999 C 5 |a 10.1016/S0550-3213(02)00439-X
|9 -- missing cx lookup --
|1 S Chekanov
|p 3 -
|2 Crossref
|u S. Chekanov et al., Leading neutron production in e+ p collisions at HERA. Nucl. Phys. B 637, 3–56 (2002). https://doi.org/10.1016/S0550-3213(02)00439-X. arXiv:hep-ex/0205076
|t Nucl. Phys. B
|v 637
|y 2002
999 C 5 |a 10.1088/1361-6471/abf5c3
|1 J Arrington
|9 -- missing cx lookup --
|2 Crossref
|u J. Arrington et al., Revealing the Structure of Light Pseudoscalar Mesons at the Electron-Ion Collider. J. Phys. G 48, 075106 (2021)
|t J. Phys. G
|v 48
|y 2021
999 C 5 |a 10.1088/1126-6708/2007/02/093
|9 -- missing cx lookup --
|1 A Bacchetta
|p 093 -
|2 Crossref
|u A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders, M. Schlegel, Semi-inclusive deep inelastic scattering at small transverse momentum. JHEP 02, 093 (2007). https://doi.org/10.1088/1126-6708/2007/02/093. arXiv:hep-ph/0611265
|t JHEP
|v 02
|y 2007
999 C 5 |a 10.1103/PhysRevD.98.114005
|1 J Gonzalez-Hernandez
|9 -- missing cx lookup --
|2 Crossref
|u J. Gonzalez-Hernandez, T. Rogers, N. Sato, B. Wang, Challenges with Large Transverse Momentum in Semi-Inclusive Deeply Inelastic Scattering. Phys. Rev. D 98(11), 114005 (2018). https://doi.org/10.1103/PhysRevD.98.114005. arXiv:1808.04396
|t Phys. Rev. D
|v 98
|y 2018
999 C 5 |a 10.1103/PhysRevD.99.094029
|1 B Wang
|9 -- missing cx lookup --
|2 Crossref
|u B. Wang, J.O. Gonzalez-Hernandez, T.C. Rogers, N. Sato, Large Transverse Momentum in Semi-Inclusive Deeply Inelastic Scattering Beyond Lowest Order. Phys. Rev. D 99(9), 094029 (2019). https://doi.org/10.1103/PhysRevD.99.094029. arXiv:1903.01529
|t Phys. Rev. D
|v 99
|y 2019
999 C 5 |a 10.1016/j.physletb.2017.01.021
|9 -- missing cx lookup --
|1 M Boglione
|p 245 -
|2 Crossref
|u M. Boglione, J. Collins, L. Gamberg, J.O. Gonzalez-Hernandez, T.C. Rogers, N. Sato, Kinematics of Current Region Fragmentation in Semi-Inclusive Deeply Inelastic Scattering. Phys. Lett. B 766, 245–253 (2017). https://doi.org/10.1016/j.physletb.2017.01.021. arXiv:1611.10329
|t Phys. Lett. B
|v 766
|y 2017
999 C 5 |a 10.1103/PhysRevD.94.034014
|1 J Collins
|9 -- missing cx lookup --
|2 Crossref
|u J. Collins, L. Gamberg, A. Prokudin, T.C. Rogers, N. Sato, B. Wang, Relating Transverse Momentum Dependent and Collinear Factorization Theorems in a Generalized Formalism. Phys. Rev. D 94(3), 034014 (2016). https://doi.org/10.1103/PhysRevD.94.034014. arXiv:1605.00671
|t Phys. Rev. D
|v 94
|y 2016
999 C 5 |a 10.1007/JHEP10(2019)122
|9 -- missing cx lookup --
|1 M Boglione
|p 122 -
|2 Crossref
|u M. Boglione, A. Dotson, L. Gamberg, S. Gordon, J. Gonzalez-Hernandez, A. Prokudin, T. Rogers, N. Sato, Mapping the Kinematical Regimes of Semi-Inclusive Deep Inelastic Scattering. JHEP 10, 122 (2019). https://doi.org/10.1007/JHEP10(2019)122. arXiv:1904.12882
|t JHEP
|v 10
|y 2019
999 C 5 |a 10.1103/PhysRevLett.105.262002
|1 H Avakian
|9 -- missing cx lookup --
|2 Crossref
|u H. Avakian et al., Measurement of Single and Double Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target. Phys. Rev. Lett. 105, 262002 (2010). https://doi.org/10.1103/PhysRevLett.105.262002. arXiv:1003.4549
|t Phys. Rev. Lett.
|v 105
|y 2010
999 C 5 |a 10.1016/j.physletb.2018.06.014
|9 -- missing cx lookup --
|1 S Jawalkar
|p 662 -
|2 Crossref
|u S. Jawalkar et al., Semi-Inclusive $$\pi _0$$ target and beam-target asymmetries from 6 GeV electron scattering with CLAS. Phys. Lett. B 782, 662–667 (2018). https://doi.org/10.1016/j.physletb.2018.06.014. arXiv:1709.10054
|t Phys. Lett. B
|v 782
|y 2018
999 C 5 |a 10.1103/PhysRevD.83.094507
|1 BU Musch
|9 -- missing cx lookup --
|2 Crossref
|u B.U. Musch, P. Hagler, J.W. Negele, A. Schafer, Exploring quark transverse momentum distributions with lattice QCD. Phys. Rev. D 83, 094507 (2011). https://doi.org/10.1103/PhysRevD.83.094507. arXiv:1011.1213
|t Phys. Rev. D
|v 83
|y 2011
999 C 5 |a 10.22323/1.352.0265
|9 -- missing cx lookup --
|2 Crossref
|u H. Avakian, Hadronization of quarks and correlated di-hadron production in hard scattering, PoS DIS2019 (2019) 265. https://doi.org/10.22323/1.352.0265
999 C 5 |a 10.1103/PhysRevLett.34.759
|9 -- missing cx lookup --
|1 CJ Bebek
|p 759 -
|2 Crossref
|u C.J. Bebek, C.N. Brown, M. Herzlinger, S.D. Holmes, C.A. Lichtenstein, F.M. Pipkin, S. Raither, L.K. Sisterson, Scaling Behavior of Inclusive Pion Electroproduction. Phys. Rev. Lett. 34, 759 (1975). https://doi.org/10.1103/PhysRevLett.34.759
|t Phys. Rev. Lett.
|v 34
|y 1975
999 C 5 |a 10.1103/PhysRevLett.37.1525
|9 -- missing cx lookup --
|1 CJ Bebek
|p 1525 -
|2 Crossref
|u C.J. Bebek, A. Browman, C.N. Brown, K.M. Hanson, R.V. Kline, D. Larson, F.M. Pipkin, S.W. Raither, A. Silverman, L.K. Sisterson, Charged Pion Electroproduction from Protons Up to Q**2 = 9.5-GeV**2. Phys. Rev. Lett. 37, 1525–1528 (1976). https://doi.org/10.1103/PhysRevLett.37.1525
|t Phys. Rev. Lett.
|v 37
|y 1976
999 C 5 |a 10.1103/PhysRevD.15.3085
|9 -- missing cx lookup --
|1 CJ Bebek
|p 3085 -
|2 Crossref
|u C.J. Bebek, C.N. Brown, M.S. Herzlinger, S.D. Holmes, C.A. Lichtenstein, F.M. Pipkin, S.W. Raither, L.K. Sisterson, Inclusive Charged Pion Electroproduction. Phys. Rev. D 15, 3085 (1977). https://doi.org/10.1103/PhysRevD.15.3085
|t Phys. Rev. D
|v 15
|y 1977
999 C 5 |a 10.1088/1126-6708/2008/08/023
|9 -- missing cx lookup --
|1 A Bacchetta
|p 023 -
|2 Crossref
|u A. Bacchetta, D. Boer, M. Diehl, P.J. Mulders, Matches and mismatches in the descriptions of semi-inclusive processes at low and high transverse momentum. JHEP 08, 023 (2008). https://doi.org/10.1088/1126-6708/2008/08/023. arXiv:0803.0227
|t JHEP
|v 08
|y 2008
999 C 5 |a 10.1103/PhysRevD.71.074006
|1 M Anselmino
|9 -- missing cx lookup --
|2 Crossref
|u M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin, The Role of Cahn and sivers effects in deep inelastic scattering. Phys. Rev. D 71, 074006 (2005). https://doi.org/10.1103/PhysRevD.71.074006. arXiv:hep-ph/0501196
|t Phys. Rev. D
|v 71
|y 2005
999 C 5 |a 10.1007/JHEP10(2022)127
|9 -- missing cx lookup --
|1 A Bacchetta
|p 127 -
|2 Crossref
|u A. Bacchetta, V. Bertone, C. Bissolotti, G. Bozzi, M. Cerutti, F. Piacenza, M. Radici, A. Signori, Unpolarized transverse momentum distributions from a global fit of Drell-Yan and semi-inclusive deep-inelastic scattering data. JHEP 10, 127 (2022). https://doi.org/10.1007/JHEP10(2022)127. arXiv:2206.07598
|t JHEP
|v 10
|y 2022
999 C 5 |a 10.1016/j.nuclphysb.2014.07.019
|9 -- missing cx lookup --
|1 C Adolph
|p 1046 -
|2 Crossref
|u C. Adolph et al., Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons. Nucl. Phys. B 886, 1046–1077 (2014). https://doi.org/10.1016/j.nuclphysb.2014.07.019. arXiv:1401.6284
|t Nucl. Phys. B
|v 886
|y 2014
999 C 5 |a 10.21468/SciPostPhysProc.8.144
|9 -- missing cx lookup --
|1 A Moretti
|p 144 -
|2 Crossref
|u A. Moretti, TMD observables in unpolarised Semi-Inclusive DIS at COMPASS. SciPost Phys. Proc. 8, 144 (2022). https://doi.org/10.21468/SciPostPhysProc.8.144. arXiv:2107.10740
|t SciPost Phys. Proc.
|v 8
|y 2022
999 C 5 |a 10.1103/PhysRevD.87.012010
|1 A Airapetian
|9 -- missing cx lookup --
|2 Crossref
|u A. Airapetian et al., Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons. Phys. Rev. D 87(1), 012010 (2013). https://doi.org/10.1103/PhysRevD.87.012010. arXiv:1204.4161
|t Phys. Rev. D
|v 87
|y 2013
999 C 5 |a 10.1103/PhysRevD.80.032004
|1 M Osipenko
|9 -- missing cx lookup --
|2 Crossref
|u M. Osipenko et al., Measurement of unpolarized semi-inclusive pi+ electroproduction off the proton. Phys. Rev. D 80, 032004 (2009). https://doi.org/10.1103/PhysRevD.80.032004. arXiv:0809.1153
|t Phys. Rev. D
|v 80
|y 2009
999 C 5 |2 Crossref
|u S. Diehl, et al., First multidimensional, high precision measurements of semi-inclusive $$\pi ^+$$ beam single spin asymmetries from the proton over a wide range of kinematics (1 2021). arXiv:2101.03544
999 C 5 |a 10.1016/0550-3213(93)90262-N
|9 -- missing cx lookup --
|1 JC Collins
|p 161 -
|2 Crossref
|u J.C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions. Nucl. Phys. B 396, 161–182 (1993). https://doi.org/10.1016/0550-3213(93)90262-N. arXiv:hep-ph/9208213
|t Nucl. Phys. B
|v 396
|y 1993
999 C 5 |a 10.1103/PhysRevD.97.074010
|1 A Kerbizi
|9 -- missing cx lookup --
|2 Crossref
|u A. Kerbizi, X. Artru, Z. Belghobsi, F. Bradamante, A. Martin, Recursive model for the fragmentation of polarized quarks. Phys. Rev. D 97(7), 074010 (2018). https://doi.org/10.1103/PhysRevD.97.074010. arXiv:1802.00962
|t Phys. Rev. D
|v 97
|y 2018
999 C 5 |a 10.1103/PhysRevD.95.014021
|1 HH Matevosyan
|9 -- missing cx lookup --
|2 Crossref
|u H.H. Matevosyan, A. Kotzinian, A.W. Thomas, Monte Carlo Implementation of Polarized Hadronization. Phys. Rev. D 95(1), 014021 (2017). https://doi.org/10.1103/PhysRevD.95.014021. arXiv:1610.05624
|t Phys. Rev. D
|v 95
|y 2017
999 C 5 |a 10.1016/j.cpc.2021.108234
|1 A Kerbizi
|9 -- missing cx lookup --
|2 Crossref
|u A. Kerbizi, L. Lönnblad, StringSpinner - adding spin to the PYTHIA string fragmentation. Comput. Phys. Commun. 272, 108234 (2022). https://doi.org/10.1016/j.cpc.2021.108234. arXiv:2105.09730
|t Comput. Phys. Commun.
|v 272
|y 2022
999 C 5 |a 10.1016/j.cpc.2015.01.024
|9 -- missing cx lookup --
|1 T Sjöstrand
|p 159 -
|2 Crossref
|u T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). https://doi.org/10.1016/j.cpc.2015.01.024. arXiv:1410.3012
|t Comput. Phys. Commun.
|v 191
|y 2015
999 C 5 |a 10.1103/PhysRevLett.126.152501
|1 TB Hayward
|9 -- missing cx lookup --
|2 Crossref
|u T.B. Hayward et al., Observation of Beam Spin Asymmetries in the Process $$ep\rightarrow {e}^{^{\prime }}{\pi }^{+}{\pi }^{-}X$$ with CLAS12. Phys. Rev. Lett. 126, 152501 (2021). https://doi.org/10.1103/PhysRevLett.126.152501. arXiv:2101.04842
|t Phys. Rev. Lett.
|v 126
|y 2021
999 C 5 |a 10.1103/PhysRevD.104.114038
|1 A Kerbizi
|9 -- missing cx lookup --
|2 Crossref
|u A. Kerbizi, X. Artru, A. Martin, Production of vector mesons in the String+$$ ^3P_0$$ model of polarized quark fragmentation. Phys. Rev. D 104(11), 114038 (2021). https://doi.org/10.1103/PhysRevD.104.114038. arXiv:2109.06124
|t Phys. Rev. D
|v 104
|y 2021
999 C 5 |a 10.1103/PhysRevD.62.114004
|1 A Bacchetta
|9 -- missing cx lookup --
|2 Crossref
|u A. Bacchetta, P.J. Mulders, Deep inelastic leptoproduction of spin-one hadrons. Phys. Rev. D 62, 114004 (2000). https://doi.org/10.1103/PhysRevD.62.114004. arXiv:hep-ph/0007120
|t Phys. Rev. D
|v 62
|y 2000
999 C 5 |2 Crossref
|u T. C. Collaboration, Collins and Sivers transverse-spin asymmetries in inclusive muoproduction of $$\rho ^0$$ mesons, CERN-EP-2022-234 (10 2022). arXiv:2211.00093
999 C 5 |a 10.1016/j.physletb.2015.03.056
|9 -- missing cx lookup --
|1 C Adolph
|p 250 -
|2 Crossref
|u C. Adolph et al., Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons. Phys. Lett. B 744, 250–259 (2015). https://doi.org/10.1016/j.physletb.2015.03.056. arXiv:1408.4405
|t Phys. Lett. B
|v 744
|y 2015
999 C 5 |a 10.1016/0370-2693(94)90292-5
|9 -- missing cx lookup --
|1 L Trentadue
|p 201 -
|2 Crossref
|u L. Trentadue, G. Veneziano, Fracture functions: An Improved description of inclusive hard processes in QCD. Phys. Lett. B 323, 201–211 (1994). https://doi.org/10.1016/0370-2693(94)90292-5
|t Phys. Lett. B
|v 323
|y 1994
999 C 5 |a 10.1016/j.physletb.2011.03.067
|9 -- missing cx lookup --
|1 M Anselmino
|p 108 -
|2 Crossref
|u M. Anselmino, V. Barone, A. Kotzinian, SIDIS in the target fragmentation region: Polarized and transverse momentum dependent fracture functions. Phys. Lett. B 699, 108–118 (2011). https://doi.org/10.1016/j.physletb.2011.03.067. arXiv:1102.4214
|t Phys. Lett. B
|v 699
|y 2011
999 C 5 |a 10.1103/PhysRevLett.130.022501
|1 H Avakian
|9 -- missing cx lookup --
|2 Crossref
|u H. Avakian et al., Observation of Correlations between Spin and Transverse Momenta in Back-to-Back Dihadron Production at CLAS12. Phys. Rev. Lett. 130(2), 022501 (2023). https://doi.org/10.1103/PhysRevLett.130.022501. arXiv:2208.05086
|t Phys. Rev. Lett.
|v 130
|y 2023
999 C 5 |a 10.1007/JHEP01(2013)163
|9 -- missing cx lookup --
|1 P Schweitzer
|p 163 -
|2 Crossref
|u P. Schweitzer, M. Strikman, C. Weiss, Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking. JHEP 01, 163 (2013). https://doi.org/10.1007/JHEP01(2013)163. arXiv:1210.1267
|t JHEP
|v 01
|y 2013
999 C 5 |a 10.1016/j.physletb.2006.05.091
|9 -- missing cx lookup --
|1 M Sargsian
|p 223 -
|2 Crossref
|u M. Sargsian, M. Strikman, Model independent method for determination of the DIS structure of free neutron. Phys. Lett. B 639, 223–231 (2006). https://doi.org/10.1016/j.physletb.2006.05.091. arXiv:hep-ph/0511054
|t Phys. Lett. B
|v 639
|y 2006
999 C 5 |a 10.1103/PhysRevC.102.065204
|1 W Cosyn
|9 -- missing cx lookup --
|2 Crossref
|u W. Cosyn, C. Weiss, Polarized electron-deuteron deep-inelastic scattering with spectator nucleon tagging. Phys. Rev. C 102, 065204 (2020). https://doi.org/10.1103/PhysRevC.102.065204. arXiv:2006.03033
|t Phys. Rev. C
|v 102
|y 2020
999 C 5 |2 Crossref
|u S. Bueltmann, M. Christy, H. Fenker, K. Griffioen, C. Keppel, S. Kuhn, W. Melnitchouk, V. s. Tvaskis, The Structure of the Free Neutron at Large x-Bjorken; http://www.jlab.org/exp_prog/12GEV_EXP/E1206113.html JLab Experiment E1206113 (2006)
999 C 5 |2 Crossref
|u W. Armstrong, et al., Partonic Structure of Light Nuclei (2017). arXiv:1708.00888
999 C 5 |a 10.1103/PhysRevD.54.3154
|9 -- missing cx lookup --
|1 JT Londergan
|p 3154 -
|2 Crossref
|u J.T. Londergan, A. Pang, A.W. Thomas, Probing charge symmetry violating quark distributions in semiinclusive leptoproduction of hadrons. Phys. Rev. D 54, 3154–3161 (1996). https://doi.org/10.1103/PhysRevD.54.3154. arXiv:hep-ph/9604446
|t Phys. Rev. D
|v 54
|y 1996
999 C 5 |a 10.1140/epjc/s2004-01825-2
|9 -- missing cx lookup --
|1 AD Martin
|p 325 -
|2 Crossref
|u A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Uncertainties of predictions from parton distributions. 2. Theoretical errors. Eur. Phys. J. C 35, 325–348 (2004). https://doi.org/10.1140/epjc/s2004-01825-2. arXiv:hep-ph/0308087
|t Eur. Phys. J. C
|v 35
|y 2004
999 C 5 |a 10.1103/PhysRevD.75.114010
|1 D de Florian
|9 -- missing cx lookup --
|2 Crossref
|u D. de Florian, R. Sassot, M. Stratmann, Global analysis of fragmentation functions for pions and kaons and their uncertainties. Phys. Rev. D 75, 114010 (2007). https://doi.org/10.1103/PhysRevD.75.114010. arXiv:hep-ph/0703242
|t Phys. Rev. D
|v 75
|y 2007
999 C 5 |a 10.1007/JHEP06(2020)137
|9 -- missing cx lookup --
|1 I Scimemi
|p 137 -
|2 Crossref
|u I. Scimemi, A. Vladimirov, Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum. JHEP 06, 137 (2020). https://doi.org/10.1007/JHEP06(2020)137. arXiv:1912.06532
|t JHEP
|v 06
|y 2020
999 C 5 |a 10.1007/JHEP10(2022)118
|9 -- missing cx lookup --
|1 M Bury
|p 118 -
|2 Crossref
|u M. Bury, F. Hautmann, S. Leal-Gomez, I. Scimemi, A. Vladimirov, P. Zurita, PDF bias and flavor dependence in TMD distributions. JHEP 10, 118 (2022). https://doi.org/10.1007/JHEP10(2022)118. arXiv:2201.07114
|t JHEP
|v 10
|y 2022
999 C 5 |a 10.1103/PhysRevD.106.L091501
|9 -- missing cx lookup --
|1 A Bermudez Martinez
|p L091501 -
|2 Crossref
|u A. Bermudez Martinez, A. Vladimirov, Determination of the Collins-Soper kernel from cross-sections ratios. Phys. Rev. D 106(9), L091501 (2022). https://doi.org/10.1103/PhysRevD.106.L091501. arXiv:2206.01105
|t Phys. Rev. D
|v 106
|y 2022
999 C 5 |a 10.1007/JHEP02(2015)095
|9 -- missing cx lookup --
|1 M Boglione
|p 095 -
|2 Crossref
|u M. Boglione, J.O. Gonzalez Hernandez, S. Melis, A. Prokudin, A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes. JHEP 02, 095 (2015). https://doi.org/10.1007/JHEP02(2015)095. arXiv:1412.1383
|t JHEP
|v 02
|y 2015
999 C 5 |a 10.1103/PhysRevD.96.094508
|1 B Yoon
|9 -- missing cx lookup --
|2 Crossref
|u B. Yoon, M. Engelhardt, R. Gupta, T. Bhattacharya, J.R. Green, B.U. Musch, J.W. Negele, A.V. Pochinsky, A. Schäfer, S.N. Syritsyn, Nucleon Transverse Momentum-dependent Parton Distributions in Lattice QCD: Renormalization Patterns and Discretization Effects. Phys. Rev. D 96(9), 094508 (2017). https://doi.org/10.1103/PhysRevD.96.094508. arXiv:1706.03406
|t Phys. Rev. D
|v 96
|y 2017
999 C 5 |a 10.1103/PhysRevLett.110.262002
|1 X Ji
|9 -- missing cx lookup --
|2 Crossref
|u X. Ji, Parton Physics on a Euclidean Lattice. Phys. Rev. Lett. 110, 262002 (2013). https://doi.org/10.1103/PhysRevLett.110.262002. arXiv:1305.1539
|t Phys. Rev. Lett.
|v 110
|y 2013
999 C 5 |a 10.1103/RevModPhys.93.035005
|1 X Ji
|9 -- missing cx lookup --
|2 Crossref
|u X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, Y. Zhao, Large-momentum effective theory. Rev. Mod. Phys. 93(3), 035005 (2021). https://doi.org/10.1103/RevModPhys.93.035005. arXiv:2004.03543
|t Rev. Mod. Phys.
|v 93
|y 2021
999 C 5 |a 10.1103/PhysRevD.99.034505
|1 MA Ebert
|9 -- missing cx lookup --
|2 Crossref
|u M.A. Ebert, I.W. Stewart, Y. Zhao, Determining the Nonperturbative Collins-Soper Kernel From Lattice QCD. Phys. Rev. D 99(3), 034505 (2019). https://doi.org/10.1103/PhysRevD.99.034505. arXiv:1811.00026
|t Phys. Rev. D
|v 99
|y 2019
999 C 5 |a 10.1016/j.physletb.2020.135946
|1 X Ji
|9 -- missing cx lookup --
|2 Crossref
|u X. Ji, Y. Liu, Y.-S. Liu, Transverse-momentum-dependent parton distribution functions from large-momentum effective theory. Phys. Lett. B 811, 135946 (2020). https://doi.org/10.1016/j.physletb.2020.135946. arXiv:1911.03840
|t Phys. Lett. B
|v 811
|y 2020
999 C 5 |a 10.1103/PhysRevD.102.014511
|1 P Shanahan
|9 -- missing cx lookup --
|2 Crossref
|u P. Shanahan, M. Wagman, Y. Zhao, Collins-Soper kernel for TMD evolution from lattice QCD. Phys. Rev. D 102(1), 014511 (2020). https://doi.org/10.1103/PhysRevD.102.014511. arXiv:2003.06063
|t Phys. Rev. D
|v 102
|y 2020
999 C 5 |a 10.22323/1.396.0477
|9 -- missing cx lookup --
|1 Q.-A. Zhang
|p 192001 -
|2 Crossref
|u Q..-A.. Zhang et al., Lattice-QCD Calculations of TMD Soft Function Through Large-Momentum Effective Theory. Phys. Rev. Lett. 125(19), 192001 (2020). https://doi.org/10.22323/1.396.0477. arXiv:2005.14572
|t Phys. Rev. Lett.
|v 125
|y 2020
999 C 5 |a 10.1007/JHEP08(2021)004
|9 -- missing cx lookup --
|1 M Schlemmer
|p 004 -
|2 Crossref
|u M. Schlemmer, A. Vladimirov, C. Zimmermann, M. Engelhardt, A. Schäfer, Determination of the Collins-Soper Kernel from Lattice QCD. JHEP 08, 004 (2021). https://doi.org/10.1007/JHEP08(2021)004. arXiv:2103.16991
|t JHEP
|v 08
|y 2021
999 C 5 |a 10.1103/PhysRevD.106.034509
|1 M-H Chu
|9 -- missing cx lookup --
|2 Crossref
|u M.-H. Chu et al., Nonperturbative determination of the Collins-Soper kernel from quasitransverse-momentum-dependent wave functions. Phys. Rev. D 106(3), 034509 (2022). https://doi.org/10.1103/PhysRevD.106.034509. arXiv:2204.00200
|t Phys. Rev. D
|v 106
|y 2022
999 C 5 |a 10.1103/PhysRevD.108.074519
|9 -- missing cx lookup --
|2 Crossref
|u H.-T. Shu, M. Schlemmer, T. Sizmann, A. Vladimirov, L. Walter, M. Engelhardt, A. Schäfer, Y.-B. Yang, Universality of the Collins-Soper kernel in lattice calculations (2 2023). arXiv:2302.06502
999 C 5 |2 Crossref
|u J.-C. He, M.-H. Chu, J. Hua, X. Ji, A. Schäfer, Y. Su, W. Wang, Y. Yang, J.-H. Zhang, Q.-A. Zhang, Unpolarized Transverse-Momentum-Dependent Parton Distributions of the Nucleon from Lattice QCD (11 2022). arXiv:2211.02340
999 C 5 |a 10.1103/PhysRevD.105.074022
|1 Y Zhou
|9 -- missing cx lookup --
|2 Crossref
|u Y. Zhou, N. Sato, W. Melnitchouk, How well do we know the gluon polarization in the proton? Phys. Rev. D 105(7), 074022 (2022). https://doi.org/10.1103/PhysRevD.105.074022. arXiv:2201.02075
|t Phys. Rev. D
|v 105
|y 2022
999 C 5 |a 10.1103/PhysRevC.100.035205
|1 M Alberg
|9 -- missing cx lookup --
|2 Crossref
|u M. Alberg, G.A. Miller, Chiral Light Front Perturbation Theory and the Flavor Dependence of the Light-Quark Nucleon Sea. Phys. Rev. C 100(3), 035205 (2019). https://doi.org/10.1103/PhysRevC.100.035205. arXiv:1712.05814
|t Phys. Rev. C
|v 100
|y 2019
999 C 5 |a 10.1103/PhysRevLett.66.2712
|9 -- missing cx lookup --
|1 P Amaudruz
|p 2712 -
|2 Crossref
|u P. Amaudruz et al., The Gottfried sum from the ratio F2(n) / F2(p). Phys. Rev. Lett. 66, 2712–2715 (1991). https://doi.org/10.1103/PhysRevLett.66.2712
|t Phys. Rev. Lett.
|v 66
|y 1991
999 C 5 |a 10.1016/S0146-6410(01)00155-7
|9 -- missing cx lookup --
|1 GT Garvey
|p 203 -
|2 Crossref
|u G.T. Garvey, J.-C. Peng, Flavor asymmetry of light quarks in the nucleon sea. Prog. Part. Nucl. Phys. 47, 203–243 (2001). https://doi.org/10.1016/S0146-6410(01)00155-7. arXiv:nucl-ex/0109010
|t Prog. Part. Nucl. Phys.
|v 47
|y 2001
999 C 5 |a 10.7566/JPSCP.13.020051
|1 K Nagai
|9 -- missing cx lookup --
|2 Crossref
|u K. Nagai, Measurement of Antiquark Flavor Asymmetry in the Proton by the Drell-Yan Experiment SeaQuest at Fermilab. JPS Conf. Proc. 13, 020051 (2017). https://doi.org/10.7566/JPSCP.13.020051
|t JPS Conf. Proc.
|v 13
|y 2017
999 C 5 |a 10.1103/RevModPhys.85.655
|9 -- missing cx lookup --
|1 CA Aidala
|p 655 -
|2 Crossref
|u C.A. Aidala, S.D. Bass, D. Hasch, G.K. Mallot, The Spin Structure of the Nucleon. Rev. Mod. Phys. 85, 655–691 (2013). https://doi.org/10.1103/RevModPhys.85.655. arXiv:1209.2803
|t Rev. Mod. Phys.
|v 85
|y 2013
999 C 5 |a 10.1103/PhysRevLett.115.092002
|1 L Adamczyk
|9 -- missing cx lookup --
|2 Crossref
|u L. Adamczyk et al., Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $$\sqrt{s}=200$$ GeV. Phys. Rev. Lett. 115(9), 092002 (2015). https://doi.org/10.1103/PhysRevLett.115.092002. arXiv:1405.5134
|t Phys. Rev. Lett.
|v 115
|y 2015
999 C 5 |a 10.1103/PhysRevD.100.052005
|1 J Adam
|9 -- missing cx lookup --
|2 Crossref
|u J. Adam et al., Longitudinal double-spin asymmetry for inclusive jet and dijet production in pp collisions at $$\sqrt{s} = 510$$ GeV. Phys. Rev. D 100(5), 052005 (2019). https://doi.org/10.1103/PhysRevD.100.052005. arXiv:1906.02740
|t Phys. Rev. D
|v 100
|y 2019
999 C 5 |a 10.1103/PhysRevD.103.L091103
|9 -- missing cx lookup --
|1 MS Abdallah
|p L091103 -
|2 Crossref
|u M.S. Abdallah et al., Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $$\sqrt{s}=200$$ GeV. Phys. Rev. D 103(9), L091103 (2021). https://doi.org/10.1103/PhysRevD.103.L091103. arXiv:2103.05571
|t Phys. Rev. D
|v 103
|y 2021
999 C 5 |a 10.1103/PhysRevD.105.092011
|1 MS Abdallah
|9 -- missing cx lookup --
|2 Crossref
|u M.S. Abdallah et al., Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $$\sqrt{s}=510$$ GeV. Phys. Rev. D 105(9), 092011 (2022). https://doi.org/10.1103/PhysRevD.105.092011. arXiv:2110.11020
|t Phys. Rev. D
|v 105
|y 2022
999 C 5 |a 10.1103/PhysRevD.84.012006
|1 A Adare
|9 -- missing cx lookup --
|2 Crossref
|u A. Adare et al., Event Structure and Double Helicity Asymmetry in Jet Production from Polarized $$p+p$$ Collisions at $$\sqrt{s} = 200$$ GeV. Phys. Rev. D 84, 012006 (2011). https://doi.org/10.1103/PhysRevD.84.012006. arXiv:1009.4921
|t Phys. Rev. D
|v 84
|y 2011
999 C 5 |a 10.1016/j.physletb.2010.01.008
|9 -- missing cx lookup --
|1 SD Bass
|p 216 -
|2 Crossref
|u S.D. Bass, A.W. Thomas, The Nucleon’s octet axial-charge g(A)**(8) with chiral corrections. Phys. Lett. B 684, 216–220 (2010). https://doi.org/10.1016/j.physletb.2010.01.008. arXiv:0912.1765
|t Phys. Lett. B
|v 684
|y 2010
999 C 5 |a 10.1103/PhysRevLett.119.132001
|1 JJ Ethier
|9 -- missing cx lookup --
|2 Crossref
|u J.J. Ethier, N. Sato, W. Melnitchouk, First simultaneous extraction of spin-dependent parton distributions and fragmentation functions from a global QCD analysis. Phys. Rev. Lett. 119(13), 132001 (2017). https://doi.org/10.1103/PhysRevLett.119.132001. arXiv:1705.05889
|t Phys. Rev. Lett.
|v 119
|y 2017
999 C 5 |a 10.1007/JHEP11(2020)129
|9 -- missing cx lookup --
|1 A Candido
|p 129 -
|2 Crossref
|u A. Candido, S. Forte, F. Hekhorn, Can $$ \overline{\rm MS } $$ parton distributions be negative? JHEP 11, 129 (2020). https://doi.org/10.1007/JHEP11(2020)129. arXiv:2006.07377
|t JHEP
|v 11
|y 2020
999 C 5 |a 10.1103/PhysRevD.105.076010
|1 J Collins
|9 -- missing cx lookup --
|2 Crossref
|u J. Collins, T.C. Rogers, N. Sato, Positivity and renormalization of parton densities. Phys. Rev. D 105(7), 076010 (2022). https://doi.org/10.1103/PhysRevD.105.076010. arXiv:2111.01170
|t Phys. Rev. D
|v 105
|y 2022
999 C 5 |a 10.1103/PhysRevLett.92.121803
|1 B Jager
|9 -- missing cx lookup --
|2 Crossref
|u B. Jager, M. Stratmann, S. Kretzer, W. Vogelsang, QCD hard scattering and the sign of the spin asymmetry A**pi(LL). Phys. Rev. Lett. 92, 121803 (2004). https://doi.org/10.1103/PhysRevLett.92.121803. arXiv:hep-ph/0310197
|t Phys. Rev. Lett.
|v 92
|y 2004
999 C 5 |a 10.1103/PhysRevD.93.011501
|1 A Adare
|9 -- missing cx lookup --
|2 Crossref
|u A. Adare et al., Inclusive cross section and double-helicity asymmetry for $$\pi ^{0}$$ production at midrapidity in $$p+p$$ collisions at $$\sqrt{s}=510$$ GeV. Phys. Rev. D 93(1), 011501 (2016). https://doi.org/10.1103/PhysRevD.93.011501. arXiv:1510.02317
|t Phys. Rev. D
|v 93
|y 2016
999 C 5 |a 10.1103/PhysRevD.91.032001
|1 A Adare
|9 -- missing cx lookup --
|2 Crossref
|u A. Adare et al., Charged-pion cross sections and double-helicity asymmetries in polarized p+p collisions at $$\sqrt{s}$$=200 GeV. Phys. Rev. D 91(3), 032001 (2015). https://doi.org/10.1103/PhysRevD.91.032001. arXiv:1409.1907
|t Phys. Rev. D
|v 91
|y 2015
999 C 5 |a 10.1103/PhysRevD.102.032001
|1 UA Acharya
|9 -- missing cx lookup --
|2 Crossref
|u U.A. Acharya et al., Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized $$p+p$$ collisions at $$\sqrt{s}$$ = 510 GeV. Phys. Rev. D 102(3), 032001 (2020). https://doi.org/10.1103/PhysRevD.102.032001. arXiv:2004.02681
|t Phys. Rev. D
|v 102
|y 2020
999 C 5 |a 10.1103/PhysRevD.107.034033
|1 RM Whitehill
|9 -- missing cx lookup --
|2 Crossref
|u R.M. Whitehill, Y. Zhou, N. Sato, W. Melnitchouk, Accessing gluon polarization with high-PT hadrons in SIDIS. Phys. Rev. D 107(3), 034033 (2023). https://doi.org/10.1103/PhysRevD.107.034033. arXiv:2210.12295
|t Phys. Rev. D
|v 107
|y 2023
999 C 5 |a 10.1142/S0217751X18300259
|9 -- missing cx lookup --
|1 MV Polyakov
|p 1830025 -
|2 Crossref
|u M.V. Polyakov, P. Schweitzer, Forces inside hadrons: pressure, surface tension, mechanical radius, and all that. Int. J. Mod. Phys. A 33(26), 1830025 (2018). https://doi.org/10.1142/S0217751X18300259. arXiv:1805.06596
|t Int. J. Mod. Phys. A
|v 33
|y 2018
999 C 5 |a 10.1140/epjc/s10052-019-6572-3
|9 -- missing cx lookup --
|1 C Lorcé
|p 89 -
|2 Crossref
|u C. Lorcé, H. Moutarde, A.P. Trawiński, Revisiting the mechanical properties of the nucleon. Eur. Phys. J. C 79(1), 89 (2019). https://doi.org/10.1140/epjc/s10052-019-6572-3. arXiv:1810.09837
|t Eur. Phys. J. C
|v 79
|y 2019
999 C 5 |a 10.1140/epjc/s10052-018-5561-2
|9 -- missing cx lookup --
|2 Crossref
|u C. Lorcé, On the hadron mass decomposition. Eur. Phys. J. C 78(2), 120 (2018). https://doi.org/10.1140/epjc/s10052-018-5561-2. arXiv:1706.05853
999 C 5 |a 10.1007/JHEP12(2018)008
|9 -- missing cx lookup --
|1 Y Hatta
|p 008 -
|2 Crossref
|u Y. Hatta, A. Rajan, K. Tanaka, Quark and gluon contributions to the QCD trace anomaly. JHEP 12, 008 (2018). https://doi.org/10.1007/JHEP12(2018)008. arXiv:1810.05116
|t JHEP
|v 12
|y 2018
999 C 5 |a 10.1103/PhysRevD.102.114042
|1 A Metz
|9 -- missing cx lookup --
|2 Crossref
|u A. Metz, B. Pasquini, S. Rodini, Revisiting the proton mass decomposition. Phys. Rev. D 102(11), 114042 (2021). https://doi.org/10.1103/PhysRevD.102.114042. arXiv:2006.11171
|t Phys. Rev. D
|v 102
|y 2021
999 C 5 |a 10.1016/S0146-6410(01)00158-2
|9 -- missing cx lookup --
|1 K Goeke
|p 401 -
|2 Crossref
|u K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Hard exclusive reactions and the structure of hadrons. Prog. Part. Nucl. Phys. 47, 401–515 (2001). https://doi.org/10.1016/S0146-6410(01)00158-2. arXiv:hep-ph/0106012
|t Prog. Part. Nucl. Phys.
|v 47
|y 2001
999 C 5 |a 10.1016/j.physrep.2003.08.002
|9 -- missing cx lookup --
|1 M Diehl
|p 41 -
|2 Crossref
|u M. Diehl, Generalized parton distributions. Phys. Rept. 388, 41–277 (2003). https://doi.org/10.1016/j.physrep.2003.08.002. arXiv:hep-ph/0307382
|t Generalized parton distributions. Phys. Rept.
|v 388
|y 2003
999 C 5 |a 10.1016/j.physrep.2005.06.002
|9 -- missing cx lookup --
|1 AV Belitsky
|p 1 -
|2 Crossref
|u A.V. Belitsky, A.V. Radyushkin, Unraveling hadron structure with generalized parton distributions. Phys. Rept. 418, 1–387 (2005). https://doi.org/10.1016/j.physrep.2005.06.002. arXiv:hep-ph/0504030
|t Phys. Rept.
|v 418
|y 2005
999 C 5 |a 10.1103/PhysRevLett.74.1071
|9 -- missing cx lookup --
|1 X-D Ji
|p 1071 -
|2 Crossref
|u X.-D. Ji, A QCD analysis of the mass structure of the nucleon. Phys. Rev. Lett. 74, 1071–1074 (1995). https://doi.org/10.1103/PhysRevLett.74.1071. arXiv:hep-ph/9410274
|t Phys. Rev. Lett.
|v 74
|y 1995
999 C 5 |a 10.1103/PhysRevD.52.271
|9 -- missing cx lookup --
|1 X-D Ji
|p 271 -
|2 Crossref
|u X.-D. Ji, Breakup of hadron masses and energy - momentum tensor of QCD. Phys. Rev. D 52, 271–281 (1995). arXiv:hep-ph/9502213
|t Phys. Rev. D
|v 52
|y 1995
999 C 5 |a 10.1007/s100529900047
|9 -- missing cx lookup --
|1 D Kharzeev
|p 459 -
|2 Crossref
|u D. Kharzeev, H. Satz, A. Syamtomov, G. Zinovjev, $$J/\psi $$ photoproduction and the gluon structure of the nucleon. Eur. Phys. J. C 9, 459–462 (1999). https://doi.org/10.1007/s100529900047. arXiv:hep-ph/9901375
|t Eur. Phys. J. C
|v 9
|y 1999
999 C 5 |a 10.1103/PhysRevD.94.074001
|1 O Gryniuk
|9 -- missing cx lookup --
|2 Crossref
|u O. Gryniuk, M. Vanderhaeghen, Accessing the real part of the forward $$J/\psi $$-p scattering amplitude from $$J/\psi $$ photoproduction on protons around threshold. Phys. Rev. D 94(7), 074001 (2016). https://doi.org/10.1103/PhysRevD.94.074001. arXiv:1608.08205
|t Phys. Rev. D
|v 94
|y 2016
999 C 5 |a 10.1103/PhysRevD.101.086003
|1 KA Mamo
|9 -- missing cx lookup --
|2 Crossref
|u K.A. Mamo, I. Zahed, Diffractive photoproduction of $$J/\psi $$ and $$\Upsilon $$ using holographic QCD: gravitational form factors and GPD of gluons in the proton. Phys. Rev. D 101(8), 086003 (2020). https://doi.org/10.1103/PhysRevD.101.086003. arXiv:1910.04707
|t Phys. Rev. D
|v 101
|y 2020
999 C 5 |a 10.1103/PhysRevD.106.086004
|1 KA Mamo
|9 -- missing cx lookup --
|2 Crossref
|u K.A. Mamo, I. Zahed, J/$$\psi $$ near threshold in holographic QCD: A and D gravitational form factors. Phys. Rev. D 106(8), 086004 (2022). https://doi.org/10.1103/PhysRevD.106.086004. arXiv:2204.08857
|t Phys. Rev. D
|v 106
|y 2022
999 C 5 |a 10.1103/PhysRevD.103.096010
|1 Y Guo
|9 -- missing cx lookup --
|2 Crossref
|u Y. Guo, X. Ji, Y. Liu, QCD Analysis of Near-Threshold Photon-Proton Production of Heavy Quarkonium. Phys. Rev. D 103(9), 096010 (2021). https://doi.org/10.1103/PhysRevD.103.096010. arXiv:2103.11506
|t Phys. Rev. D
|v 103
|y 2021
999 C 5 |a 10.1038/s41586-023-05730-4
|9 -- missing cx lookup --
|1 B Duran
|p 813 -
|2 Crossref
|u B. Duran et al., Determining the gluonic gravitational form factors of the proton. Nature 615(7954), 813–816 (2023). https://doi.org/10.1038/s41586-023-05730-4. arXiv:2207.05212
|t Nature
|v 615
|y 2023
999 C 5 |a 10.1103/PhysRevD.105.054509
|1 DA Pefkou
|9 -- missing cx lookup --
|2 Crossref
|u D.A. Pefkou, D.C. Hackett, P.E. Shanahan, Gluon gravitational structure of hadrons of different spin. Phys. Rev. D 105(5), 054509 (2022). https://doi.org/10.1103/PhysRevD.105.054509. arXiv:2107.10368
|t Phys. Rev. D
|v 105
|y 2022
999 C 5 |2 Crossref
|u J. P. Chen, H. Gao, T. K. Hemmick, Z. E. Meziani, P. A. Souder, A White Paper on SoLID (Solenoidal Large Intensity Device) (9 2014). arXiv:1409.7741
999 C 5 |a 10.1103/PhysRevD.60.114017
|1 MV Polyakov
|9 -- missing cx lookup --
|2 Crossref
|u M.V. Polyakov, C. Weiss, Skewed and double distributions in pion and nucleon. Phys. Rev. D 60, 114017 (1999). https://doi.org/10.1103/PhysRevD.60.114017. arXiv:hep-ph/9902451
|t Phys. Rev. D
|v 60
|y 1999
999 C 5 |a 10.1016/S0370-2693(03)00036-4
|9 -- missing cx lookup --
|1 MV Polyakov
|p 57 -
|2 Crossref
|u M.V. Polyakov, Generalized parton distributions and strong forces inside nucleons and nuclei. Phys. Lett. B 555, 57–62 (2003). https://doi.org/10.1016/S0370-2693(03)00036-4. arXiv:hep-ph/0210165
|t Phys. Lett. B
|v 555
|y 2003
999 C 5 |a 10.1038/s41586-018-0060-z
|9 -- missing cx lookup --
|1 VD Burkert
|p 396 -
|2 Crossref
|u V.D. Burkert, L. Elouadrhiri, F.X. Girod, The pressure distribution inside the proton. Nature 557(7705), 396–399 (2018). https://doi.org/10.1038/s41586-018-0060-z
|t Nature
|v 557
|y 2018
999 C 5 |a 10.1103/RevModPhys.95.041002
|9 -- missing cx lookup --
|2 Crossref
|u V. D. Burkert, L. Elouadrhiri, F. X. Girod, C. Lorcé, P. Schweitzer, P. E. Shanahan, Colloquium: Gravitational Form Factors of the Proton (3 2023). arXiv:2303.08347
999 C 5 |a 10.1038/s41586-019-1211-6
|9 -- missing cx lookup --
|1 K Kumerički
|p E1 -
|2 Crossref
|u K. Kumerički, Measurability of pressure inside the proton. Nature 570(7759), E1–E2 (2019). https://doi.org/10.1038/s41586-019-1211-6
|t Nature
|v 570
|y 2019
999 C 5 |a 10.1140/epjc/s10052-019-7117-5
|9 -- missing cx lookup --
|1 H Moutarde
|p 614 -
|2 Crossref
|u H. Moutarde, P. Sznajder, J. Wagner, Unbiased determination of DVCS Compton Form Factors. Eur. Phys. J. C 79(7), 614 (2019). https://doi.org/10.1140/epjc/s10052-019-7117-5. arXiv:1905.02089
|t Eur. Phys. J. C
|v 79
|y 2019
999 C 5 |2 Crossref
|u G. Christiaens, et al., First CLAS12 measurement of DVCS beam-spin asymmetries in the extended valence region (11 2022). arXiv:2211.11274
999 C 5 |a 10.1103/PhysRevLett.78.610
|9 -- missing cx lookup --
|1 X-D Ji
|p 610 -
|2 Crossref
|u X.-D. Ji, Gauge-Invariant Decomposition of Nucleon Spin. Phys. Rev. Lett. 78, 610–613 (1997). https://doi.org/10.1103/PhysRevLett.78.610. arXiv:hep-ph/9603249
|t Phys. Rev. Lett.
|v 78
|y 1997
999 C 5 |a 10.1103/PhysRevD.56.5524
|9 -- missing cx lookup --
|1 A Radyushkin
|p 5524 -
|2 Crossref
|u A. Radyushkin, Nonforward parton distributions. Phys. Rev. D 56, 5524–5557 (1997). https://doi.org/10.1103/PhysRevD.56.5524. arXiv:hep-ph/9704207
|t Phys. Rev. D
|v 56
|y 1997
999 C 5 |a 10.1140/epja/i2016-16157-3
|9 -- missing cx lookup --
|1 K Kumericki
|p 157 -
|2 Crossref
|u K. Kumericki, S. Liuti, H. Moutarde, GPD phenomenology and DVCS fitting: Entering the high-precision era. Eur. Phys. J. A 52(6), 157 (2016). https://doi.org/10.1140/epja/i2016-16157-3. arXiv:1602.02763
|t Eur. Phys. J. A
|v 52
|y 2016
999 C 5 |a 10.1103/PhysRevD.15.1141
|9 -- missing cx lookup --
|1 DE Soper
|p 1141 -
|2 Crossref
|u D.E. Soper, The Parton Model and the Bethe-Salpeter Wave Function. Phys. Rev. D 15, 1141 (1977). https://doi.org/10.1103/PhysRevD.15.1141
|t Phys. Rev. D
|v 15
|y 1977
999 C 5 |a 10.1103/PhysRevD.62.071503
|9 -- missing cx lookup --
|2 Crossref
|u M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for zeta —$${>}$$ 0, Phys. Rev. D 62 (2000) 071503, [Erratum: Phys.Rev.D 66, 119903 (2002)]. arXiv:hep-ph/0005108, https://doi.org/10.1103/PhysRevD.62.071503
999 C 5 |a 10.1016/S0550-3213(02)00144-X
|9 -- missing cx lookup --
|1 AV Belitsky
|p 323 -
|2 Crossref
|u A.V. Belitsky, D. Mueller, A. Kirchner, Theory of deeply virtual Compton scattering on the nucleon. Nucl. Phys. B 629, 323–392 (2002). https://doi.org/10.1016/S0550-3213(02)00144-X. arXiv:hep-ph/0112108
|t Nucl. Phys. B
|v 629
|y 2002
999 C 5 |a 10.1103/PhysRevD.82.074010
|1 AV Belitsky
|9 -- missing cx lookup --
|2 Crossref
|u A.V. Belitsky, D. Mueller, Exclusive electroproduction revisited: treating kinematical effects. Phys. Rev. D 82, 074010 (2010). https://doi.org/10.1103/PhysRevD.82.074010. arXiv:1005.5209
|t Phys. Rev. D
|v 82
|y 2010
999 C 5 |a 10.1016/j.physletb.2022.137051
|1 B Kriesten
|9 -- missing cx lookup --
|2 Crossref
|u B. Kriesten, S. Liuti, A. Meyer, Novel Rosenbluth extraction framework for Compton form factors from deeply virtual exclusive experiments. Phys. Lett. B 829, 137051 (2022). https://doi.org/10.1016/j.physletb.2022.137051. arXiv:2011.04484
|t Phys. Lett. B
|v 829
|y 2022
999 C 5 |a 10.1103/PhysRevD.105.016015
|1 B Kriesten
|9 -- missing cx lookup --
|2 Crossref
|u B. Kriesten, S. Liuti, Theory of deeply virtual Compton scattering off the unpolarized proton. Phys. Rev. D 105(1), 016015 (2022). https://doi.org/10.1103/PhysRevD.105.016015. arXiv:2004.08890
|t Phys. Rev. D
|v 105
|y 2022
999 C 5 |a 10.1103/PhysRevD.101.054021
|1 B Kriesten
|9 -- missing cx lookup --
|2 Crossref
|u B. Kriesten, S. Liuti, L. Calero-Diaz, D. Keller, A. Meyer, G.R. Goldstein, J. Osvaldo Gonzalez-Hernandez, Extraction of generalized parton distribution observables from deeply virtual electron proton scattering experiments. Phys. Rev. D 101(5), 054021 (2020). https://doi.org/10.1103/PhysRevD.101.054021. arXiv:1903.05742
|t Phys. Rev. D
|v 101
|y 2020
999 C 5 |a 10.1103/PhysRevD.105.056022
|1 B Kriesten
|9 -- missing cx lookup --
|2 Crossref
|u B. Kriesten, P. Velie, E. Yeats, F.Y. Lopez, S. Liuti, Parametrization of quark and gluon generalized parton distributions in a dynamical framework. Phys. Rev. D 105(5), 056022 (2022). https://doi.org/10.1103/PhysRevD.105.056022. arXiv:2101.01826
|t Phys. Rev. D
|v 105
|y 2022
999 C 5 |a 10.1142/9789811214950_0005
|9 -- missing cx lookup --
|2 Crossref
|u K. Kumerički, Extraction of DVCS form factors with uncertainties, in: Probing Nucleons and Nuclei in High Energy Collisions: Dedicated to the Physics of the Electron Ion Collider, 2020, pp. 25–29. https://doi.org/10.1142/9789811214950_0005arXiv:1910.04806
999 C 5 |a 10.1103/PhysRevD.104.016001
|1 J Grigsby
|9 -- missing cx lookup --
|2 Crossref
|u J. Grigsby, B. Kriesten, J. Hoskins, S. Liuti, P. Alonzi, M. Burkardt, Deep learning analysis of deeply virtual exclusive photoproduction. Phys. Rev. D 104(1), 016001 (2021). https://doi.org/10.1103/PhysRevD.104.016001. arXiv:2012.04801
|t Phys. Rev. D
|v 104
|y 2021
999 C 5 |a 10.1103/PhysRevLett.125.232005
|1 M Čuić
|9 -- missing cx lookup --
|2 Crossref
|u M. Čuić, K. Kumerički, A. Schäfer, Separation of Quark Flavors Using Deeply Virtual Compton Scattering Data. Phys. Rev. Lett. 125(23), 232005 (2020). https://doi.org/10.1103/PhysRevLett.125.232005. arXiv:2007.00029
|t Phys. Rev. Lett.
|v 125
|y 2020
999 C 5 |2 Crossref
|u M. Almaeen, J. Grigsby, J. Hoskins, B. Kriesten, Y. Li, H.-W. Lin, S. Liuti, Benchmarks for a Global Extraction of Information from Deeply Virtual Exclusive Scattering (7 2022). arXiv:2207.10766
999 C 5 |a 10.1103/PhysRevLett.90.012001
|1 M Guidal
|9 -- missing cx lookup --
|2 Crossref
|u M. Guidal, M. Vanderhaeghen, Double deeply virtual Compton scattering off the nucleon. Phys. Rev. Lett. 90, 012001 (2003). https://doi.org/10.1103/PhysRevLett.90.012001. arXiv:hep-ph/0208275
|t Phys. Rev. Lett.
|v 90
|y 2003
999 C 5 |a 10.1103/PhysRevLett.90.022001
|1 AV Belitsky
|9 -- missing cx lookup --
|2 Crossref
|u A.V. Belitsky, D. Mueller, Exclusive electroproduction of lepton pairs as a probe of nucleon structure. Phys. Rev. Lett. 90, 022001 (2003). https://doi.org/10.1103/PhysRevLett.90.022001. arXiv:hep-ph/0210313
|t Phys. Rev. Lett.
|v 90
|y 2003
999 C 5 |a 10.1140/epja/s10050-021-00551-3
|9 -- missing cx lookup --
|1 S Zhao
|p 240 -
|2 Crossref
|u S. Zhao, A. Camsonne, D. Marchand, M. Mazouz, N. Sparveris, S. Stepanyan, E. Voutier, Z.W. Zhao, Double deeply virtual Compton scattering with positron beams at SoLID. Eur. Phys. J. A 57(7), 240 (2021). https://doi.org/10.1140/epja/s10050-021-00551-3. arXiv:2103.12773
|t Eur. Phys. J. A
|v 57
|y 2021
999 C 5 |a 10.1016/S0370-2693(02)02856-3
|9 -- missing cx lookup --
|1 DY Ivanov
|p 65 -
|2 Crossref
|u D.Y. Ivanov, B. Pire, L. Szymanowski, O.V. Teryaev, Probing chiral odd GPD’s in diffractive electroproduction of two vector mesons. Phys. Lett. B 550, 65–76 (2002). https://doi.org/10.1016/S0370-2693(02)02856-3. arXiv:hep-ph/0209300
|t Phys. Lett. B
|v 550
|y 2002
999 C 5 |a 10.1007/JHEP02(2017)054
|9 -- missing cx lookup --
|2 Crossref
|u R. Boussarie, B. Pire, L. Szymanowski, S. Wallon, Exclusive photoproduction of a $$\gamma \,\rho $$ pair with a large invariant mass, JHEP 02 (2017) 054, [Erratum: JHEP 10, 029 (2018)]. arXiv:hep-ph/1609.03830, https://doi.org/10.1007/JHEP02(2017)054
999 C 5 |a 10.1007/JHEP03(2023)241
|9 -- missing cx lookup --
|2 Crossref
|u G. Duplančić, S. Nabeebaccus, K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon, Probing chiral-even and chiral-odd leading twist quark generalised parton distributions through the exclusive photoproduction of a $$ \gamma \rho $$ pair (2 2023). arXiv:2302.12026
999 C 5 |a 10.1103/PhysRevD.96.074008
|9 -- missing cx lookup --
|2 Crossref
|u A. Pedrak, B. Pire, L. Szymanowski, J. Wagner, Hard photoproduction of a diphoton with a large invariant mass, Phys. Rev. D 96 (7) (2017) 074008, [Erratum: Phys.Rev.D 100, 039901 (2019)]. arXiv:hep-ph/1708.01043, https://doi.org/10.1103/PhysRevD.96.074008
999 C 5 |a 10.1103/PhysRevD.105.094025
|1 O Grocholski
|9 -- missing cx lookup --
|2 Crossref
|u O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner, Phenomenology of diphoton photoproduction at next-to-leading order. Phys. Rev. D 105(9), 094025 (2022). https://doi.org/10.1103/PhysRevD.105.094025. arXiv:2204.00396
|t Phys. Rev. D
|v 105
|y 2022
999 C 5 |a 10.1103/PhysRevD.104.114006
|1 O Grocholski
|9 -- missing cx lookup --
|2 Crossref
|u O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner, Collinear factorization of diphoton photoproduction at next to leading order. Phys. Rev. D 104(11), 114006 (2021). https://doi.org/10.1103/PhysRevD.104.114006. arXiv:2110.00048
|t Phys. Rev. D
|v 104
|y 2021
999 C 5 |a 10.1103/PhysRevD.107.014007
|1 J-W Qiu
|9 -- missing cx lookup --
|2 Crossref
|u J.-W. Qiu, Z. Yu, Single diffractive hard exclusive processes for the study of generalized parton distributions. Phys. Rev. D 107(1), 014007 (2023). https://doi.org/10.1103/PhysRevD.107.014007. arXiv:2210.07995
|t Phys. Rev. D
|v 107
|y 2023
999 C 5 |a 10.1140/epja/i2014-14146-2
|9 -- missing cx lookup --
|2 Crossref
|u S. V. Goloskokov, P. Kroll, The pion pole in hard exclusive vector-meson leptoproduction, The European Physical Journal A 50 (9) (sep 2014). https://doi.org/10.1140/epja/i2014-14146-2.https://doi.org/10.1140%2Fepja%2Fi2014-14146-2
999 C 5 |a 10.1103/PhysRevD.88.014001
|1 C Mezrag
|9 -- missing cx lookup --
|2 Crossref
|u C. Mezrag, H. Moutarde, F. Sabatié, Test of two new parametrizations of the generalized parton distribution H. Phys. Rev. D 88(1), 014001 (2013). https://doi.org/10.1103/PhysRevD.88.014001. arXiv:1304.7645
|t Phys. Rev. D
|v 88
|y 2013
999 C 5 |a 10.1103/PhysRevD.101.114027
|1 A Pedrak
|9 -- missing cx lookup --
|2 Crossref
|u A. Pedrak, B. Pire, L. Szymanowski, J. Wagner, Electroproduction of a large invariant mass photon pair. Phys. Rev. D 101(11), 114027 (2020). https://doi.org/10.1103/PhysRevD.101.114027. arXiv:hep-ph/2003.03263
|t Phys. Rev. D
|v 101
|y 2020
999 C 5 |a 10.1140/epjc/s10052-018-5948-0
|9 -- missing cx lookup --
|1 B Berthou
|p 478 -
|2 Crossref
|u B. Berthou et al., PARTONS: PARtonic Tomography Of Nucleon Software: A computing framework for the phenomenology of Generalized Parton Distributions. Eur. Phys. J. C 78(6), 478 (2018). https://doi.org/10.1140/epjc/s10052-018-5948-0. arXiv:hep-ph/1512.06174
|t Eur. Phys. J. C
|v 78
|y 2018
999 C 5 |a 10.1140/epjc/s10052-022-10651-z
|9 -- missing cx lookup --
|1 EC Aschenauer
|p 819 -
|2 Crossref
|u E.C. Aschenauer, V. Batozskaya, S. Fazio, K. Gates, H. Moutarde, D. Sokhan, H. Spiesberger, P. Sznajder, K. Tezgin, EpIC: novel Monte Carlo generator for exclusive processes. Eur. Phys. J. C 82(9), 819 (2022). https://doi.org/10.1140/epjc/s10052-022-10651-z. arXiv:2205.01762
|t Eur. Phys. J. C
|v 82
|y 2022
999 C 5 |a 10.1007/JHEP08(2022)103
|9 -- missing cx lookup --
|1 J-W Qiu
|p 103 -
|2 Crossref
|u J.-W. Qiu, Z. Yu, Exclusive production of a pair of high transverse momentum photons in pion-nucleon collisions for extracting generalized parton distributions. JHEP 08, 103 (2022). https://doi.org/10.1007/JHEP08(2022)103. arXiv:2205.07846
|t JHEP
|v 08
|y 2022
999 C 5 |a 10.1103/PhysRevLett.131.161902
|9 -- missing cx lookup --
|2 Crossref
|u J.-W. Qiu, Z. Yu, Extraction of the $$x$$-dependence of generalized parton distributions from exclusive photoproduction (5 2023). arXiv:2305.15397
999 C 5 |a 10.1140/epjc/s2005-02298-5
|9 -- missing cx lookup --
|1 SV Goloskokov
|p 281 -
|2 Crossref
|u S.V. Goloskokov, P. Kroll, Vector meson electroproduction at small Bjorken-x and generalized parton distributions. Eur. Phys. J. C 42, 281–301 (2005). https://doi.org/10.1140/epjc/s2005-02298-5. arXiv:hep-ph/0501242
|t Eur. Phys. J. C
|v 42
|y 2005
999 C 5 |a 10.1140/epjc/s10052-007-0466-5
|9 -- missing cx lookup --
|1 S Goloskokov
|p 367 -
|2 Crossref
|u S. Goloskokov, P. Kroll, The Role of the quark and gluon GPDs in hard vector-meson electroproduction. Eur. Phys. J. C 53, 367–384 (2008). https://doi.org/10.1140/epjc/s10052-007-0466-5. arXiv:0708.3569
|t Eur. Phys. J. C
|v 53
|y 2008
999 C 5 |a 10.1140/epjc/s10052-009-1178-9
|9 -- missing cx lookup --
|1 SV Goloskokov
|p 137 -
|2 Crossref
|u S.V. Goloskokov, P. Kroll, An Attempt to understand exclusive pi+ electroproduction. Eur. Phys. J. C 65, 137–151 (2010). https://doi.org/10.1140/epjc/s10052-009-1178-9. arXiv:0906.0460
|t Eur. Phys. J. C
|v 65
|y 2010
999 C 5 |a 10.1140/epjc/s10052-013-2278-0
|9 -- missing cx lookup --
|1 P Kroll
|p 2278 -
|2 Crossref
|u P. Kroll, H. Moutarde, F. Sabatie, From hard exclusive meson electroproduction to deeply virtual Compton scattering. Eur. Phys. J. C 73(1), 2278 (2013). https://doi.org/10.1140/epjc/s10052-013-2278-0. arXiv:1210.6975
|t Eur. Phys. J. C
|v 73
|y 2013
999 C 5 |a 10.1103/PhysRevD.103.114019
|1 V Bertone
|9 -- missing cx lookup --
|2 Crossref
|u V. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, P. Sznajder, Deconvolution problem of deeply virtual Compton scattering. Phys. Rev. D 103(11), 114019 (2021). https://doi.org/10.1103/PhysRevD.103.114019. arXiv:2104.03836
|t Phys. Rev. D
|v 103
|y 2021
999 C 5 |a 10.1103/PhysRevD.108.036027
|9 -- missing cx lookup --
|2 Crossref
|u E. Moffat, A. Freese, I. Cloët, T. Donohoe, L. Gamberg, W. Melnitchouk, A. Metz, A. Prokudin, N. Sato, Shedding light on shadow generalized parton distributions (3 2023). arXiv:2303.12006
999 C 5 |a 10.1103/PhysRevD.107.054009
|1 P Kroll
|9 -- missing cx lookup --
|2 Crossref
|u P. Kroll, K. Passek-Kumerički, Transition GPDs and exclusive electroproduction of $$\pi $$-$$\Delta (1232)$$ final states. Phys. Rev. D 107(5), 054009 (2023). https://doi.org/10.1103/PhysRevD.107.054009. arXiv:2211.09474
|t Phys. Rev. D
|v 107
|y 2023
999 C 5 |a 10.1103/PhysRevD.68.034018
|1 PAM Guichon
|9 -- missing cx lookup --
|2 Crossref
|u P.A.M. Guichon, L. Mossé, M. Vanderhaeghen, Pion production in deeply virtual Compton scattering. Phys. Rev. D 68, 034018 (2003). https://doi.org/10.1103/PhysRevD.68.034018. arXiv:hep-ph/0305231
|t Phys. Rev. D
|v 68
|y 2003
999 C 5 |2 Crossref
|u K. M. Semenov-Tian-Shansky, M. Vanderhaeghen, Deeply-Virtual Compton Process $$e^- N \rightarrow e^- \gamma \pi N$$ to Study Nucleon to Resonance Transitions - arXiv:2303.00119 [hep-ph] (2023). arXiv:2303.00119
999 C 5 |a 10.1016/0003-4916(73)90476-4
|9 -- missing cx lookup --
|1 HF Jones
|p 1 -
|2 Crossref
|u H.F. Jones, M.D. Scadron, Multipole $$\gamma N$$-$$\Delta $$ form factors and resonant photoproduction and electroproduction. Annals Phys. 81, 1–14 (1973). https://doi.org/10.1016/0003-4916(73)90476-4
|t Annals Phys.
|v 81
|y 1973
999 C 5 |a 10.1016/0003-4916(68)90278-9
|9 -- missing cx lookup --
|1 SL Adler
|p 189 -
|2 Crossref
|u S.L. Adler, Photoproduction, electroproduction and weak single pion production in the (3,3) resonance region. Annals Phys. 50, 189–311 (1968). https://doi.org/10.1016/0003-4916(68)90278-9
|t Annals Phys.
|v 50
|y 1968
999 C 5 |a 10.1103/PhysRevD.12.2644
|9 -- missing cx lookup --
|1 SL Adler
|p 2644 -
|2 Crossref
|u S.L. Adler, Application of Current Algebra Techniques to Soft Pion Production by the Weak Neutral Current: V, a Case. Phys. Rev. D 12, 2644 (1975). https://doi.org/10.1103/PhysRevD.12.2644
|t Phys. Rev. D
|v 12
|y 1975
999 C 5 |a 10.1016/j.physletb.2022.137442
|1 J-Y Kim
|9 -- missing cx lookup --
|2 Crossref
|u J.-Y. Kim, Parametrization of transition energy-momentum tensor form factors. Phys. Lett. B 834, 137442 (2022). https://doi.org/10.1016/j.physletb.2022.137442. arXiv:2206.10202
|t Phys. Lett. B
|v 834
|y 2022
999 C 5 |a 10.1016/j.physletb.2023.138083
|9 -- missing cx lookup --
|2 Crossref
|u J.-Y. Kim, H.-Y. Won, J. L. Goity, C. Weiss, QCD angular momentum in $$N \rightarrow \Delta $$ transitions (4 2023). arXiv:2304.08575
999 C 5 |2 Crossref
|u V. Pascalutsa, M. Vanderhaeghen, New large-N(c) relations among the nucleon and nucleon-to-Delta GPDs (11 2006). arXiv:hep-ph/0611050
999 C 5 |a 10.1103/PhysRevC.94.045202
|1 P Schweitzer
|9 -- missing cx lookup --
|2 Crossref
|u P. Schweitzer, C. Weiss, Spin-flavor structure of chiral-odd generalized parton distributions in the large- $$\text{ N}_c$$ limit. Phys. Rev. C 94(4), 045202 (2016). https://doi.org/10.1103/PhysRevC.94.045202. arXiv:1606.08388
|t Phys. Rev. C
|v 94
|y 2016
999 C 5 |a 10.1103/PhysRevLett.131.021901
|1 S Diehl
|9 -- missing cx lookup --
|2 Crossref
|u S. Diehl et al., First Measurement of Hard Exclusive $$\pi ^{-}\Delta ^{++}$$ Electroproduction Beam-Spin Asymmetries off the Proton. Phys. Rev. Lett. 131(2), 021901 (2023). https://doi.org/10.1103/PhysRevLett.131.021901. arXiv:2303.11762
|t Phys. Rev. Lett.
|v 131
|y 2023
999 C 5 |a 10.1016/j.physletb.2023.137761
|1 S Diehl
|9 -- missing cx lookup --
|2 Crossref
|u S. Diehl et al., A multidimensional study of the structure function ratio $$\sigma $$LT’/$$\sigma $$0 from hard exclusive $$\pi $$+ electro-production off protons in the GPD regime. Phys. Lett. B 839, 137761 (2023). https://doi.org/10.1016/j.physletb.2023.137761. arXiv:2210.14557
|t Phys. Lett. B
|v 839
|y 2023
999 C 5 |a 10.1016/j.physletb.2024.138459
|1 A Kim
|9 -- missing cx lookup --
|2 Crossref
|u A. Kim et al., Beam spin asymmetry measurements of deeply virtual $$\pi $$0 production with CLAS12. Phys. Lett. B 849, 138459 (2024). https://doi.org/10.1016/j.physletb.2024.138459. arXiv:2307.07874
|t Phys. Lett. B
|v 849
|y 2024
999 C 5 |a 10.1140/epja/s10050-021-00625-2
|9 -- missing cx lookup --
|1 CA Gayoso
|p 342 -
|2 Crossref
|u C.A. Gayoso et al., Progress and opportunities in backward angle (u-channel) physics. Eur. Phys. J. A 57(12), 342 (2021). https://doi.org/10.1140/epja/s10050-021-00625-2. arXiv:2107.06748
|t Eur. Phys. J. A
|v 57
|y 2021
999 C 5 |a 10.1103/PhysRevD.60.014010
|1 LL Frankfurt
|9 -- missing cx lookup --
|2 Crossref
|u L.L. Frankfurt, P.V. Pobylitsa, M.V. Polyakov, M. Strikman, Hard exclusive pseudoscalar meson electroproduction and spin structure of a nucleon. Phys. Rev. D 60, 014010 (1999). https://doi.org/10.1103/PhysRevD.60.014010. arXiv:hep-ph/9901429
|t Phys. Rev. D
|v 60
|y 1999
999 C 5 |a 10.1103/PhysRevD.71.111501
|1 B Pire
|9 -- missing cx lookup --
|2 Crossref
|u B. Pire, L. Szymanowski, Hadron annihilation into two photons and backward VCS in the scaling regime of QCD. Phys. Rev. D 71, 111501 (2005). https://doi.org/10.1103/PhysRevD.71.111501. arXiv:hep-ph/0411387
|t Phys. Rev. D
|v 71
|y 2005
999 C 5 |a 10.1016/j.physrep.2021.09.002
|9 -- missing cx lookup --
|1 B Pire
|p 1 -
|2 Crossref
|u B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Transition distribution amplitudes and hard exclusive reactions with baryon number transfer. Phys. Rept. 940, 1–121 (2021). https://doi.org/10.1016/j.physrep.2021.09.002. arXiv:2103.01079
|t Phys. Rept.
|v 940
|y 2021
999 C 5 |a 10.1016/j.physletb.2018.03.026
|9 -- missing cx lookup --
|1 K Park
|p 340 -
|2 Crossref
|u K. Park et al., Hard exclusive pion electroproduction at backward angles with CLAS. Phys. Lett. B 780, 340–345 (2018). https://doi.org/10.1016/j.physletb.2018.03.026. arXiv:1711.08486
|t Phys. Lett. B
|v 780
|y 2018
999 C 5 |a 10.1103/PhysRevLett.123.182501
|1 WB Li
|9 -- missing cx lookup --
|2 Crossref
|u W.B. Li et al., Unique Access to $$u$$-Channel Physics: Exclusive Backward-Angle Omega Meson Electroproduction. Phys. Rev. Lett. 123(18), 182501 (2019). https://doi.org/10.1103/PhysRevLett.123.182501. arXiv:1910.00464
|t Phys. Rev. Lett.
|v 123
|y 2019
999 C 5 |a 10.1103/PhysRevLett.125.182001
|1 S Diehl
|9 -- missing cx lookup --
|2 Crossref
|u S. Diehl et al., Extraction of Beam-Spin Asymmetries from the Hard Exclusive $$\pi ^+$$ Channel off Protons in a Wide Range of Kinematics. Phys. Rev. Lett. 125(18), 182001 (2020). https://doi.org/10.1103/PhysRevLett.125.182001. arXiv:2007.15677
|t Phys. Rev. Lett.
|v 125
|y 2020
999 C 5 |2 Crossref
|u W. B. Li, et al., Backward-angle Exclusive pi0 Production above the Resonance Region (8 2020). arXiv:2008.10768
999 C 5 |a 10.1103/PhysRevD.84.074014
|1 B Pire
|9 -- missing cx lookup --
|2 Crossref
|u B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, $$\pi $$ N transition distribution amplitudes: their symmetries and constraints from chiral dynamics. Phys. Rev. D 84, 074014 (2011). https://doi.org/10.1103/PhysRevD.84.074014
|t Phys. Rev. D
|v 84
|y 2011
999 C 5 |a 10.1016/j.nuclphysa.2006.10.014
|9 -- missing cx lookup --
|1 JP Lansberg
|p 16 -
|2 Crossref
|u J.P. Lansberg, B. Pire, L. Szymanowski, Backward DVCS and Proton to Photon Transition Distribution Amplitudes. Nucl. Phys. A 782, 16–23 (2007). https://doi.org/10.1016/j.nuclphysa.2006.10.014. arXiv:hep-ph/0607130
|t Nucl. Phys. A
|v 782
|y 2007
999 C 5 |a 10.1140/epjc/s10052-022-10587-4
|9 -- missing cx lookup --
|1 B Pire
|p 656 -
|2 Crossref
|u B. Pire, K.M. Semenov-Tian-Shansky, A.A. Shaikhutdinova, L. Szymanowski, Backward timelike Compton scattering to decipher the photon content of the nucleon. Eur. Phys. J. C 82(7), 656 (2022). https://doi.org/10.1140/epjc/s10052-022-10587-4. arXiv:2201.12853
|t Eur. Phys. J. C
|v 82
|y 2022
999 C 5 |a 10.1007/s43673-023-00094-3
|9 -- missing cx lookup --
|2 Crossref
|u B. Pire, K. M. Semenov-Tian-Shansky, A. A. Shaikhutdinova, L. Szymanowski, Pion and photon beam initiated backward charmonium or lepton pair production (12 2022). arXiv:2212.07688
999 C 5 |2 Crossref
|u S. Adhikari, et al., Measurement of the J/$$\psi $$ photoproduction cross section over the full near-threshold kinematic region (4 2023). arXiv:2304.03845
999 C 5 |a 10.3390/physics4020038
|9 -- missing cx lookup --
|1 P Jain
|p 578 -
|2 Crossref
|u P. Jain, B. Pire, J.P. Ralston, The Status and Future of Color Transparency and Nuclear Filtering. MDPI Physics 4(2), 578–589 (2022). https://doi.org/10.3390/physics4020038. arXiv:2203.02579
|t MDPI Physics
|v 4
|y 2022
999 C 5 |a 10.3390/physics4020030
|9 -- missing cx lookup --
|1 GM Huber
|p 451 -
|2 Crossref
|u G.M. Huber, W.B. Li, W. Cosyn, B. Pire, u-Channel Color Transparency Observables. MDPI Physics 4(2), 451–461 (2022). https://doi.org/10.3390/physics4020030. arXiv:2202.04470
|t MDPI Physics
|v 4
|y 2022
999 C 5 |2 Crossref
|u T. Horn, G. M. Huber, P. Markowitz, et al., Studies of the L/T Separated Kaon Electroproduction Cross Sections from 5-11 GeV, jefferson Lab 12 GeV Experiment E12-09-011. https://www.jlab.org/exp_prog/proposals/09/PR12-09-011.pdf
999 C 5 |2 Crossref
|u G. M. Huber, D. Gaskell, T. Horn, et al., Measurement of the Charged Pion Form Factor to High $$Q^{2}$$ and Scaling Study of the L/T-Separated Pion Electroproduction Cross Section at 11 GeV, jefferson Lab 12 GeV Experiment E12-19-006 (2019). https://www.jlab.org/exp_prog/proposals/19/E12-19-006.pdf
999 C 5 |a 10.1103/PhysRevLett.84.1398
|9 -- missing cx lookup --
|1 MK Jones
|p 1398 -
|2 Crossref
|u M.K. Jones et al., $$g_{Ep}/g_{Mp}$$ ratio by polarization transfer in $$\vec{e} p \rightarrow e \vec{p}$$. Phys. Rev. Lett. 84, 1398–1402 (2000). https://doi.org/10.1103/PhysRevLett.84.1398. arXiv:nucl-ex/9910005
|t Phys. Rev. Lett.
|v 84
|y 2000
999 C 5 |a 10.1103/PhysRevLett.88.092301
|1 O Gayou
|9 -- missing cx lookup --
|2 Crossref
|u O. Gayou et al., Measurement of $$G_{Ep}/G_{Mp}$$ in $$\vec{e} p \rightarrow e \vec{p}$$ to $$Q^2 = 5.6$$-$$\text{ GeV}^2$$. Phys. Rev. Lett. 88, 092301 (2002). https://doi.org/10.1103/PhysRevLett.88.092301. arXiv:nucl-ex/0111010
|t Phys. Rev. Lett.
|v 88
|y 2002
999 C 5 |a 10.1103/PhysRevLett.104.242301
|9 -- missing cx lookup --
|2 Crossref
|u A. J. R. Puckett, et al., Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to $$Q^2$$ = 8.5 $$\text{ GeV}^2$$, Phys. Rev. Lett. 104 (2010) 242301. arXiv:1005.3419, https://doi.org/10.1103/PhysRevLett.104.242301
999 C 5 |2 Crossref
|u American Physical Society 2017 Bonner Prize in Nuclear Physics Recipient Charles F. Perdrisat (College of William and Mary), https://www.aps.org/programs/honors/prizes/prizerecipient.cfm?last_nm=F&first_nm=C &year=2017[Webpage]
999 C 5 |a 10.1016/j.ppnp.2020.103835
|1 MY Barabanov
|9 -- missing cx lookup --
|2 Crossref
|u M.Y. Barabanov et al., Diquark correlations in hadron physics: Origin, impact and evidence. Prog. Part. Nucl. Phys. 116, 103835 (2021). https://doi.org/10.1016/j.ppnp.2020.103835. arXiv:2008.07630
|t Prog. Part. Nucl. Phys.
|v 116
|y 2021
999 C 5 |2 Crossref
|u F. Gross, et al., 50 Years of Quantum Chromodynamics (12 2022). arXiv:2212.11107
999 C 5 |2 Crossref
|u B. Schmookler, A. Pierre-Louis, A. Deshpande, D. Higinbotham, E. Long, A. J. R. Puckett, High $$Q^2$$ electron-proton elastic scattering at the future Electron-Ion Collider (7 2022). arXiv:2207.04378
999 C 5 |a 10.1103/RevModPhys.86.843
|9 -- missing cx lookup --
|1 F Englert
|p 843 -
|2 Crossref
|u F. Englert, Nobel Lecture: The BEH Mechanism and its Scalar Boson. Rev. Mod. Phys. 86, 843 (2014)
|t Rev. Mod. Phys.
|v 86
|y 2014
999 C 5 |a 10.1103/RevModPhys.86.851
|9 -- missing cx lookup --
|1 PW Higgs
|p 851 -
|2 Crossref
|u P.W. Higgs, Nobel Lecture: Evading the Goldstone theorem. Rev. Mod. Phys. 86, 851 (2014)
|t Rev. Mod. Phys.
|v 86
|y 2014
999 C 5 |a 10.1016/j.ppnp.2021.103883
|1 CD Roberts
|9 -- missing cx lookup --
|2 Crossref
|u C.D. Roberts, D.G. Richards, T. Horn, L. Chang, Insights into the Emergence of Mass from Studies of Pion and Kaon Structure. Prog. Part. Nucl. Phys. 120, 103883 (2021)
|t Prog. Part. Nucl. Phys.
|v 120
|y 2021
999 C 5 |a 10.1007/s00601-005-0123-1
|9 -- missing cx lookup --
|1 VV Flambaum
|p 31 -
|2 Crossref
|u V.V. Flambaum et al., Sigma Terms of Light-Quark Hadrons. Few Body Syst. 38, 31 (2006)
|t Few Body Syst.
|v 38
|y 2006
999 C 5 |a 10.1103/PhysRevD.101.054007
|1 J-H Huang
|9 -- missing cx lookup --
|2 Crossref
|u J.-H. Huang, T.-T. Sun, H. Chen, Evaluation of pion-nucleon sigma term in Dyson-Schwinger equation approach of QCD. Phys. Rev. D 101(5), 054007 (2020). https://doi.org/10.1103/PhysRevD.101.054007. arXiv:1910.08298
|t Phys. Rev. D
|v 101
|y 2020
999 C 5 |1 J Ruiz de Elvira
|y 2018
|2 Crossref
|u J. Ruiz de Elvira, M. Hoferichter, B. Kubis, U.-G. Meißner, Extracting the $$\sigma $$-Term from Low-Energy Pion-Nucleon Scattering. J. Phys. G 45(2), 024001 (2018)
999 C 5 |a 10.1140/epjc/s10052-019-7354-7
|9 -- missing cx lookup --
|1 S Aoki
|p 113 -
|2 Crossref
|u S. Aoki et al., FLAG Review 2019. Eur. Phys. J. C 80, 113 (2020)
|t Eur. Phys. J. C
|v 80
|y 2020
999 C 5 |a 10.1007/s00601-022-01740-6
|9 -- missing cx lookup --
|1 D Binosi
|p 42 -
|2 Crossref
|u D. Binosi, Emergent Hadron Mass in Strong Dynamics. Few Body Syst. 63(2), 42 (2022)
|t Few Body Syst.
|v 63
|y 2022
999 C 5 |a 10.3390/particles6010017
|9 -- missing cx lookup --
|1 MN Ferreira
|p 312 -
|2 Crossref
|u M.N. Ferreira, J. Papavassiliou, Gauge Sector Dynamics in QCD. Particles 6(1), 312 (2023)
|t Particles
|v 6
|y 2023
999 C 5 |a 10.3390/particles6010004
|9 -- missing cx lookup --
|1 M Ding
|p 57 -
|2 Crossref
|u M. Ding, C.D. Roberts, S.M. Schmidt, Emergence of Hadron Mass and Structure. Particles 6(1), 57 (2023)
|t Particles
|v 6
|y 2023
999 C 5 |a 10.3390/particles6010023
|9 -- missing cx lookup --
|1 DS Carman
|p 416 -
|2 Crossref
|u D.S. Carman, R.W. Gothe, V.I. Mokeev, C.D. Roberts, Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass. Particles 6(1), 416 (2023)
|t Particles
|v 6
|y 2023
999 C 5 |a 10.1016/j.ppnp.2020.103835
|1 MY Barabanov
|9 -- missing cx lookup --
|2 Crossref
|u M.Y. Barabanov et al., Diquark Correlations in Hadron Physics: Origin, Impact and Evidence. Progress in Particle and Nuclear Physics 116, 103835 (2021)
|t Progress in Particle and Nuclear Physics
|v 116
|y 2021
999 C 5 |a 10.1142/S0218301320300064
|9 -- missing cx lookup --
|1 SJ Brodsky
|p 2030006 -
|2 Crossref
|u S.J. Brodsky et al., Strong QCD from Hadron Structure Experiments: Newport News, VA, USA, November 4–8, 2019. Int. J. Mod. Phys. E 29(08), 2030006 (2020)
|t Int. J. Mod. Phys. E
|v 29
|y 2020
999 C 5 |a 10.1103/RevModPhys.91.011003
|1 VD Burkert
|9 -- missing cx lookup --
|2 Crossref
|u V.D. Burkert, C.D. Roberts, Colloquium?: Roper Resonance: Toward a Solution to the Fifty Year Puzzle. Rev. Mod. Phys. 91(1), 011003 (2019)
|t Rev. Mod. Phys.
|v 91
|y 2019
999 C 5 |a 10.1140/epja/i2019-12885-0
|9 -- missing cx lookup --
|1 AC Aguilar
|p 190 -
|2 Crossref
|u A.C. Aguilar et al., Pion and Kaon Structure at the Electron-Ion Collider. Eur. Phys. J. A 55, 190 (2019)
|t Eur. Phys. J. A
|v 55
|y 2019
999 C 5 |a 10.1007/s11467-021-1062-0
|9 -- missing cx lookup --
|1 DP Anderle
|p 64701 -
|2 Crossref
|u D.P. Anderle et al., Electron-Ion Collider in China. Front. Phys. (Beijing) 16(6), 64701 (2021)
|t Front. Phys. (Beijing)
|v 16
|y 2021
999 C 5 |a 10.1103/PhysRev.128.2425
|9 -- missing cx lookup --
|1 JS Schwinger
|p 2425 -
|2 Crossref
|u J.S. Schwinger, Gauge Invariance and Mass. 2. Phys. Rev. 128, 2425 (1962)
|t Phys. Rev.
|v 128
|y 1962
999 C 5 |a 10.1103/PhysRevD.26.1453
|9 -- missing cx lookup --
|1 JM Cornwall
|p 1453 -
|2 Crossref
|u J.M. Cornwall, Dynamical Mass Generation in Continuum QCD. Phys. Rev. D 26, 1453 (1982)
|t Phys. Rev. D
|v 26
|y 1982
999 C 5 |a 10.1016/0370-2693(87)91541-3
|9 -- missing cx lookup --
|1 J Mandula
|p 127 -
|2 Crossref
|u J. Mandula, M. Ogilvie, The Gluon Is Massive: A Lattice Calculation of the Gluon Propagator in the Landau Gauge. Phys. Lett. B 185, 127 (1987)
|t Phys. Lett. B
|v 185
|y 1987
999 C 5 |a 10.1103/PhysRevD.99.094506
|1 O Oliveira
|9 -- missing cx lookup --
|2 Crossref
|u O. Oliveira, P.J. Silva, J.-I. Skullerud, A. Sternbeck, Quark Propagator with Two Flavors of $$O(a)$$-Improved Wilson Fermions. Phys. Rev. D 99(9), 094506 (2019)
|t Phys. Rev. D
|v 99
|y 2019
999 C 5 |1 N Suzuki
|y 2010
|2 Crossref
|u N. Suzuki, B. Julia-Diaz, H. Kamano, T.S.H. Lee, A. Matsuyama, T. Sato, Disentangling the Dynamical Origin of P-11 Nucleon Resonances. Phys. Rev. Lett. 104, 042302 (2010)
999 C 5 |1 MM Giannini
|y 2015
|2 Crossref
|u M.M. Giannini, E. Santopinto, The Hypercentral Constituent Quark Model and its Application to Baryon Properties. Chin. J. Phys. 53, 020301 (2015)
999 C 5 |1 S-X Qin
|y 2020
|2 Crossref
|u S.-X. Qin, C.D. Roberts, Impressions of the Continuum Bound State Problem in QCD. Chin. Phys. Lett. 37(12), 121201 (2020)
999 C 5 |1 F Gao
|y 2017
|2 Crossref
|u F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, P.C. Tandy, Exposing Strangeness: Projections for Kaon Electromagnetic Form Factors. Phys. Rev. D 96(3), 034024 (2017)
999 C 5 |a 10.1140/epja/i2019-12805-4
|9 -- missing cx lookup --
|1 S-S Xu
|p 113 -
|2 Crossref
|u S.-S. Xu, Z.-F. Cui, L. Chang, J. Papavassiliou, C.D. Roberts, H.-S. Zong, New Perspective on Hybrid Mesons. Eur. Phys. J. A (Lett.) 55, 113 (2019)
|t Eur. Phys. J. A (Lett.)
|v 55
|y 2019
999 C 5 |1 Q-W Wang
|y 2018
|2 Crossref
|u Q.-W. Wang, S.-X. Qin, C.D. Roberts, S.M. Schmidt, Proton Tensor Charges from a Poincaré-Covariant Faddeev Equation. Phys. Rev. D 98, 054019 (2018)
999 C 5 |a 10.1103/PhysRevD.98.091505
|9 -- missing cx lookup --
|1 M Chen
|p 091505(R) -
|2 Crossref
|u M. Chen, M. Ding, L. Chang, C.D. Roberts, Mass-Dependence of Pseudoscalar Meson Elastic Form Factors. Phys. Rev. D 98, 091505(R) (2018)
|t Phys. Rev. D
|v 98
|y 2018
999 C 5 |a 10.1016/j.physletb.2019.01.033
|9 -- missing cx lookup --
|1 D Binosi
|p 257 -
|2 Crossref
|u D. Binosi, L. Chang, M. Ding, F. Gao, J. Papavassiliou, C.D. Roberts, Distribution Amplitudes of Heavy-Light Mesons. Phys. Lett. B 790, 257 (2019)
|t Phys. Lett. B
|v 790
|y 2019
999 C 5 |1 C Chen
|y 2019
|2 Crossref
|u C. Chen, G.I. Krein, C.D. Roberts, S.M. Schmidt, J. Segovia, Spectrum and Structure of Octet and Decuplet Baryons and Their Positive-Parity Excitations. Phys. Rev. D 100, 054009 (2019)
999 C 5 |a 10.1007/s00601-019-1488-x
|9 -- missing cx lookup --
|1 S-X Qin
|p 26 -
|2 Crossref
|u S.-X. Qin, C.D. Roberts, S.M. Schmidt, Spectrum of Light- and Heavy-Baryons. Few Body Syst. 60, 26 (2019)
|t Few Body Syst.
|v 60
|y 2019
999 C 5 |1 Y Lu
|y 2019
|2 Crossref
|u Y. Lu, C. Chen, Z.-F. Cui, C.D. Roberts, S.M. Schmidt, J. Segovia, H.S. Zong, Transition Form Factors: $$\gamma ^* + p \rightarrow \Delta (1232)$$, $$\Delta (1600)$$. Phys. Rev. D 100(3), 034001 (2019)
999 C 5 |a 10.1140/epja/s10050-020-00041-y
|9 -- missing cx lookup --
|1 EV Souza
|p 25 -
|2 Crossref
|u E.V. Souza, M. Narciso Ferreira, A.C. Aguilar, J. Papavassiliou, C.D. Roberts, S.-S. Xu, Pseudoscalar Glueball Mass: A Window on Three-Gluon Interactions. Eur. Phys. J. A (Lett.) 56, 25 (2020)
|t Eur. Phys. J. A (Lett.)
|v 56
|y 2020
999 C 5 |1 K Raya
|y 2022
|2 Crossref
|u K. Raya, Z.-F. Cui, L. Chang, J.-M. Morgado, C.D. Roberts, J. Rodríguez-Quintero, Revealing Pion and Kaon Structure via Generalised Parton Distributions. Chin. Phys. C 46(26), 013105 (2022)
999 C 5 |a 10.1140/epja/s10050-021-00658-7
|9 -- missing cx lookup --
|1 ZF Cui
|p 10 -
|2 Crossref
|u Z.F. Cui, M. Ding, J.M. Morgado, K. Raya, D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, Concerning Pion Parton Distributions. Eur. Phys. J. A 58(1), 10 (2022)
|t Eur. Phys. J. A
|v 58
|y 2022
999 C 5 |1 L Liu
|y 2023
|2 Crossref
|u L. Liu, C. Chen, C.D. Roberts, Wave functions of $$(I, J^P)=(\tfrac{1}{2},\tfrac{3}{2}^{\mp })$$ baryons. Phys. Rev. D 107(1), 014002 (2023)
999 C 5 |2 Crossref
|u V. D. Burkert, Nucleon Resonances and Transition Form Factors –arXiv:2212.08980 [hep-ph] (2022)
999 C 5 |a 10.1016/j.ppnp.2011.08.001
|9 -- missing cx lookup --
|1 IG Aznauryan
|p 1 -
|2 Crossref
|u I.G. Aznauryan, V.D. Burkert, Electroexcitation of Nucleon Resonances. Prog. Part. Nucl. Phys. 67, 1–54 (2012)
|t Prog. Part. Nucl. Phys.
|v 67
|y 2012
999 C 5 |a 10.1007/s00601-022-01760-2
|9 -- missing cx lookup --
|1 VI Mokeev
|p 59 -
|2 Crossref
|u V.I. Mokeev, D.S. Carman, Photo- and Electrocouplings of Nucleon Resonances. Few Body Syst. 63(3), 59 (2022)
|t Few Body Syst.
|v 63
|y 2022
999 C 5 |a 10.1103/PhysRevLett.115.171801
|1 J Segovia
|9 -- missing cx lookup --
|2 Crossref
|u J. Segovia, B. El-Bennich, E. Rojas, I.C. Cloet, C.D. Roberts, S.-S. Xu, H.-S. Zong, Completing the Picture of the Roper Resonance. Phys. Rev. Lett. 115(17), 171801 (2015)
|t Phys. Rev. Lett.
|v 115
|y 2015
999 C 5 |1 DJ Wilson
|y 2012
|2 Crossref
|u D.J. Wilson, I.C. Cloet, L. Chang, C.D. Roberts, Nucleon and Roper Electromagnetic Elastic and Transition Form Factors. Phys. Rev. C 85, 025205 (2012)
999 C 5 |1 Z-F Cui
|y 2020
|2 Crossref
|u Z.-F. Cui, C. Chen, D. Binosi, F. de Soto, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, J. Segovia, Nucleon Elastic Form Factors at Accessible Large Spacelike Momenta. Phys. Rev. D 102, 014043 (2020)
999 C 5 |a 10.1140/epja/s10050-022-00848-x
|9 -- missing cx lookup --
|1 C Chen
|p 206 -
|2 Crossref
|u C. Chen, C.D. Roberts, Nucleon Axial Form Factor at Large Momentum Transfers. Eur. Phys. J. A 58(10), 206 (2022)
|t Eur. Phys. J. A
|v 58
|y 2022
999 C 5 |1 M Ding
|y 2019
|2 Crossref
|u M. Ding, K. Raya, A. Bashir, D. Binosi, L. Chang, M. Chen, C.D. Roberts, $$\gamma ^\ast \gamma \rightarrow \eta, \eta ^\prime $$ Transition Form Factors. Phys. Rev. D 99, 014014 (2019)
999 C 5 |a 10.1103/PhysRevD.84.074508
|1 RG Edwards
|9 -- missing cx lookup --
|2 Crossref
|u R.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Excited state baryon spectroscopy from lattice QCD. Phys. Rev. D 84, 074508 (2011). https://doi.org/10.1103/PhysRevD.84.074508. arXiv:1104.5152
|t Phys. Rev. D
|v 84
|y 2011
999 C 5 |a 10.1103/PhysRevD.85.054016
|1 JJ Dudek
|9 -- missing cx lookup --
|2 Crossref
|u J.J. Dudek, R.G. Edwards, Hybrid Baryons in QCD. Phys. Rev. D 85, 054016 (2012). https://doi.org/10.1103/PhysRevD.85.054016. arXiv:1201.2349
|t Phys. Rev. D
|v 85
|y 2012
999 C 5 |a 10.1103/PhysRevD.101.054511
|1 M Sun
|9 -- missing cx lookup --
|2 Crossref
|u M. Sun et al., Roper State from Overlap Fermions. Phys. Rev. D 101(5), 054511 (2020). https://doi.org/10.1103/PhysRevD.101.054511. arXiv:1911.02635
|t Phys. Rev. D
|v 101
|y 2020
999 C 5 |a 10.1103/PhysRevD.108.094519
|1 CD Abell
|9 -- missing cx lookup --
|2 Crossref
|u C.D. Abell, D.B. Leinweber, Z.-W. Liu, A.W. Thomas, J.-J. Wu, Low-lying odd-parity nucleon resonances as quark-model-like states. Phys. Rev. D 108(9), 094519 (2023). https://doi.org/10.1103/PhysRevD.108.094519. arXiv:2306.00337
|t Phys. Rev. D
|v 108
|y 2023
999 C 5 |a 10.1103/PhysRevD.78.114508
|1 H-W Lin
|9 -- missing cx lookup --
|2 Crossref
|u H.-W. Lin, S.D. Cohen, R.G. Edwards, D.G. Richards, First Lattice Study of the N - P(11)(1440) Transition Form Factors. Phys. Rev. D 78, 114508 (2008). https://doi.org/10.1103/PhysRevD.78.114508. arXiv:0803.3020
|t Phys. Rev. D
|v 78
|y 2008
999 C 5 |a 10.1103/PhysRevC.68.014313
|1 KS Egiyan
|9 -- missing cx lookup --
|2 Crossref
|u K.S. Egiyan et al., Observation of nuclear scaling in the $$a(e, e^{^{\prime }})$$ reaction at $${x}_{B}{>}1$$. Phys. Rev. C 68, 014313 (2003). https://doi.org/10.1103/PhysRevC.68.014313
|t Phys. Rev. C
|v 68
|y 2003
999 C 5 |a 10.1103/PhysRevLett.96.082501
|1 KS Egiyan
|9 -- missing cx lookup --
|2 Crossref
|u K.S. Egiyan et al., Measurement of two- and three-nucleon short-range correlation probabilities in nuclei. Phys. Rev. Lett. 96, 082501 (2006). https://doi.org/10.1103/PhysRevLett.96.082501
|t Phys. Rev. Lett.
|v 96
|y 2006
999 C 5 |a 10.1103/PhysRevLett.108.092502
|1 N Fomin
|9 -- missing cx lookup --
|2 Crossref
|u N. Fomin et al., New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei. Phys. Rev. Lett. 108, 092502 (2012). https://doi.org/10.1103/PhysRevLett.108.092502
|t Phys. Rev. Lett.
|v 108
|y 2012
999 C 5 |a 10.1103/PhysRevC.48.2451
|9 -- missing cx lookup --
|1 LL Frankfurt
|p 2451 -
|2 Crossref
|u L.L. Frankfurt, M.I. Strikman, D.B. Day, M. Sargsian, Evidence for short range correlations from high Q**2 (e, e-prime) reactions. Phys. Rev. C 48, 2451–2461 (1993). https://doi.org/10.1103/PhysRevC.48.2451
|t Phys. Rev. C
|v 48
|y 1993
999 C 5 |a 10.1142/s0217751x08041207
|9 -- missing cx lookup --
|1 L Frankfurt
|p 2991 -
|2 Crossref
|u L. Frankfurt, M. Sargsian, M. Strikman, Recent observation of short range nucleon correlations in nuclei and their implications for the structure of nuclei and neutron stars. Int. J. Mod. Phys. A 23(20), 2991–3055 (2008). https://doi.org/10.1142/s0217751x08041207
|t Int. J. Mod. Phys. A
|v 23
|y 2008
999 C 5 |a 10.1103/PhysRevLett.97.162504
|1 E Piasetzky
|9 -- missing cx lookup --
|2 Crossref
|u E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, J.W. Watson, Evidence for strong dominance of proton-neutron correlations in nuclei. Phys. Rev. Lett. 97, 162504 (2006). https://doi.org/10.1103/PhysRevLett.97.162504
|t Phys. Rev. Lett.
|v 97
|y 2006
999 C 5 |a 10.1126/science.1156675
|9 -- missing cx lookup --
|2 Crossref
|u R. Subedi et al., Probing cold dense nuclear matter. Science 320(5882), 1476–1478 (2008). https://doi.org/10.1126/science.1156675https://science.sciencemag.org/content/320/5882/1476.full.pdf
999 C 5 |a 10.1103/PhysRevLett.122.172502
|1 M Duer
|9 -- missing cx lookup --
|2 Crossref
|u M. Duer et al., Direct Observation of Proton-Neutron Short-Range Correlation Dominance in Heavy Nuclei. Phys. Rev. Lett. 122, 172502 (2019). https://doi.org/10.1103/PhysRevLett.122.172502
|t Phys. Rev. Lett.
|v 122
|y 2019
999 C 5 |a 10.1103/physrevc.71.044615
|9 -- missing cx lookup --
|2 Crossref
|u M. Sargsian, T. Abrahamyan, M. Strikman, L. Frankfurt, Exclusive electrodisintegration of $$^{3}{\rm He}$$ at high $${Q}^{2}$$. ii. decay function formalism, Phys. Rev. C 71 (4) (2005). https://doi.org/10.1103/physrevc.71.044615
999 C 5 |a 10.1103/PhysRevLett.98.132501
|1 R Schiavilla
|9 -- missing cx lookup --
|2 Crossref
|u R. Schiavilla, R.B. Wiringa, S.C. Pieper, J. Carlson, Tensor Forces and the Ground-State Structure of Nuclei. Phys. Rev. Lett. 98, 132501 (2007). https://doi.org/10.1103/PhysRevLett.98.132501. arXiv:nucl-th/0611037
|t Phys. Rev. Lett.
|v 98
|y 2007
999 C 5 |a 10.1103/PhysRevC.89.034305
|1 MM Sargsian
|9 -- missing cx lookup --
|2 Crossref
|u M.M. Sargsian, New properties of the high-momentum distribution of nucleons in asymmetric nuclei. Phys. Rev. C 89(3), 034305 (2014). https://doi.org/10.1103/PhysRevC.89.034305. arXiv:1210.3280
|t Phys. Rev. C
|v 89
|y 2014
999 C 5 |a 10.1126/science.1256785
|9 -- missing cx lookup --
|2 Crossref
|u O. Hen, et al., Momentum sharing in imbalanced fermi systems, Science 346 (6209) (2014) 614–617. https://doi.org/10.1126/science.1256785arXiv:https://science.sciencemag.org/content/346/6209/614.full.pdf
999 C 5 |a 10.1038/s41586-018-0400-z
|9 -- missing cx lookup --
|1 M Duer
|p 617 -
|2 Crossref
|u M. Duer et al., Probing the high-momentum protons and neutrons in neutron-rich nuclei. Nature 560, 617–621 (2018). https://doi.org/10.1038/s41586-018-0400-z
|t Nature
|v 560
|y 2018
999 C 5 |a 10.1103/PhysRev.81.165
|9 -- missing cx lookup --
|1 R Jastrow
|p 165 -
|2 Crossref
|u R. Jastrow, On the nucleon-nucleon interaction. Phys. Rev. 81, 165–170 (1951). https://doi.org/10.1103/PhysRev.81.165
|t Phys. Rev.
|v 81
|y 1951
999 C 5 |a 10.1103/PhysRevC.51.38
|9 -- missing cx lookup --
|1 RB Wiringa
|p 38 -
|2 Crossref
|u R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, An Accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 51, 38–51 (1995). https://doi.org/10.1103/PhysRevC.51.38. arXiv:nucl-th/9408016
|t Phys. Rev. C
|v 51
|y 1995
999 C 5 |a 10.1103/RevModPhys.81.1773
|9 -- missing cx lookup --
|1 E Epelbaum
|p 1773 -
|2 Crossref
|u E. Epelbaum, H.-W. Hammer, U.-G. Meissner, Modern Theory of Nuclear Forces. Rev. Mod. Phys. 81, 1773–1825 (2009). https://doi.org/10.1103/RevModPhys.81.1773. arXiv:0811.1338
|t Rev. Mod. Phys.
|v 81
|y 2009
999 C 5 |a 10.1016/0375-9474(81)90413-9
|9 -- missing cx lookup --
|1 M Harvey
|p 326 -
|2 Crossref
|u M. Harvey, Effective nuclear forces in the quark model with delta and hidden-color channel coupling. Nucl. Phys. A 352(3), 326–342 (1981). https://doi.org/10.1016/0375-9474(81)90413-9
|t Nucl. Phys. A
|v 352
|y 1981
999 C 5 |a 10.1103/PhysRevD.34.1460
|9 -- missing cx lookup --
|1 C Ji
|p 1460 -
|2 Crossref
|u C. Ji, S. Brodsky, Quantum-chromodynamic evolution of six-quark states. Phys. Rev. D 34, 1460–1473 (1986). https://doi.org/10.1103/PhysRevD.34.1460
|t Phys. Rev. D
|v 34
|y 1986
999 C 5 |a 10.1016/0370-1573(81)90129-0
|9 -- missing cx lookup --
|1 L Frankfurt
|p 215 -
|2 Crossref
|u L. Frankfurt, M. Strikman, High-energy phenomena, short-range nuclear structure and QCD. Phys. Rept. 76(4), 215–347 (1981). https://doi.org/10.1016/0370-1573(81)90129-0
|t Phys. Rept.
|v 76
|y 1981
999 C 5 |a 10.1103/PhysRevC.89.045203
|1 G Miller
|9 -- missing cx lookup --
|2 Crossref
|u G. Miller, Pionic and hidden-color, six-quark contributions to the deuteron $${b}_{1}$$ structure function. Phys. Rev. C 89, 045203 (2014). https://doi.org/10.1103/PhysRevC.89.045203
|t Phys. Rev. C
|v 89
|y 2014
999 C 5 |a 10.1016/j.nuclphysa.2022.122563
|1 J Rittenhouse
|9 -- missing cx lookup --
|2 Crossref
|u J. Rittenhouse, West, Diquark induced short-range nucleon-nucleon correlations & the EMC effect. Nucl. Phys. A 1029, 122563 (2023). https://doi.org/10.1016/j.nuclphysa.2022.122563. arXiv:2009.06968
|t Nucl. Phys. A
|v 1029
|y 2023
999 C 5 |a 10.1016/j.nuclphysa.2020.122134
|1 J Rittenhouse West
|9 -- missing cx lookup --
|2 Crossref
|u J. Rittenhouse West, S.J. Brodsky, G.F. de Teramond, A.S. Goldhaber, I. Schmidt, QCD hidden-color hexadiquark in the core of nuclei. Nucl. Phys. A 1007, 122134 (2021). https://doi.org/10.1016/j.nuclphysa.2020.122134. arXiv:2004.14659
|t Nucl. Phys. A
|v 1007
|y 2021
999 C 5 |a 10.1016/0370-1573(88)90179-2
|9 -- missing cx lookup --
|1 L Frankfurt
|p 235 -
|2 Crossref
|u L. Frankfurt, M. Strikman, Hard nuclear processes and microscopic nuclear structure. Phys. Rept. 160(5), 235–427 (1988). https://doi.org/10.1016/0370-1573(88)90179-2
|t Phys. Rept.
|v 160
|y 1988
999 C 5 |a 10.1016/j.nuclphysa.2006.10.057
|9 -- missing cx lookup --
|1 MM Sargsian
|p 199 -
|2 Crossref
|u M.M. Sargsian, Superfast quarks in the nuclear medium. Nucl. Phys. A 782, 199–206 (2007). https://doi.org/10.1016/j.nuclphysa.2006.10.057
|t Nucl. Phys. A
|v 782
|y 2007
999 C 5 |a 10.1140/epjc/s10052-015-3755-4
|9 -- missing cx lookup --
|2 Crossref
|u A. Freese, M. Sargsian, M. Strikman, Probing superfast quarks in nuclei through dijet production at the LHC, Eur. Phys. J. C 75 (11) (nov 2015). https://doi.org/10.1140/epjc/s10052-015-3755-4
999 C 5 |a 10.1103/PhysRevD.99.114019
|1 A Freese
|9 -- missing cx lookup --
|2 Crossref
|u A. Freese, W. Cosyn, M. Sargsian, QCD evolution of superfast quarks. Phys. Rev. D 99, 114019 (2019). https://doi.org/10.1103/PhysRevD.99.114019
|t Phys. Rev. D
|v 99
|y 2019
999 C 5 |a 10.1103/PhysRevLett.105.212502
|1 N Fomin
|9 -- missing cx lookup --
|2 Crossref
|u N. Fomin et al., Scaling of the $${F}_{2}$$ structure function in nuclei and quark distributions at $$x {>} 1$$. Phys. Rev. Lett. 105, 212502 (2010). https://doi.org/10.1103/PhysRevLett.105.212502
|t Phys. Rev. Lett.
|v 105
|y 2010
999 C 5 |2 Crossref
|u J. Arrington, D. Day, N. Fomin, P. Solvignon, E12-06-105: Inclusive Scattering from Nuclei at $$x {>} 1$$ in the quasielastic and deeply inelastic regimes (2006). https://www.jlab.org/exp_prog/proposals/06/PR12-06-105.pdf
999 C 5 |a 10.1103/PhysRevLett.125.262501
|1 C Yero
|9 -- missing cx lookup --
|2 Crossref
|u C. Yero et al., Probing the deuteron at very large internal momenta. Phys. Rev. Lett. 125, 262501 (2020). https://doi.org/10.1103/PhysRevLett.125.262501
|t Phys. Rev. Lett.
|v 125
|y 2020
999 C 5 |a 10.1103/physrevc.100.044320
|9 -- missing cx lookup --
|2 Crossref
|u M. Sargsian, D. Day, L. Frankfurt, M. Strikman, Searching for three-nucleon short-range correlations, Phys. Rev. C 100 (4) (2019). https://doi.org/10.1103/physrevc.100.044320
999 C 5 |a 10.1103/PhysRevC.107.014319
|1 D Day
|9 -- missing cx lookup --
|2 Crossref
|u D. Day, L. Frankfurt, M. Sargsian, M. Strikman, Toward observation of three-nucleon short-range correlations in high-$${Q}^{2} a(e,{e}^{^{\prime }})x$$ reactions. Phys. Rev. C 107, 014319 (2023). https://doi.org/10.1103/PhysRevC.107.014319
|t Phys. Rev. C
|v 107
|y 2023
999 C 5 |a 10.1016/j.physrep.2015.06.002
|9 -- missing cx lookup --
|1 C. Ciofi degli Atti
|p 1 -
|2 Crossref
|u C. Ciofi degli. Atti, In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances. Phys. Rept. 590, 1–85 (2015). https://doi.org/10.1016/j.physrep.2015.06.002
|t Phys. Rept.
|v 590
|y 2015
999 C 5 |a 10.1103/PhysRevC.92.024003
|1 T Neff
|9 -- missing cx lookup --
|2 Crossref
|u T. Neff, H. Feldmeier, W. Horiuchi, Short-range correlations in nuclei with similarity renormalization group transformations. Phys. Rev. C 92(2), 024003 (2015). https://doi.org/10.1103/PhysRevC.92.024003. arXiv:1506.02237
|t Phys. Rev. C
|v 92
|y 2015
999 C 5 |a 10.1103/PhysRevC.104.034311
|1 AJ Tropiano
|9 -- missing cx lookup --
|2 Crossref
|u A.J. Tropiano, S.K. Bogner, R.J. Furnstahl, Short-range correlation physics at low renormalization group resolution. Phys. Rev. C 104(3), 034311 (2021). https://doi.org/10.1103/PhysRevC.104.034311. arXiv:2105.13936
|t Phys. Rev. C
|v 104
|y 2021
999 C 5 |a 10.1007/s00601-021-01658-5
|9 -- missing cx lookup --
|1 RJ Furnstahl
|p 72 -
|2 Crossref
|u R.J. Furnstahl, H.W. Hammer, A. Schwenk, Nuclear Structure at the Crossroads. Few Body Syst. 62(3), 72 (2021). https://doi.org/10.1007/s00601-021-01658-5. arXiv:2107.00413
|t Few Body Syst.
|v 62
|y 2021
999 C 5 |a 10.1016/0370-2693(83)90437-9
|9 -- missing cx lookup --
|1 JJ Aubert
|p 275 -
|2 Crossref
|u J.J. Aubert et al., The ratio of the nucleon structure functions $$F2_n$$ for iron and deuterium. Phys. Lett. B 123, 275–278 (1983). https://doi.org/10.1016/0370-2693(83)90437-9
|t Phys. Lett. B
|v 123
|y 1983
999 C 5 |a 10.1103/PhysRevLett.103.202301
|1 J Seely
|9 -- missing cx lookup --
|2 Crossref
|u J. Seely et al., New measurements of the EMC effect in very light nuclei. Phys. Rev. Lett. 103, 202301 (2009). https://doi.org/10.1103/PhysRevLett.103.202301. arXiv:0904.4448
|t Phys. Rev. Lett.
|v 103
|y 2009
999 C 5 |a 10.1103/PhysRevLett.106.052301
|1 LB Weinstein
|9 -- missing cx lookup --
|2 Crossref
|u L.B. Weinstein, E. Piasetzky, D.W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Short Range Correlations and the EMC Effect. Phys. Rev. Lett. 106, 052301 (2011). https://doi.org/10.1103/PhysRevLett.106.052301. arXiv:1009.5666
|t Phys. Rev. Lett.
|v 106
|y 2011
999 C 5 |a 10.1038/s41586-019-0925-9
|9 -- missing cx lookup --
|1 B Schmookler
|p 354 -
|2 Crossref
|u B. Schmookler et al., Modified structure of protons and neutrons in correlated pairs. Nature 566(7744), 354–358 (2019). https://doi.org/10.1038/s41586-019-0925-9. arXiv:2004.12065
|t Nature
|v 566
|y 2019
999 C 5 |a 10.1016/j.physrep.2015.05.001
|9 -- missing cx lookup --
|1 SJ Brodsky
|p 1 -
|2 Crossref
|u S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-Front Holographic QCD and Emerging Confinement. Phys. Rept. 584, 1–105 (2015). https://doi.org/10.1016/j.physrep.2015.05.001. arXiv:1407.8131
|t Phys. Rept.
|v 584
|y 2015
999 C 5 |a 10.1103/PhysRevC.106.055202
|1 DN Kim
|9 -- missing cx lookup --
|2 Crossref
|u D.N. Kim, G.A. Miller, Light-front holography model of the EMC effect. Phys. Rev. C 106(5), 055202 (2022). https://doi.org/10.1103/PhysRevC.106.055202. arXiv:2209.13753
|t Phys. Rev. C
|v 106
|y 2022
999 C 5 |a 10.1016/j.physrep.2011.12.002
|9 -- missing cx lookup --
|1 L Frankfurt
|p 255 -
|2 Crossref
|u L. Frankfurt, V. Guzey, M. Strikman, Leading Twist Nuclear Shadowing Phenomena in Hard Processes with Nuclei. Phys. Rept. 512, 255–393 (2012). https://doi.org/10.1016/j.physrep.2011.12.002. arXiv:1106.2091
|t Phys. Rept.
|v 512
|y 2012
999 C 5 |a 10.1103/PhysRevC.64.022201
|1 GA Miller
|9 -- missing cx lookup --
|2 Crossref
|u G.A. Miller, Revealing nuclear pions using electron scattering. Phys. Rev. C 64, 022201 (2001). https://doi.org/10.1103/PhysRevC.64.022201. arXiv:nucl-th/0104025
|t Phys. Rev. C
|v 64
|y 2001
999 C 5 |a 10.1103/PhysRevLett.64.2479
|9 -- missing cx lookup --
|1 DM Alde
|p 2479 -
|2 Crossref
|u D.M. Alde et al., Nuclear dependence of dimuon production at 800-GeV. FNAL-772 experiment. Phys. Rev. Lett. 64, 2479–2482 (1990). https://doi.org/10.1103/PhysRevLett.64.2479
|t Phys. Rev. Lett.
|v 64
|y 1990
999 C 5 |a 10.1016/j.physletb.2023.137935
|9 -- missing cx lookup --
|2 Crossref
|u M. Alvioli, M. Strikman, Hunting for an EMC-like effect for antiquarks (10 2022). arXiv:2210.12597
999 C 5 |a 10.1140/epjc/s10052-017-4906-6
|9 -- missing cx lookup --
|1 P Kotko
|p 353 -
|2 Crossref
|u P. Kotko, K. Kutak, S. Sapeta, A.M. Stasto, M. Strikman, Estimating nonlinear effects in forward dijet production in ultra-peripheral heavy ion collisions at the LHC. Eur. Phys. J. C 77(5), 353 (2017). https://doi.org/10.1140/epjc/s10052-017-4906-6. arXiv:1702.03063
|t Eur. Phys. J. C
|v 77
|y 2017
999 C 5 |a 10.1146/annurev.ns.44.120194.002441
|9 -- missing cx lookup --
|1 LL Frankfurt
|p 501 -
|2 Crossref
|u L.L. Frankfurt, G.A. Miller, M. Strikman, The Geometrical color optics of coherent high-energy processes. Ann. Rev. Nucl. Part. Sci. 44, 501–560 (1994). https://doi.org/10.1146/annurev.ns.44.120194.002441. arXiv:hep-ph/9407274
|t Ann. Rev. Nucl. Part. Sci.
|v 44
|y 1994
999 C 5 |a 10.1103/PhysRevLett.86.4773
|9 -- missing cx lookup --
|1 EM Aitala
|p 4773 -
|2 Crossref
|u E.M. Aitala et al., Observation of color transparency in diffractive dissociation of pions. Phys. Rev. Lett. 86, 4773–4777 (2001). https://doi.org/10.1103/PhysRevLett.86.4773. arXiv:hep-ex/0010044
|t Phys. Rev. Lett.
|v 86
|y 2001
999 C 5 |a 10.1103/PhysRevLett.99.242502
|1 B Clasie
|9 -- missing cx lookup --
|2 Crossref
|u B. Clasie et al., Measurement of nuclear transparency for the A(e, e-prime’ pi+) reaction. Phys. Rev. Lett. 99, 242502 (2007). https://doi.org/10.1103/PhysRevLett.99.242502. arXiv:0707.1481
|t Phys. Rev. Lett.
|v 99
|y 2007
999 C 5 |a 10.1016/j.physletb.2012.05.019
|9 -- missing cx lookup --
|1 L El Fassi
|p 326 -
|2 Crossref
|u L. El Fassi et al., Evidence for the onset of color transparency in $$\rho ^0$$ electroproduction off nuclei. Phys. Lett. B 712, 326–330 (2012). https://doi.org/10.1016/j.physletb.2012.05.019. arXiv:1201.2735
|t Phys. Lett. B
|v 712
|y 2012
999 C 5 |a 10.3390/physics4030064
|9 -- missing cx lookup --
|1 L El Fassi
|p 970 -
|2 Crossref
|u L. El Fassi, Chasing QCD Signatures in Nuclei Using Color Coherence Phenomena. Physics 4(3), 970–980 (2022). https://doi.org/10.3390/physics4030064
|t Physics
|v 4
|y 2022
999 C 5 |a 10.1103/PhysRevLett.126.082301
|1 D Bhetuwal
|9 -- missing cx lookup --
|2 Crossref
|u D. Bhetuwal et al., Ruling out Color Transparency in Quasielastic $$^{12}$$C(e, e’p) up to $$Q^2$$ of 14.2 (GeV/c)$$^2$$. Phys. Rev. Lett. 126(8), 082301 (2021). https://doi.org/10.1103/PhysRevLett.126.082301. arXiv:2011.00703
|t Phys. Rev. Lett.
|v 126
|y 2021
999 C 5 |a 10.1103/PhysRevC.104.L012201
|9 -- missing cx lookup --
|1 O Caplow-Munro
|p L012201 -
|2 Crossref
|u O. Caplow-Munro, G.A. Miller, Color transparency and the proton form factor: Evidence for the Feynman mechanism. Phys. Rev. C 104(1), L012201 (2021). https://doi.org/10.1103/PhysRevC.104.L012201. arXiv:2104.11168
|t Phys. Rev. C
|v 104
|y 2021
999 C 5 |a 10.1016/0375-9474(94)90903-2
|9 -- missing cx lookup --
|1 K Egiian
|p 365 -
|2 Crossref
|u K. Egiian, L. Frankfurt, W.R. Greenberg, G.A. Miller, M. Sargsian, M. Strikman, Searching for color coherent effects at intermediate Q**2 via double scattering processes. Nucl. Phys. A 580, 365–382 (1994). https://doi.org/10.1016/0375-9474(94)90903-2. arXiv:nucl-th/9401002
|t Nucl. Phys. A
|v 580
|y 1994
999 C 5 |a 10.1007/BF01292764
|9 -- missing cx lookup --
|1 LL Frankfurt
|p 97 -
|2 Crossref
|u L.L. Frankfurt, W.R. Greenberg, G.A. Miller, M.M. Sargsian, M.I. Strikman, Color transparency effects in electron deuteron interactions at intermediate Q**2. Z. Phys. A 352, 97–113 (1995). https://doi.org/10.1007/BF01292764. arXiv:nucl-th/9501009
|t Z. Phys. A
|v 352
|y 1995
999 C 5 |a 10.1016/0370-2693(95)01558-2
|9 -- missing cx lookup --
|1 LL Frankfurt
|p 201 -
|2 Crossref
|u L.L. Frankfurt, W.R. Greenberg, G.A. Miller, M.M. Sargsian, M.I. Strikman, Color transparency and the vanishing deuterium shadow. Phys. Lett. B 369, 201–206 (1996). https://doi.org/10.1016/0370-2693(95)01558-2. arXiv:nucl-th/9412033
|t Phys. Lett. B
|v 369
|y 1996
999 C 5 |a 10.1103/PhysRevLett.30.1343
|9 -- missing cx lookup --
|1 DJ Gross
|p 1343 -
|2 Crossref
|u D.J. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973). https://doi.org/10.1103/PhysRevLett.30.1343
|t Phys. Rev. Lett.
|v 30
|y 1973
999 C 5 |a 10.1007/978-94-010-0267-7_1
|9 -- missing cx lookup --
|2 Crossref
|u Y. L. Dokshitzer, QCD phenomenology, 2003, pp. 1–33. arXiv:hep-ph/0306287
999 C 5 |a 10.1088/0031-8949/19/2/015
|9 -- missing cx lookup --
|1 B Andersson
|p 184 -
|2 Crossref
|u B. Andersson, G. Gustafson, C. Peterson, Quark Jet Fragmentation. Phys. Scripta 19, 184–190 (1979). https://doi.org/10.1088/0031-8949/19/2/015
|t Phys. Scripta
|v 19
|y 1979
999 C 5 |a 10.1016/0370-1573(83)90080-7
|9 -- missing cx lookup --
|1 B Andersson
|p 31 -
|2 Crossref
|u B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Parton Fragmentation and String Dynamics. Phys. Rept. 97, 31–145 (1983). https://doi.org/10.1016/0370-1573(83)90080-7
|t Phys. Rept.
|v 97
|y 1983
999 C 5 |a 10.1103/PhysRevLett.40.1624
|9 -- missing cx lookup --
|1 LS Osborne
|p 1624 -
|2 Crossref
|u L.S. Osborne, C. Bolon, R.L. Lanza, D. Luckey, D.G. Roth, J.F. Martin, G.J. Feldman, M.E.B. Franklin, G. Hanson, M.L. Perl, Electroproduction of Hadrons From Nuclei. Phys. Rev. Lett. 40, 1624 (1978). https://doi.org/10.1103/PhysRevLett.40.1624
|t Phys. Rev. Lett.
|v 40
|y 1978
999 C 5 |a 10.1007/BF01412322
|9 -- missing cx lookup --
|1 J Ashman
|p 1 -
|2 Crossref
|u J. Ashman et al., Comparison of forward hadrons produced in muon interactions on nuclear targets and deuterium. Z. Phys. C 52, 1–12 (1991). https://doi.org/10.1007/BF01412322
|t Z. Phys. C
|v 52
|y 1991
999 C 5 |a 10.1016/0550-3213(84)90045-2
|9 -- missing cx lookup --
|1 A Arvidson
|p 381 -
|2 Crossref
|u A. Arvidson et al., Hadron production in 200-GeV $$\mu $$ - copper and $$\mu $$ - carbon deep inelastic interactions. Nucl. Phys. B 246, 381–407 (1984). https://doi.org/10.1016/0550-3213(84)90045-2
|t Nucl. Phys. B
|v 246
|y 1984
999 C 5 |a 10.1016/0550-3213(74)90360-5
|9 -- missing cx lookup --
|1 X Artru
|p 93 -
|2 Crossref
|u X. Artru, G. Mennessier, String model and multiproduction. Nucl. Phys. B 70, 93–115 (1974). https://doi.org/10.1016/0550-3213(74)90360-5
|t Nucl. Phys. B
|v 70
|y 1974
999 C 5 |a 10.1016/0370-2693(78)90370-2
|9 -- missing cx lookup --
|1 EV Shuryak
|p 150 -
|2 Crossref
|u E.V. Shuryak, Quark-Gluon Plasma and Hadronic Production of Leptons. Photons and Psions. Phys. Lett. B 78, 150 (1978). https://doi.org/10.1016/0370-2693(78)90370-2
|t Photons and Psions. Phys. Lett. B
|v 78
|y 1978
999 C 5 |a 10.1016/j.physletb.2003.11.011
|9 -- missing cx lookup --
|1 X-N Wang
|p 299 -
|2 Crossref
|u X.-N. Wang, Why the observed jet quenching at RHIC is due to parton energy loss. Phys. Lett. B 579, 299–308 (2004). https://doi.org/10.1016/j.physletb.2003.11.011
|t Phys. Lett. B
|v 579
|y 2004
999 C 5 |a 10.1016/j.nuclphysa.2004.04.110
|9 -- missing cx lookup --
|1 BZ Kopeliovich
|p 211 -
|2 Crossref
|u B.Z. Kopeliovich, J. Nemchik, E. Predazzi, A. Hayashigaki, Nuclear hadronization: Within or without? Nucl. Phys. A 740, 211–245 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.110
|t Nucl. Phys. A
|v 740
|y 2004
999 C 5 |a 10.1016/j.physletb.2021.136171
|1 WK Brooks
|9 -- missing cx lookup --
|2 Crossref
|u W.K. Brooks, J.A. López, Estimating the color lifetime of energetic quarks. Phys. Lett. B 816, 136171 (2021). https://doi.org/10.1016/j.physletb.2021.136171
|t Phys. Lett. B
|v 816
|y 2021
999 C 5 |a 10.1103/PhysRevLett.60.1924
|9 -- missing cx lookup --
|1 SJ Brodsky
|p 1924 -
|2 Crossref
|u S.J. Brodsky, G.F. de Teramond, Spin Correlations, QCD Color Transparency and Heavy Quark Thresholds in Proton Proton Scattering. Phys. Rev. Lett. 60, 1924 (1988). https://doi.org/10.1103/PhysRevLett.60.1924
|t Phys. Rev. Lett.
|v 60
|y 1988
999 C 5 |a 10.1088/0954-3899/29/3/201
|9 -- missing cx lookup --
|1 M Sargsian
|p R1 -
|2 Crossref
|u M. Sargsian et al., Hadrons in the nuclear medium. J. Phys. G: Nucl. Part. Phys. 29(3), R1–R45 (2003). https://doi.org/10.1088/0954-3899/29/3/201
|t J. Phys. G: Nucl. Part. Phys.
|v 29
|y 2003
999 C 5 |a 10.1016/0375-9474(93)90504-Q
|9 -- missing cx lookup --
|1 L Frankfurt
|p 752 -
|2 Crossref
|u L. Frankfurt, G.A. Miller, M. Strikman, Precocious dominance of point - like configurations in hadronic form-factors. Nucl. Phys. A 555, 752–764 (1993). https://doi.org/10.1016/0375-9474(93)90504-Q
|t Nucl. Phys. A
|v 555
|y 1993
999 C 5 |a 10.1016/j.ppnp.2012.04.002
|9 -- missing cx lookup --
|1 J Arrington
|p 898 -
|2 Crossref
|u J. Arrington, D. Higinbotham, G. Rosner, M. Sargsian, Hard probes of short-range nucleon-nucleon correlations. Prog. Part. Nucl. Phys. 67(4), 898–938 (2012). https://doi.org/10.1016/j.ppnp.2012.04.002
|t Prog. Part. Nucl. Phys.
|v 67
|y 2012
999 C 5 |a 10.1146/annurev-nucl-102020-022253
|9 -- missing cx lookup --
|2 Crossref
|u J. Arrington, N. Fomin, A. Schmidt, Progress in understanding short-range structure in nuclei: an experimental perspective, Ann. Rev. Nucl. Part. Sci. (2022) 307 arXiv:2203.02608
999 C 5 |a 10.1556/APH.21.2004.2-4.30
|9 -- missing cx lookup --
|1 J Arrington
|p 295 -
|2 Crossref
|u J. Arrington, Do ordinary nuclei contain exotic states of matter? Acta Phys. Hung. A 21, 295 (2004). https://doi.org/10.1556/APH.21.2004.2-4.30. arXiv:hep-ph/0304213
|t Acta Phys. Hung. A
|v 21
|y 2004
999 C 5 |a 10.1103/PhysRevLett.52.1199
|9 -- missing cx lookup --
|1 PJ Mulders
|p 1199 -
|2 Crossref
|u P.J. Mulders, A.W. Thomas, The ‘Six Quark’ Component in the Deuteron From a Comparison of Electron and Neutrino / Anti-neutrinos Structure Functions. Phys. Rev. Lett. 52, 1199 (1984). https://doi.org/10.1103/PhysRevLett.52.1199
|t Phys. Rev. Lett.
|v 52
|y 1984
999 C 5 |a 10.1103/RevModPhys.89.045002
|1 O Hen
|9 -- missing cx lookup --
|2 Crossref
|u O. Hen, G. Miller, E. Piasetzky, L. Weinstein, Nucleon-Nucleon Correlations, Short-lived Excitations, and the Quarks Within. Rev. Mod. Phys. 89(4), 045002 (2017). https://doi.org/10.1103/RevModPhys.89.045002
|t Rev. Mod. Phys.
|v 89
|y 2017
999 C 5 |a 10.1103/PhysRevLett.85.1186
|9 -- missing cx lookup --
|1 I Niculescu
|p 1186 -
|2 Crossref
|u I. Niculescu et al., Experimental verification of quark hadron duality. Phys. Rev. Lett. 85, 1186–1189 (2000). https://doi.org/10.1103/PhysRevLett.85.1186
|t Phys. Rev. Lett.
|v 85
|y 2000
999 C 5 |a 10.1103/PhysRevC.91.055206
|1 I Niculescu
|9 -- missing cx lookup --
|2 Crossref
|u I. Niculescu et al., Direct observation of quark-hadron duality in the free neutron $$F_2$$ structure function. Phys. Rev. C 91(5), 055206 (2015). https://doi.org/10.1103/PhysRevC.91.055206. arXiv:1501.02203
|t Phys. Rev. C
|v 91
|y 2015
999 C 5 |a 10.1103/PhysRevC.73.035205
|1 J Arrington
|9 -- missing cx lookup --
|2 Crossref
|u J. Arrington, R. Ent, C.E. Keppel, J. Mammei, I. Niculescu, Low Q scaling, duality, and the EMC effect. Phys. Rev. C 73, 035205 (2006). https://doi.org/10.1103/PhysRevC.73.035205. arXiv:nucl-ex/0307012
|t Phys. Rev. C
|v 73
|y 2006
999 C 5 |a 10.1142/S0218301315300039
|9 -- missing cx lookup --
|1 W Boeglin
|p 1530003 -
|2 Crossref
|u W. Boeglin, M. Sargsian, Modern Studies of the Deuteron: from the Lab Frame to the Light Front. Int. J. Mod. Phys. E 24(03), 1530003 (2015). https://doi.org/10.1142/S0218301315300039. arXiv:1501.05377
|t Int. J. Mod. Phys. E
|v 24
|y 2015
999 C 5 |a 10.1103/PhysRevLett.107.262501
|1 WU Boeglin
|9 -- missing cx lookup --
|2 Crossref
|u W.U. Boeglin et al., Probing the high momentum component of the deuteron at high $${Q}^{2}$$. Phys. Rev. Lett. 107, 262501 (2011). https://doi.org/10.1103/PhysRevLett.107.262501
|t Phys. Rev. Lett.
|v 107
|y 2011
999 C 5 |a 10.1103/PhysRevC.82.014612
|1 MM Sargsian
|9 -- missing cx lookup --
|2 Crossref
|u M.M. Sargsian, Large $${Q}^{2}$$ electrodisintegration of the deuteron in the virtual nucleon approximation. Phys. Rev. C 82, 014612 (2010). https://doi.org/10.1103/PhysRevC.82.014612
|t Phys. Rev. C
|v 82
|y 2010
999 C 5 |a 10.1016/j.physletb.2005.01.046
|9 -- missing cx lookup --
|1 J Laget
|p 49 -
|2 Crossref
|u J. Laget, The electro-disintegration of few body systems revisited. Physics Letters B 609(1), 49–56 (2005). https://doi.org/10.1016/j.physletb.2005.01.046
|t Physics Letters B
|v 609
|y 2005
999 C 5 |a 10.1103/PhysRevC.90.064006
|1 WP Ford
|9 -- missing cx lookup --
|2 Crossref
|u W.P. Ford, S. Jeschonnek, J.W. Van Orden, Momentum distributions for $$^{2}{\rm H} (e,{e}^{^{\prime }}p)$$. Phys. Rev. C 90, 064006 (2014). https://doi.org/10.1103/PhysRevC.90.064006
|t Phys. Rev. C
|v 90
|y 2014
999 C 5 |a 10.48550/ARXIV.2108.11502
|9 -- missing cx lookup --
|2 Crossref
|u F. Vera, Probing the structure of deuteron at very short distances (2021). https://doi.org/10.48550/ARXIV.2108.11502. arxiv:2108.11502
999 C 5 |a 10.1103/PhysRevLett.130.112502
|1 MM Sargsian
|9 -- missing cx lookup --
|2 Crossref
|u M.M. Sargsian, F. Vera, New Structure in the Deuteron. Phys. Rev. Lett. 130(11), 112502 (2023). https://doi.org/10.1103/PhysRevLett.130.112502. arXiv:2208.00501
|t Phys. Rev. Lett.
|v 130
|y 2023
999 C 5 |2 Crossref
|u C. Yero, Deuteron disintegration at large missing momenta (January 2023)
999 C 5 |a 10.1146/annurev.nucl.50.1.481
|9 -- missing cx lookup --
|1 H Heiselberg
|p 481 -
|2 Crossref
|u H. Heiselberg, V. Pandharipande, Recent progress in neutron star theory. Ann. Rev. Nucl. Part. Sci. 50, 481–524 (2000). https://doi.org/10.1146/annurev.nucl.50.1.481. arXiv:astro-ph/0003276
|t Ann. Rev. Nucl. Part. Sci.
|v 50
|y 2000
999 C 5 |a 10.1103/PhysRevC.71.044614
|1 M Sargsian
|9 -- missing cx lookup --
|2 Crossref
|u M. Sargsian, T. Abrahamyan, M. Strikman, L. Frankfurt, Exclusive electrodisintegration of $$^{3}{\rm He}$$ at high $${Q}^{2}$$. i. generalized eikonal approximation. Phys. Rev. C 71, 044614 (2005). https://doi.org/10.1103/PhysRevC.71.044614
|t Phys. Rev. C
|v 71
|y 2005
999 C 5 |a 10.1146/annurev-nucl-102115-044939
|9 -- missing cx lookup --
|1 N Fomin
|p 129 -
|2 Crossref
|u N. Fomin, D. Higinbotham, M. Sargsian, P. Solvignon, New results on short-range correlations in nuclei. Ann. Rev. Nucl. Part. Sci. 67(1), 129–159 (2017). https://doi.org/10.1146/annurev-nucl-102115-044939
|t Ann. Rev. Nucl. Part. Sci.
|v 67
|y 2017
999 C 5 |a 10.1103/PhysRevLett.43.1143
|9 -- missing cx lookup --
|1 D Day
|p 1143 -
|2 Crossref
|u D. Day, J.S. Mccarthy, I. Sick, R.G. Arnold, B.T. Chertok, S. Rock, Z.M. Szalata, F. Martin, B.A. Mecking, G. Tamas, INCLUSIVE ELECTRON SCATTERING FROM HE-3. Phys. Rev. Lett. 43, 1143 (1979). https://doi.org/10.1103/PhysRevLett.43.1143
|t Phys. Rev. Lett.
|v 43
|y 1979
999 C 5 |a 10.1103/PhysRevC.26.1592
|9 -- missing cx lookup --
|1 S Rock
|p 1592 -
|2 Crossref
|u S. Rock, R.G. Arnold, B.T. Chertok, Z.M. Szalata, D. Day, J.S. McCarthy, F. Martin, B.A. Mecking, I. Sick, G. Tamas, Inelastic Electron Scattering From $$^{3}$$He and $$^{4}$$He in the Threshold Region at High Momentum Transfer. Phys. Rev. C 26, 1592 (1982). https://doi.org/10.1103/PhysRevC.26.1592
|t Phys. Rev. C
|v 26
|y 1982
999 C 5 |a 10.1146/annurev.ns.45.120195.002005
|9 -- missing cx lookup --
|1 DF Geesaman
|p 337 -
|2 Crossref
|u D.F. Geesaman, K. Saito, A.W. Thomas, The nuclear EMC effect. Ann. Rev. Nucl. Part. Sci. 45, 337–390 (1995). https://doi.org/10.1146/annurev.ns.45.120195.002005
|t Ann. Rev. Nucl. Part. Sci.
|v 45
|y 1995
999 C 5 |a 10.1088/0034-4885/66/8/201
|9 -- missing cx lookup --
|1 PR Norton
|p 1253 -
|2 Crossref
|u P.R. Norton, The EMC effect. Rept. Prog. Phys. 66, 1253–1297 (2003). https://doi.org/10.1088/0034-4885/66/8/201
|t Prog. Phys.
|v 66
|y 2003
999 C 5 |a 10.1142/S0218301314300136
|9 -- missing cx lookup --
|1 S Malace
|p 1430013 -
|2 Crossref
|u S. Malace, D. Gaskell, D.W. Higinbotham, I. Cloet, The Challenge of the EMC Effect: existing data and future directions. Int. J. Mod. Phys. E 23(08), 1430013 (2014). https://doi.org/10.1142/S0218301314300136. arXiv:1405.1270
|t Int. J. Mod. Phys. E
|v 23
|y 2014
999 C 5 |a 10.1103/PhysRevLett.108.142001
|9 -- missing cx lookup --
|2 Crossref
|u N. Baillie, et al., Measurement of the neutron F2 structure function via spectator tagging with CLAS, Phys. Rev. Lett. 108 (2012) 142001, [Erratum: Phys.Rev.Lett. 108, 199902 (2012)]. arXiv:1110.2770, https://doi.org/10.1103/PhysRevLett.108.142001
999 C 5 |a 10.1103/PhysRevC.89.045206
|9 -- missing cx lookup --
|2 Crossref
|u S. Tkachenko, et al., Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic $$^2$$H(e, e’p)X scattering with CLAS, Phys. Rev. C 89 (2014) 045206, [Addendum: Phys.Rev.C 90, 059901 (2014)]. arXiv:1402.2477, https://doi.org/10.1103/PhysRevC.89.045206
999 C 5 |a 10.1103/PhysRevC.92.015211
|1 KA Griffioen
|9 -- missing cx lookup --
|2 Crossref
|u K.A. Griffioen et al., Measurement of the EMC Effect in the Deuteron. Phys. Rev. C 92(1), 015211 (2015). https://doi.org/10.1103/PhysRevC.92.015211. arXiv:1506.00871
|t Phys. Rev. C
|v 92
|y 2015
999 C 5 |a 10.1103/PhysRevC.73.035212
|1 AV Klimenko
|9 -- missing cx lookup --
|2 Crossref
|u A.V. Klimenko et al., Electron scattering from high-momentum neutrons in deuterium. Phys. Rev. C 73, 035212 (2006). https://doi.org/10.1103/PhysRevC.73.035212. arXiv:nucl-ex/0510032
|t Phys. Rev. C
|v 73
|y 2006
999 C 5 |a 10.1103/PhysRevLett.117.082501
|1 A Lovato
|9 -- missing cx lookup --
|2 Crossref
|u A. Lovato, S. Gandolfi, J. Carlson, S.C. Pieper, R. Schiavilla, Electromagnetic response of $$^{12}$$C: A first-principles calculation. Phys. Rev. Lett. 117(8), 082501 (2016). https://doi.org/10.1103/PhysRevLett.117.082501. arXiv:1605.00248
|t Phys. Rev. Lett.
|v 117
|y 2016
999 C 5 |a 10.1103/PhysRevLett.116.032701
|1 IC Cloët
|9 -- missing cx lookup --
|2 Crossref
|u I.C. Cloët, W. Bentz, A.W. Thomas, Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule. Phys. Rev. Lett. 116(3), 032701 (2016). https://doi.org/10.1103/PhysRevLett.116.032701. arXiv:1506.05875
|t Phys. Rev. Lett.
|v 116
|y 2016
999 C 5 |a 10.1103/PhysRevLett.94.192302
|1 MM Rvachev
|9 -- missing cx lookup --
|2 Crossref
|u M.M. Rvachev et al., Quasielastic $$^{3}{\rm He}{(e,{e}^{^{\prime }}p)^{2}}{\rm H}$$ reaction at $${Q}^{2}=1.5 {\rm gev}^{2}$$ for recoil momenta up to $$1 {\rm GeV/c}$$. Phys. Rev. Lett. 94, 192302 (2005). https://doi.org/10.1103/PhysRevLett.94.192302
|t Phys. Rev. Lett.
|v 94
|y 2005
999 C 5 |a 10.1103/PhysRevC.73.064004
|1 B Hu
|9 -- missing cx lookup --
|2 Crossref
|u B. Hu et al., Polarization transfer in the H-2(polarized-e, e-prime polarized-p) n reaction up to Q**2 = 1.61-(GeV/c)**2. Phys. Rev. C 73, 064004 (2006). https://doi.org/10.1103/PhysRevC.73.064004. arXiv:nucl-ex/0601025
|t Phys. Rev. C
|v 73
|y 2006
999 C 5 |a 10.1103/PhysRevLett.106.052501
|1 SP Malace
|9 -- missing cx lookup --
|2 Crossref
|u S.P. Malace et al., A precise extraction of the induced polarization in the 4He(e, e’p)3H reaction. Phys. Rev. Lett. 106, 052501 (2011). https://doi.org/10.1103/PhysRevLett.106.052501. arXiv:1011.4483
|t Phys. Rev. Lett.
|v 106
|y 2011
999 C 5 |a 10.1103/PhysRevC.89.034004
|1 WP Ford
|9 -- missing cx lookup --
|2 Crossref
|u W.P. Ford, R. Schiavilla, J.W. Van Orden, The $$^3$$He$$(e, e^\prime p)^2$$H and $$^4$$He$$(e, e^\prime p)^3$$H reactions at high momentum transfer. Phys. Rev. C 89(3), 034004 (2014). https://doi.org/10.1103/PhysRevC.89.034004. arXiv:1401.4399
|t Phys. Rev. C
|v 89
|y 2014
999 C 5 |a 10.1103/PhysRevC.104.025203
|1 R Dupré
|9 -- missing cx lookup --
|2 Crossref
|u R. Dupré et al., Measurement of deeply virtual Compton scattering off $$^{4}{\rm He}$$ with the CEBAF Large Acceptance Spectrometer at Jefferson Lab. Phys. Rev. C 104(2), 025203 (2021). https://doi.org/10.1103/PhysRevC.104.025203. arXiv:2102.07419
|t Phys. Rev. C
|v 104
|y 2021
999 C 5 |a 10.1016/j.physletb.2009.01.064
|9 -- missing cx lookup --
|1 V Guzey
|p 9 -
|2 Crossref
|u V. Guzey, A.W. Thomas, K. Tsushima, Medium modifications of the bound nucleon GPDs and incoherent DVCS on nuclear targets. Phys. Lett. B 673, 9–14 (2009). https://doi.org/10.1016/j.physletb.2009.01.064. arXiv:0806.3288
|t Phys. Lett. B
|v 673
|y 2009
999 C 5 |a 10.1103/PhysRevC.72.034902
|1 S Liuti
|9 -- missing cx lookup --
|2 Crossref
|u S. Liuti, S.K. Taneja, Nuclear medium modifications of hadrons from generalized parton distributions. Phys. Rev. C 72, 034902 (2005). https://doi.org/10.1103/PhysRevC.72.034902. arXiv:hep-ph/0504027
|t Phys. Rev. C
|v 72
|y 2005
999 C 5 |a 10.1088/0034-4885/76/6/066202
|1 M Guidal
|9 -- missing cx lookup --
|2 Crossref
|u M. Guidal, H. Moutarde, M. Vanderhaeghen, Generalized Parton Distributions in the valence region from Deeply Virtual Compton Scattering. Rept. Prog. Phys. 76, 066202 (2013). https://doi.org/10.1088/0034-4885/76/6/066202. arXiv:1303.6600
|t Rept. Prog. Phys.
|v 76
|y 2013
999 C 5 |a 10.48550/ARXIV.1708.00835
|9 -- missing cx lookup --
|2 Crossref
|u W. Armstrong, et al., Spectator-tagged deeply virtual compton scattering on light nuclei, (2017). https://doi.org/10.48550/ARXIV.1708.00835arXiv:1708.00835
999 C 5 |a 10.1103/PhysRevC.98.015203
|1 S Fucini
|9 -- missing cx lookup --
|2 Crossref
|u S. Fucini, S. Scopetta, M. Viviani, Coherent deeply virtual compton scattering off $$^{4}{\rm He}$$. Phys. Rev. C 98, 015203 (2018). https://doi.org/10.1103/PhysRevC.98.015203
|t Phys. Rev. C
|v 98
|y 2018
999 C 5 |2 Crossref
|u P. Zurita, Medium modified Fragmentation Functions with open source xFitter (1 2021). arXiv:2101.01088
999 C 5 |a 10.1140/epjc/s10052-022-10359-0
|9 -- missing cx lookup --
|1 K Eskola
|p 413 -
|2 Crossref
|u K. Eskola, P. Paakkinen, H. Paukkunen, C. Salgado, EPPS21: a global QCD analysis of nuclear PDFs. Eur. Phys. J. C 82(5), 413 (2022). https://doi.org/10.1140/epjc/s10052-022-10359-0. arXiv:2112.12462
|t Eur. Phys. J. C
|v 82
|y 2022
999 C 5 |a 10.1103/PhysRevD.100.096015
|1 M Walt
|9 -- missing cx lookup --
|2 Crossref
|u M. Walt, I. Helenius, W. Vogelsang, Open-source qcd analysis of nuclear parton distribution functions at nlo and nnlo. Phys. Rev. D 100, 096015 (2019). https://doi.org/10.1103/PhysRevD.100.096015
|t Phys. Rev. D
|v 100
|y 2019
999 C 5 |2 Crossref
|u W. Brooks, S. Kuhn, et al., The EMC Effect in Spin Structure Functions, CLAS12 E12-14-00 Experiment (Run Group G) (2014)
999 C 5 |2 Crossref
|u W. Brooks, S. Kuhn, et al., The EMC Effect in Spin Structure Functions, CLAS12 Run Group G Jeopardy Update (2020). https://www.jlab.org/exp_prog/proposals/20/Jeopardy/Run%20Group%20G_Update.pdf
999 C 5 |a 10.1103/PhysRevD.70.116003
|1 SJ Brodsky
|9 -- missing cx lookup --
|2 Crossref
|u S.J. Brodsky, I. Schmidt, J.-J. Yang, Nuclear antishadowing in neutrino deep inelastic scattering. Phys. Rev. D 70, 116003 (2004). https://doi.org/10.1103/PhysRevD.70.116003
|t Phys. Rev. D
|v 70
|y 2004
999 C 5 |a 10.1103/PhysRevC.61.014002
|1 V Guzey
|9 -- missing cx lookup --
|2 Crossref
|u V. Guzey, M. Strikman, Nuclear effects in $${g}_{1A}{(x, Q}^{2})$$ at small x in deep inelastic scattering on $$ ^{7}{\rm Li}$$ and $$ ^{3}{\rm He}$$. Phys. Rev. C 61, 014002 (1999). https://doi.org/10.1103/PhysRevC.61.014002
|t Phys. Rev. C
|v 61
|y 1999
999 C 5 |a 10.1103/PhysRevC.95.055208
|1 L Frankfurt
|9 -- missing cx lookup --
|2 Crossref
|u L. Frankfurt, V. Guzey, M. Strikman, Dynamical model of antishadowing of the nuclear gluon distribution. Phys. Rev. C 95, 055208 (2017). https://doi.org/10.1103/PhysRevC.95.055208
|t Phys. Rev. C
|v 95
|y 2017
999 C 5 |a 10.1016/j.physletb.2006.08.076
|9 -- missing cx lookup --
|1 I Cloët
|p 210 -
|2 Crossref
|u I. Cloët, W. Bentz, A. Thomas, EMC and polarized EMC effects in nuclei. Phy. Lett. B 642(3), 210–217 (2006). https://doi.org/10.1016/j.physletb.2006.08.076
|t Phy. Lett. B
|v 642
|y 2006
999 C 5 |a 10.1103/PhysRevC.72.022203
|1 J Smith
|9 -- missing cx lookup --
|2 Crossref
|u J. Smith, G. Miller, Polarized quark distributions in nuclear matter. Phys. Rev. C 72, 022203 (2005). https://doi.org/10.1103/PhysRevC.72.022203
|t Phys. Rev. C
|v 72
|y 2005
999 C 5 |a 10.1140/epja/i2014-14116-8
|9 -- missing cx lookup --
|1 H Fanchiotti
|p 116 -
|2 Crossref
|u H. Fanchiotti, C.A. García-Canal, T. Tarutina, V. Vento, Medium Effects in DIS from Polarized Nuclear Targets. Eur. Phys. J. A 50, 116 (2014). https://doi.org/10.1140/epja/i2014-14116-8. arXiv:1404.3047
|t Eur. Phys. J. A
|v 50
|y 2014
999 C 5 |a 10.1103/PhysRevLett.95.052302
|1 I Cloët
|9 -- missing cx lookup --
|2 Crossref
|u I. Cloët, W. Bentz, A. Thomas, Spin-dependent structure functions in nuclear matter and the polarized emc effect. Phys. Rev. Lett. 95, 052302 (2005). https://doi.org/10.1103/PhysRevLett.95.052302
|t Phys. Rev. Lett.
|v 95
|y 2005
999 C 5 |a 10.1016/0370-2693(88)90719-8
|9 -- missing cx lookup --
|1 SJ Brodsky
|p 685 -
|2 Crossref
|u S.J. Brodsky, A.H. Mueller, Using Nuclei to Probe Hadronization in QCD. Phys. Lett. B 206, 685–690 (1988). https://doi.org/10.1016/0370-2693(88)90719-8
|t Phys. Lett. B
|v 206
|y 1988
999 C 5 |a 10.1103/PhysRevD.50.3134
|9 -- missing cx lookup --
|1 SJ Brodsky
|p 3134 -
|2 Crossref
|u S.J. Brodsky, L. Frankfurt, J.F. Gunion, A.H. Mueller, M. Strikman, Diffractive leptoproduction of vector mesons in QCD. Phys. Rev. D 50, 3134–3144 (1994). https://doi.org/10.1103/PhysRevD.50.3134. arXiv:hep-ph/9402283
|t Phys. Rev. D
|v 50
|y 1994
999 C 5 |a 10.1016/j.ppnp.2012.11.001
|9 -- missing cx lookup --
|1 D Dutta
|p 1 -
|2 Crossref
|u D. Dutta, K. Hafidi, M. Strikman, Color Transparency: past, present and future. Prog. Part. Nucl. Phys. 69, 1–27 (2013). https://doi.org/10.1016/j.ppnp.2012.11.001. arXiv:1211.2826
|t Prog. Part. Nucl. Phys.
|v 69
|y 2013
999 C 5 |a 10.3390/physics4020042
|9 -- missing cx lookup --
|1 SJ Brodsky
|p 633 -
|2 Crossref
|u S.J. Brodsky, G.F. de Teramond, Onset of Color Transparency in Holographic Light-Front QCD. MDPI Physics 4(2), 633–646 (2022). https://doi.org/10.3390/physics4020042. arXiv:2202.13283
|t MDPI Physics
|v 4
|y 2022
999 C 5 |a 10.1103/PhysRevLett.99.242502
|1 B Clasie
|9 -- missing cx lookup --
|2 Crossref
|u B. Clasie et al., Measurement of Nuclear Transparency for the $$A(e,{e}^{\prime }{\pi }^{+})$$ Reaction. Phys. Rev. Lett. 99, 242502 (2007). https://doi.org/10.1103/PhysRevLett.99.242502. arXiv:0707.1481
|t Phys. Rev. Lett.
|v 99
|y 2007
999 C 5 |a 10.1016/j.physletb.2012.05.019
|9 -- missing cx lookup --
|1 L El Fassi
|p 326 -
|2 Crossref
|u L. El Fassi et al., Evidence for the onset of color transparency in $$\rho ^0$$ electroproduction off nuclei. Phys. Lett. B 712, 326–330 (2012). https://doi.org/10.1016/j.physletb.2012.05.019. arXiv:1201.2735
|t Phys. Lett. B
|v 712
|y 2012
999 C 5 |a 10.1103/PhysRevC.78.015208
|1 L Frankfurt
|9 -- missing cx lookup --
|2 Crossref
|u L. Frankfurt, G.A. Miller, M. Strikman, Color Transparency in Semi-Inclusive Electroproduction of rho Mesons. Phys. Rev. C 78, 015208 (2008). https://doi.org/10.1103/PhysRevC.78.015208. arXiv:0803.4012
|t Phys. Rev. C
|v 78
|y 2008
999 C 5 |a 10.1103/PhysRevC.83.015201
|1 K Gallmeister
|9 -- missing cx lookup --
|2 Crossref
|u K. Gallmeister, M. Kaskulov, U. Mosel, Color transparency in hadronic attenuation of $$\rho ^0$$ mesons. Phys. Rev. C 83, 015201 (2011). https://doi.org/10.1103/PhysRevC.83.015201. arXiv:1007.1141
|t Phys. Rev. C
|v 83
|y 2011
999 C 5 |a 10.1103/PhysRevC.87.064608
|1 W Cosyn
|9 -- missing cx lookup --
|2 Crossref
|u W. Cosyn, J. Ryckebusch, Nuclear $$\rho $$ meson transparency in a relativistic Glauber model. Phys. Rev. C 87(6), 064608 (2013). https://doi.org/10.1103/PhysRevC.87.064608. arXiv:1301.1904
|t Phys. Rev. C
|v 87
|y 2013
999 C 5 |a 10.1103/PhysRevLett.61.1698
|9 -- missing cx lookup --
|1 AS Carroll
|p 1698 -
|2 Crossref
|u A.S. Carroll et al., Nuclear Transparency to Large Angle $$p p$$ Elastic Scattering. Phys. Rev. Lett. 61, 1698–1701 (1988). https://doi.org/10.1103/PhysRevLett.61.1698
|t Phys. Rev. Lett.
|v 61
|y 1988
999 C 5 |a 10.1103/PhysRevLett.81.5085
|9 -- missing cx lookup --
|1 I Mardor
|p 5085 -
|2 Crossref
|u I. Mardor et al., Nuclear transparency in large momentum transfer quasielastic scattering. Phys. Rev. Lett. 81, 5085–5088 (1998). https://doi.org/10.1103/PhysRevLett.81.5085
|t Phys. Rev. Lett.
|v 81
|y 1998
999 C 5 |a 10.1103/PhysRevLett.87.212301
|1 A Leksanov
|9 -- missing cx lookup --
|2 Crossref
|u A. Leksanov et al., Energy dependence of nuclear transparency in C$$(p, 2p)$$ scattering. Phys. Rev. Lett. 87, 212301 (2001). https://doi.org/10.1103/PhysRevLett.87.212301. arXiv:hep-ex/0104039
|t Phys. Rev. Lett.
|v 87
|y 2001
999 C 5 |a 10.1103/PhysRevC.70.015208
|9 -- missing cx lookup --
|2 Crossref
|u J. Aclander et al., Nuclear transparency. Phys. Rev. C in $${90}_{{\rm c.m.}}^{\circ }$$ quasielastic $$A(p,2p)$$ reactions 70, 015208 (2004). https://doi.org/10.1103/PhysRevC.70.015208. arXiv:nucl-ex/0405025
999 C 5 |a 10.1103/PhysRevLett.72.1986
|9 -- missing cx lookup --
|1 N Makins
|p 1986 -
|2 Crossref
|u N. Makins et al., Momentum transfer dependence of nuclear transparency from the quasielastic $$^{12}{\rm C}$$(e, e’p) reaction. Phys. Rev. Lett. 72, 1986–1989 (1994). https://doi.org/10.1103/PhysRevLett.72.1986
|t Phys. Rev. Lett.
|v 72
|y 1994
999 C 5 |a 10.1016/0370-2693(95)00362-O
|9 -- missing cx lookup --
|1 TG O’Neill
|p 87 -
|2 Crossref
|u T.G. O’Neill et al., $$A$$-dependence of nuclear transparency in quasielastic $$A(e, e^{\prime } p)$$ at high $$Q^2$$. Phys. Lett. B 351, 87–92 (1995). https://doi.org/10.1016/0370-2693(95)00362-O. arXiv:hep-ph/9408260
|t Phys. Lett. B
|v 351
|y 1995
999 C 5 |a 10.1103/PhysRevLett.80.5072
|9 -- missing cx lookup --
|1 D Abbott
|p 5072 -
|2 Crossref
|u D. Abbott et al., Quasifree $$(e, e^{\prime }p)$$ reactions and proton propagation in nuclei. Phys. Rev. Lett. 80, 5072–5076 (1998). https://doi.org/10.1103/PhysRevLett.80.5072
|t Phys. Rev. Lett.
|v 80
|y 1998
999 C 5 |a 10.1103/PhysRevC.66.044613
|1 K Garrow
|9 -- missing cx lookup --
|2 Crossref
|u K. Garrow et al., Nuclear transparency from quasielastic $${A(e, e}^{^{\prime }}p)$$ reactions up to $${Q}^{2}=8.1({\rm GeV}/c)^{2}$$. Phys. Rev. C 66, 044613 (2002). https://doi.org/10.1103/PhysRevC.66.044613. arXiv:hep-ex/0109027
|t Phys. Rev. C
|v 66
|y 2002
999 C 5 |a 10.1103/PhysRevLett.126.082301
|9 -- missing cx lookup --
|2 Crossref
|u D. Bhetuwal, J. Matter, H. Szumila-Vance, M. L. Kabir, D. Dutta, R. Ent, et al., Ruling out color transparency in quasielastic $$^{12}{\rm C}({\rm e},{e}^{^{\prime }}{\rm p})$$ up to $${Q}^{2}$$ of $$14.2 ({\rm GeV}/{\rm c})^{2}$$, Phys. Rev. Lett. 126 (2021) 082301. https://doi.org/10.1103/PhysRevLett.126.082301
999 C 5 |a 10.3390/physics4040092
|9 -- missing cx lookup --
|1 S Li
|p 1426 -
|2 Crossref
|u S. Li, C. Yero, J.R. West, C. Bennett, W. Cosyn, D. Higinbotham, M. Sargsian, H. Szumila-Vance, Searching for an enhanced signal of the onset of color transparency in baryons with d(e, e’p)n scattering. Physics 4(4), 1426–1439 (2022). https://doi.org/10.3390/physics4040092
|t Physics
|v 4
|y 2022
999 C 5 |a 10.1103/PhysRevD.15.2590
|9 -- missing cx lookup --
|1 RD Field
|p 2590 -
|2 Crossref
|u R.D. Field, R.P. Feynman, Quark Elastic Scattering as a Source of High Transverse Momentum Mesons. Phys. Rev. D 15, 2590–2616 (1977). https://doi.org/10.1103/PhysRevD.15.2590
|t Phys. Rev. D
|v 15
|y 1977
999 C 5 |a 10.1016/0370-2693(83)90437-9
|9 -- missing cx lookup --
|1 J-J Aubert
|p 275 -
|2 Crossref
|u J.-J. Aubert, G. Bassompierre, K. Becks, C. Best, E. Böhm, X. de Bouard, F. Brasse, C. Broll, S. Brown, J. Carr et al., The ratio of the nucleon structure functions $$F_2^N$$ for iron and deuterium. Physics Letters B 123(3–4), 275–278 (1983)
|t Physics Letters B
|v 123
|y 1983
999 C 5 |a 10.1016/j.nuclphysa.2005.03.086
|9 -- missing cx lookup --
|1 K Adcox
|p 184 -
|2 Crossref
|u K. Adcox, S. Adler, S. Afanasiev, C. Aidala, N. Ajitanand, Y. Akiba, A. Al-Jamel, J. Alexander, R. Amirikas, K. Aoki et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at rhic: experimental evaluation by the phenix collaboration. Nuclear Physics A 757(1–2), 184–283 (2005)
|t Nuclear Physics A
|v 757
|y 2005
999 C 5 |a 10.1016/j.nuclphysa.2005.03.085
|9 -- missing cx lookup --
|1 J Adams
|p 102 -
|2 Crossref
|u J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085. arXiv:nucl-ex/0501009
|t Nucl. Phys. A
|v 757
|y 2005
999 C 5 |a 10.1016/j.physletb.2010.01.020
|9 -- missing cx lookup --
|1 A Airapetian
|p 114 -
|2 Crossref
|u A. Airapetian et al., Transverse momentum broadening of hadrons produced in semi-inclusive deep-inelastic scattering on nuclei. Phys. Lett. B 684, 114–118 (2010). https://doi.org/10.1016/j.physletb.2010.01.020
|t Phys. Lett. B
|v 684
|y 2010
999 C 5 |a 10.1140/epja/i2011-11113-5
|9 -- missing cx lookup --
|1 A Airapetian
|p 113 -
|2 Crossref
|u A. Airapetian et al., Multidimensional Study of Hadronization in Nuclei. Eur. Phys. J. A 47, 113 (2011). https://doi.org/10.1140/epja/i2011-11113-5. arXiv:1107.3496
|t Eur. Phys. J. A
|v 47
|y 2011
999 C 5 |a 10.1016/j.nuclphysb.2007.06.004
|9 -- missing cx lookup --
|1 A Airapetian
|p 1 -
|2 Crossref
|u A. Airapetian et al., Hadronization in semi-inclusive deep-inelastic scattering on nuclei. Nucl. Phys. B 780, 1–27 (2007). https://doi.org/10.1016/j.nuclphysb.2007.06.004. arXiv:0704.3270
|t Nucl. Phys. B
|v 780
|y 2007
999 C 5 |a 10.1103/PhysRevLett.96.162301
|1 A Airapetian
|9 -- missing cx lookup --
|2 Crossref
|u A. Airapetian et al., Double-hadron leptoproduction in the nuclear medium. Phys. Rev. Lett. 96, 162301 (2006). https://doi.org/10.1103/PhysRevLett.96.162301
|t Phys. Rev. Lett.
|v 96
|y 2006
999 C 5 |a 10.1103/PhysRevLett.129.182501
|1 SJ Paul
|9 -- missing cx lookup --
|2 Crossref
|u S.J. Paul, S. Morán, M. Arratia, A. El Alaoui, H. Hakobyan, W. Brooks et al., Observation of azimuth-dependent suppression of hadron pairs in electron scattering off nuclei. Phys. Rev. Lett. 129, 182501 (2022). https://doi.org/10.1103/PhysRevLett.129.182501
|t Phys. Rev. Lett.
|v 129
|y 2022
999 C 5 |a 10.1007/s100520100697
|9 -- missing cx lookup --
|1 A Airapetian
|p 479 -
|2 Crossref
|u A. Airapetian et al., Hadron formation in deep inelastic positron scattering in a nuclear environment. Eur. Phys. J. C 20, 479–486 (2001). https://doi.org/10.1007/s100520100697
|t Eur. Phys. J. C
|v 20
|y 2001
999 C 5 |a 10.1103/PhysRevC.105.015201
|1 S Morán
|9 -- missing cx lookup --
|2 Crossref
|u S. Morán, R. Dupré, H. Hakobyan, M. Arratia, W.K. Brooks, A. Bórquez, A. El Alaoui, L. El Fassi, K. Hafidi, R. Mendez, T. Mineeva, S.J. Paul et al., Measurement of charged-pion production in deep-inelastic scattering off nuclei with the CLAS detector. Phys. Rev. C 105, 015201 (2022). https://doi.org/10.1103/PhysRevC.105.015201
|t Phys. Rev. C
|v 105
|y 2022
999 C 5 |a 10.1016/j.physletb.2003.10.026
|9 -- missing cx lookup --
|1 A Airapetian
|p 37 -
|2 Crossref
|u A. Airapetian et al., Quark fragmentation to $$\pi ^\pm $$, $$\pi ^0$$, $$K^\pm $$, $$p$$ and $${\bar{p}}$$ in the nuclear environment. Phys. Lett. B 577, 37–46 (2003). https://doi.org/10.1016/j.physletb.2003.10.026
|t Phys. Lett. B
|v 577
|y 2003
999 C 5 |a 10.1016/j.nuclphysb.2007.06.004
|9 -- missing cx lookup --
|1 A Airapetian
|p 1 -
|2 Crossref
|u A. Airapetian et al., Hadronization in semi-inclusive deep-inelastic scattering on nuclei. Nucl. Phys. B 780, 1–27 (2007). https://doi.org/10.1016/j.nuclphysb.2007.06.004
|t Nucl. Phys. B
|v 780
|y 2007
999 C 5 |a 10.1103/PhysRevLett.130.142301
|1 T Chetry
|9 -- missing cx lookup --
|2 Crossref
|u T. Chetry, L. El Fassi et al., First measurement of $$\Lambda $$ electroproduction off nuclei in the current and target fragmentation regions. Phys. Rev. Lett. 130, 142301 (2023). https://doi.org/10.1103/PhysRevLett.130.142301
|t Phys. Rev. Lett.
|v 130
|y 2023
999 C 5 |a 10.1140/epja/i2016-16268-9
|9 -- missing cx lookup --
|1 A Accardi
|p 268 -
|2 Crossref
|u A. Accardi et al., Electron-Ion Collider: The next QCD frontier. The European Physical Journal A 52(9), 268 (2016). https://doi.org/10.1140/epja/i2016-16268-9
|t The European Physical Journal A
|v 52
|y 2016
999 C 5 |a 10.1016/j.physletb.2017.07.001
|9 -- missing cx lookup --
|1 V Khachatryan
|p 489 -
|2 Crossref
|u V. Khachatryan et al., Coherent $$J/\psi $$ photoproduction in ultra-peripheral PbPb collisions at $$\sqrt{s_{NN}}=2.76$$ TeV with the CMS experiment. Physics Letters B 772, 489–511 (2017)
|t Physics Letters B
|v 772
|y 2017
999 C 5 |a 10.1016/j.physletb.2012.11.059
|9 -- missing cx lookup --
|1 B Abelev
|p 1273 -
|2 Crossref
|u B. Abelev et al., Coherent $$J/\psi $$ photoproduction in ultra-peripheral Pb-Pb collisions at $$\sqrt{s_{NN}}=2.76 TeV$$. Physics Letters B 718(4), 1273–1283 (2013). https://doi.org/10.1016/j.physletb.2012.11.059
|t Physics Letters B
|v 718
|y 2013
999 C 5 |a 10.1016/j.physletb.2021.136280
|1 S Acharya
|9 -- missing cx lookup --
|2 Crossref
|u S. Acharya et al., First measurement of the $$|t|$$-dependence of coherent $$J/\psi $$ photonuclear production. Physics Letters B 817, 136280 (2021). https://doi.org/10.1016/j.physletb.2021.136280
|t Physics Letters B
|v 817
|y 2021
999 C 5 |a 10.1140/epjc/s10052-021-09437-6
|9 -- missing cx lookup --
|1 S Acharya
|p 712 -
|2 Crossref
|u S. Acharya et al., Coherent $$J/\psi $$ and $$\psi ^{\prime }$$ photoproduction at midrapidity in ultra-peripheral Pb-Pb collisions at $$\sqrt{s_{NN}}=5.02$$ TeV. The European Physical Journal C 81(8), 712 (2021). https://doi.org/10.1140/epjc/s10052-021-09437-6
|t The European Physical Journal C
|v 81
|y 2021
999 C 5 |a 10.1103/PhysRevC.105.L032201
|9 -- missing cx lookup --
|1 R Aaij
|p L032201 -
|2 Crossref
|u R. Aaij et al., $$J/\psi $$ photoproduction in Pb-Pb peripheral collisions at $$\sqrt{{s}_{NN}}=5$$ TeV. Phys. Rev. C 105, L032201 (2022). https://doi.org/10.1103/PhysRevC.105.L032201
|t Phys. Rev. C
|v 105
|y 2022
999 C 5 |a 10.1103/PhysRevLett.128.122303
|1 MS Abdallah
|9 -- missing cx lookup --
|2 Crossref
|u M.S. Abdallah et al., Probing the gluonic structure of the deuteron with $$J/\psi $$ photoproduction in $${{d}}+{\rm Au}$$ ultraperipheral collisions. Phys. Rev. Lett. 128, 122303 (2022). https://doi.org/10.1103/PhysRevLett.128.122303
|t Phys. Rev. Lett.
|v 128
|y 2022
999 C 5 |a 10.1103/PhysRevLett.123.072001
|1 A Ali
|9 -- missing cx lookup --
|2 Crossref
|u A. Ali et al., First Measurement of Near-Threshold $$J/\psi $$ Exclusive Photoproduction off the Proton. Phys. Rev. Lett. 123, 072001 (2019). https://doi.org/10.1103/PhysRevLett.123.072001
|t Phys. Rev. Lett.
|v 123
|y 2019
999 C 5 |a 10.1103/PhysRevC.87.024913
|1 T Toll
|9 -- missing cx lookup --
|2 Crossref
|u T. Toll, T. Ullrich, Exclusive diffractive processes in electron-ion collisions. Phys. Rev. C 87, 024913 (2013). https://doi.org/10.1103/PhysRevC.87.024913
|t Phys. Rev. C
|v 87
|y 2013
999 C 5 |2 Crossref
|u O. Hen, et al., Studying Short-Range Correlations with Real Photon Beams at GlueX (9 2020). arXiv:2009.09617
999 C 5 |a 10.1103/PhysRevLett.35.483
|9 -- missing cx lookup --
|1 U Camerini
|p 483 -
|2 Crossref
|u U. Camerini, J.G. Learned, R. Prepost, C.M. Spencer, D.E. Wiser, W.W. Ash, R.L. Anderson, D.M. Ritson, D.J. Sherden, C.K. Sinclair, Photoproduction of the $$\psi $$ Particles. Phys. Rev. Lett. 35, 483–486 (1975). https://doi.org/10.1103/PhysRevLett.35.483
|t Phys. Rev. Lett.
|v 35
|y 1975
999 C 5 |a 10.1103/PhysRevC.89.024305
|1 RB Wiringa
|9 -- missing cx lookup --
|2 Crossref
|u R.B. Wiringa, R. Schiavilla, S.C. Pieper, J. Carlson, Nucleon and nucleon-pair momentum distributions in $$A\le 12$$ nuclei. Phys. Rev. C 89, 024305 (2014). https://doi.org/10.1103/PhysRevC.89.024305
|t Phys. Rev. C
|v 89
|y 2014
999 C 5 |a 10.1016/j.physrep.2021.11.001
|9 -- missing cx lookup --
|1 L Gan
|p 1 -
|2 Crossref
|u L. Gan, B. Kubis, E. Passemar, S. Tulin, Precision tests of fundamental physics with $$\eta $$ and $$\eta $$’ mesons. Phys. Rept. 945, 1–105 (2022). https://doi.org/10.1016/j.physrep.2021.11.001
|t Phys. Rept.
|v 945
|y 2022
999 C 5 |a 10.1103/PhysRev.177.2426
|9 -- missing cx lookup --
|1 SL Adler
|p 2426 -
|2 Crossref
|u S.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969). https://doi.org/10.1103/PhysRev.177.2426
|t Phys. Rev.
|v 177
|y 1969
999 C 5 |a 10.1007/BF02823296
|9 -- missing cx lookup --
|1 JS Bell
|p 47 -
|2 Crossref
|u J.S. Bell, R. Jackiw, A PCAC puzzle: $$\pi ^0 \rightarrow \gamma \gamma $$ in the $$\sigma $$ model. Nuovo Cim. A 60, 47–61 (1969). https://doi.org/10.1007/BF02823296
|t Nuovo Cim. A
|v 60
|y 1969
999 C 5 |a 10.1103/PhysRevLett.37.8
|9 -- missing cx lookup --
|1 G ’t Hooft
|p 8 -
|2 Crossref
|u G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies. Phys. Rev. Lett. 37, 8–11 (1976). https://doi.org/10.1103/PhysRevLett.37.8
|t Phys. Rev. Lett.
|v 37
|y 1976
999 C 5 |a 10.1016/0550-3213(79)90031-2
|9 -- missing cx lookup --
|1 E Witten
|p 269 -
|2 Crossref
|u E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson. Nucl. Phys. B 156, 269–283 (1979). https://doi.org/10.1016/0550-3213(79)90031-2
|t Nucl. Phys. B
|v 156
|y 1979
999 C 5 |a 10.1103/PhysRev.175.2195
|9 -- missing cx lookup --
|1 M Gell-Mann
|p 2195 -
|2 Crossref
|u M. Gell-Mann, R.J. Oakes, B. Renner, Behavior of current divergences under SU(3) x SU(3). Phys. Rev. 175, 2195–2199 (1968). https://doi.org/10.1103/PhysRev.175.2195
|t Phys. Rev.
|v 175
|y 1968
999 C 5 |a 10.1016/0550-3213(68)90316-7
|9 -- missing cx lookup --
|1 JS Bell
|p 315 -
|2 Crossref
|u J.S. Bell, D.G. Sutherland, Current algebra and eta -$${>}$$ 3 pi. Nucl. Phys. B 4, 315–325 (1968). https://doi.org/10.1016/0550-3213(68)90316-7
|t Nucl. Phys. B
|v 4
|y 1968
999 C 5 |a 10.1016/0031-9163(66)90477-X
|9 -- missing cx lookup --
|1 DG Sutherland
|p 384 -
|2 Crossref
|u D.G. Sutherland, Current algebra and the decay $$\eta \rightarrow 3\pi $$. Phys. Lett. 23, 384–385 (1966). https://doi.org/10.1016/0031-9163(66)90477-X
|t Phys. Lett.
|v 23
|y 1966
999 C 5 |a 10.1016/0370-2693(85)91028-7
|9 -- missing cx lookup --
|1 VA Kuzmin
|p 36 -
|2 Crossref
|u V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 155, 36 (1985). https://doi.org/10.1016/0370-2693(85)91028-7
|t Phys. Lett. B
|v 155
|y 1985
999 C 5 |a 10.1016/j.physrep.2020.07.006
|9 -- missing cx lookup --
|1 T Aoyama
|p 1 -
|2 Crossref
|u T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model. Phys. Rept. 887, 1–166 (2020). https://doi.org/10.1016/j.physrep.2020.07.006. arXiv:2006.04822
|t Phys. Rept.
|v 887
|y 2020
999 C 5 |a 10.1103/PhysRevLett.121.112002
|1 M Hoferichter
|9 -- missing cx lookup --
|2 Crossref
|u M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, S.P. Schneider, Pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon. Phys. Rev. Lett. 121(11), 112002 (2018). https://doi.org/10.1103/PhysRevLett.121.112002. arXiv:1805.01471
|t Phys. Rev. Lett.
|v 121
|y 2018
999 C 5 |a 10.1007/JHEP10(2018)141
|9 -- missing cx lookup --
|1 M Hoferichter
|p 141 -
|2 Crossref
|u M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, S.P. Schneider, Dispersion relation for hadronic light-by-light scattering: pion pole. JHEP 10, 141 (2018). https://doi.org/10.1007/JHEP10(2018)141. arXiv:1808.04823
|t JHEP
|v 10
|y 2018
999 C 5 |a 10.1126/science.aay6641
|9 -- missing cx lookup --
|1 I Larin
|p 506 -
|2 Crossref
|u I. Larin et al., Precision measurement of the neutral pion lifetime. Science 368(6490), 506–509 (2020). https://doi.org/10.1126/science.aay6641
|t Science
|v 368
|y 2020
999 C 5 |a 10.1103/PhysRevD.100.034520
|1 A Gérardin
|9 -- missing cx lookup --
|2 Crossref
|u A. Gérardin, H.B. Meyer, A. Nyffeler, Lattice calculation of the pion transition form factor with $$N_f=2+1$$ Wilson quarks. Phys. Rev. D 100(3), 034520 (2019). https://doi.org/10.1103/PhysRevD.100.034520. arXiv:1903.09471
|t Phys. Rev. D
|v 100
|y 2019
999 C 5 |a 10.1103/PhysRevD.66.076014
|1 JL Goity
|9 -- missing cx lookup --
|2 Crossref
|u J.L. Goity, A.M. Bernstein, B.R. Holstein, The Decay pi0 -$${>}$$ gamma gamma to next to leading order in chiral perturbation theory. Phys. Rev. D 66, 076014 (2002). https://doi.org/10.1103/PhysRevD.66.076014. arXiv:hep-ph/0206007
|t Phys. Rev. D
|v 66
|y 2002
999 C 5 |a 10.1088/1126-6708/2002/05/052
|9 -- missing cx lookup --
|1 B Ananthanarayan
|p 052 -
|2 Crossref
|u B. Ananthanarayan, B. Moussallam, Electromagnetic corrections in the anomaly sector. JHEP 05, 052 (2002). https://doi.org/10.1088/1126-6708/2002/05/052. arXiv:hep-ph/0205232
|t JHEP
|v 05
|y 2002
999 C 5 |a 10.1103/PhysRevD.79.076005
|1 K Kampf
|9 -- missing cx lookup --
|2 Crossref
|u K. Kampf, B. Moussallam, Chiral expansions of the pi0 lifetime. Phys. Rev. D 79, 076005 (2009). https://doi.org/10.1103/PhysRevD.79.076005. arXiv:0901.4688
|t Phys. Rev. D
|v 79
|y 2009
999 C 5 |a 10.22323/1.430.0306
|9 -- missing cx lookup --
|2 Crossref
|u S. A. Burri, et al., Pseudoscalar-pole contributions to the muon $$g-2$$ at the physical point, PoS LATTICE2022 (2023) 306. https://doi.org/10.22323/1.430.0306. arXiv:2212.10300
999 C 5 |a 10.22323/1.430.0332
|9 -- missing cx lookup --
|2 Crossref
|u A. Gérardin, J. N. Guenther, L. Varnhorst, W. E. A. Verplanke, Pseudoscalar transition form factors and the hadronic light-by-light contribution to the muon g-2, PoS LATTICE2022 (2023) 332. https://doi.org/10.22323/1.430.0332. arXiv:2211.04159
999 C 5 |a 10.1140/epjc/s10052-014-3180-0
|9 -- missing cx lookup --
|1 M Hoferichter
|p 3180 -
|2 Crossref
|u M. Hoferichter, B. Kubis, S. Leupold, F. Niecknig, S.P. Schneider, Dispersive analysis of the pion transition form factor. Eur. Phys. J. C 74, 3180 (2014). https://doi.org/10.1140/epjc/s10052-014-3180-0. arXiv:1410.4691
|t Eur. Phys. J. C
|v 74
|y 2014
999 C 5 |a 10.1140/epjc/s10052-013-2668-3
|9 -- missing cx lookup --
|2 Crossref
|u C. Hanhart, A. Kupść, U.-G. Meißner, F. Stollenwerk, A. Wirzba, Dispersive analysis for $$\eta \rightarrow \gamma \gamma ^*$$, Eur. Phys. J. C 73 (12) (2013) 2668, [Erratum: Eur. Phys. J. C 75, 242 (2015)]. arXiv:1307.5654, https://doi.org/10.1140/epjc/s10052-013-2668-3
999 C 5 |a 10.1140/epjc/s10052-015-3495-5
|9 -- missing cx lookup --
|1 B Kubis
|p 283 -
|2 Crossref
|u B. Kubis, J. Plenter, Anomalous decay and scattering processes of the $$\eta $$ meson. Eur. Phys. J. C 75(6), 283 (2015). https://doi.org/10.1140/epjc/s10052-015-3495-5. arXiv:1504.02588
|t Eur. Phys. J. C
|v 75
|y 2015
999 C 5 |a 10.1140/epjc/s10052-021-09661-0
|9 -- missing cx lookup --
|1 S Holz
|p 1002 -
|2 Crossref
|u S. Holz, J. Plenter, C.-W. Xiao, T. Dato, C. Hanhart, B. Kubis, U.-G. Meißner, A. Wirzba, Towards an improved understanding of $$\eta \rightarrow \gamma ^* \gamma ^*$$. Eur. Phys. J. C 81(11), 1002 (2021). https://doi.org/10.1140/epjc/s10052-021-09661-0. arXiv:1509.02194
|t Eur. Phys. J. C
|v 81
|y 2021
999 C 5 |a 10.1140/epjc/s10052-022-10247-7
|9 -- missing cx lookup --
|2 Crossref
|u S. Holz, C. Hanhart, M. Hoferichter, B. Kubis, A dispersive analysis of $$\eta ^{\prime }\rightarrow \pi ^+\pi ^-\gamma $$ and $$\eta ^{\prime }\rightarrow \ell ^+\ell ^-\gamma $$, Eur. Phys. J. C 82 (5) (2022) 434, [Addendum: Eur. Phys. J. C 82, 1159 (2022)]. arXiv:2202.05846, https://doi.org/10.1140/epjc/s10052-022-10247-7
999 C 5 |a 10.1103/PhysRevD.95.054026
|1 P Masjuan
|9 -- missing cx lookup --
|2 Crossref
|u P. Masjuan, P. Sánchez-Puertas, Pseudoscalar-pole contribution to the $$(g_{\mu }-2)$$: a rational approach. Phys. Rev. D 95(5), 054026 (2017). https://doi.org/10.1103/PhysRevD.95.054026. arXiv:1701.05829
|t Phys. Rev. D
|v 95
|y 2017
999 C 5 |a 10.1103/PhysRevD.94.054033
|1 R Escribano
|9 -- missing cx lookup --
|2 Crossref
|u R. Escribano, S. Gonzàlez-Solís, P. Masjuan, P. Sánchez-Puertas, $$\eta $$’ transition form factor from space- and timelike experimental data. Phys. Rev. D 94(5), 054033 (2016). https://doi.org/10.1103/PhysRevD.94.054033. arXiv:1512.07520
|t Phys. Rev. D
|v 94
|y 2016
999 C 5 |2 Crossref
|u C. Alexandrou, et al., The $$\eta \rightarrow \gamma ^* \gamma ^*$$ transition form factor and the hadronic light-by-light $$\eta $$-pole contribution to the muon $$g-2$$ from lattice QCD (12 2022). arXiv:2212.06704
999 C 5 |a 10.1103/PhysRevLett.32.1067
|9 -- missing cx lookup --
|1 A Browman
|p 1067 -
|2 Crossref
|u A. Browman, J. DeWire, B. Gittelman, K.M. Hanson, E. Loh, R. Lewis, The Radiative Width of the eta Meson. Phys. Rev. Lett. 32, 1067 (1974). https://doi.org/10.1103/PhysRevLett.32.1067
|t Phys. Rev. Lett.
|v 32
|y 1974
999 C 5 |a 10.1103/PhysRev.81.899
|9 -- missing cx lookup --
|1 H Primakoff
|p 899 -
|2 Crossref
|u H. Primakoff, Photoproduction of neutral mesons in nuclear electric fields and the mean life of the neutral meson. Phys. Rev. 81, 899 (1951). https://doi.org/10.1103/PhysRev.81.899
|t Phys. Rev.
|v 81
|y 1951
999 C 5 |a 10.1051/epjconf/20147307004
|9 -- missing cx lookup --
|1 L Gan
|p 07004 -
|2 Crossref
|u L. Gan, Test of fundamental symmetries via the Primakoff effect. EPJ Web Conf. 73, 07004 (2014). https://doi.org/10.1051/epjconf/20147307004
|t EPJ Web Conf.
|v 73
|y 2014
999 C 5 |a 10.1103/RevModPhys.85.49
|9 -- missing cx lookup --
|1 AM Bernstein
|p 49 -
|2 Crossref
|u A.M. Bernstein, B.R. Holstein, Neutral Pion Lifetime Measurements and the QCD Chiral Anomaly. Rev. Mod. Phys. 85, 49 (2013). https://doi.org/10.1103/RevModPhys.85.49. arXiv:1112.4809
|t Rev. Mod. Phys.
|v 85
|y 2013
999 C 5 |a 10.1103/PhysRevD.98.030001
|1 M Tanabashi
|9 -- missing cx lookup --
|2 Crossref
|u M. Tanabashi et al., Review of Particle Physics. Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001
|t Phys. Rev. D
|v 98
|y 2018
999 C 5 |a 10.1016/j.physletb.2007.02.021
|9 -- missing cx lookup --
|1 BL Ioffe
|p 389 -
|2 Crossref
|u B.L. Ioffe, A.G. Oganesian, Axial anomaly and the precise value of the pi0 –$${>}$$ 2 gamma decay width. Phys. Lett. B 647, 389–393 (2007). https://doi.org/10.1016/j.physletb.2007.02.021. arXiv:hep-ph/0701077
|t Phys. Lett. B
|v 647
|y 2007
999 C 5 |a 10.1140/epjc/s10052-008-0703-6
|9 -- missing cx lookup --
|1 A Kastner
|p 541 -
|2 Crossref
|u A. Kastner, H. Neufeld, The K(l3) scalar form factors in the standard model. Eur. Phys. J. C 57, 541–556 (2008). https://doi.org/10.1140/epjc/s10052-008-0703-6. arXiv:0805.2222
|t Eur. Phys. J. C
|v 57
|y 2008
999 C 5 |a 10.1103/PhysRevD.95.114504
|1 D Giusti
|9 -- missing cx lookup --
|2 Crossref
|u D. Giusti, V. Lubicz, C. Tarantino, G. Martinelli, F. Sanfilippo, S. Simula, N. Tantalo, Leading isospin-breaking corrections to pion, kaon and charmed-meson masses with Twisted-Mass fermions. Phys. Rev. D 95(11), 114504 (2017). https://doi.org/10.1103/PhysRevD.95.114504. arXiv:1704.06561
|t Phys. Rev. D
|v 95
|y 2017
999 C 5 |2 Crossref
|u A. Gasparian, L. Gan, et al., A precision measurement of the $$\eta $$ radiative decay width via the primakoff effect, https://www.jlab.org/exp_-prog/proposals/10/PR12-10-011.pdf
999 C 5 |a 10.1016/0370-2693(96)00167-0
|9 -- missing cx lookup --
|1 H Leutwyler
|p 181 -
|2 Crossref
|u H. Leutwyler, Implications of eta eta-prime mixing for the decay eta –$${>}$$ 3 pi. Phys. Lett. B 374, 181–185 (1996). https://doi.org/10.1016/0370-2693(96)00167-0. arXiv:hep-ph/9601236
|t Phys. Lett. B
|v 374
|y 1996
999 C 5 |2 Crossref
|u R. Essig, et al., Working Group Report: New Light Weakly Coupled Particles, in: Community Summer Study 2013: Snowmass on the Mississippi, 2013. arXiv:1311.0029
999 C 5 |2 Crossref
|u J. Alexander, et al., Dark Sectors 2016 Workshop: Community Report, 2016. arXiv:1608.08632
999 C 5 |2 Crossref
|u M. Battaglieri, et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in: U.S. Cosmic Visions: New Ideas in Dark Matter, 2017. arXiv:1707.04591
999 C 5 |a 10.1103/PhysRevD.79.015014
|1 N Arkani-Hamed
|9 -- missing cx lookup --
|2 Crossref
|u N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, N. Weiner, A Theory of Dark Matter. Phys. Rev. D 79, 015014 (2009). https://doi.org/10.1103/PhysRevD.79.015014. arXiv:0810.0713
|t Phys. Rev. D
|v 79
|y 2009
999 C 5 |a 10.1016/j.physletb.2008.12.012
|9 -- missing cx lookup --
|1 M Pospelov
|p 391 -
|2 Crossref
|u M. Pospelov, A. Ritz, Astrophysical Signatures of Secluded Dark Matter. Phys. Lett. B 671, 391–397 (2009). https://doi.org/10.1016/j.physletb.2008.12.012. arXiv:0810.1502
|t Phys. Lett. B
|v 671
|y 2009
999 C 5 |a 10.1016/j.nuclphysb.2019.114638
|9 -- missing cx lookup --
|2 Crossref
|u Y.-S. Liu, I. C. Cloët, G. A. Miller, Eta Decay and Muonic Puzzles, Nucl. Phys. B (2019) 114638. https://doi.org/10.1016/j.nuclphysb.2019.114638. arXiv:1805.01028
999 C 5 |a 10.1103/PhysRevD.75.115017
|1 P Fayet
|9 -- missing cx lookup --
|2 Crossref
|u P. Fayet, U-boson production in e+ e- annihilations, psi and Upsilon decays, and Light Dark Matter. Phys. Rev. D 75, 115017 (2007). https://doi.org/10.1103/PhysRevD.75.115017. arXiv:hep-ph/0702176
|t Phys. Rev. D
|v 75
|y 2007
999 C 5 |a 10.1103/PhysRevD.80.095002
|1 M Pospelov
|9 -- missing cx lookup --
|2 Crossref
|u M. Pospelov, Secluded U(1) below the weak scale. Phys. Rev. D 80, 095002 (2009). https://doi.org/10.1103/PhysRevD.80.095002. arXiv:0811.1030
|t Phys. Rev. D
|v 80
|y 2009
999 C 5 |a 10.1103/PhysRevLett.116.042501
|1 AJ Krasznahorkay
|9 -- missing cx lookup --
|2 Crossref
|u A.J. Krasznahorkay et al., Observation of Anomalous Internal Pair Creation in Be8: A Possible Indication of a Light, Neutral Boson. Phys. Rev. Lett. 116(4), 042501 (2016). https://doi.org/10.1103/PhysRevLett.116.042501. arXiv:1504.01527
|t Phys. Rev. Lett.
|v 116
|y 2016
999 C 5 |a 10.1103/PhysRevLett.117.071803
|1 JL Feng
|9 -- missing cx lookup --
|2 Crossref
|u J.L. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T.M.P. Tait, P. Tanedo, Protophobic Fifth-Force Interpretation of the Observed Anomaly in $$^8$$Be Nuclear Transitions. Phys. Rev. Lett. 117(7), 071803 (2016). https://doi.org/10.1103/PhysRevLett.117.071803. arXiv:1604.07411
|t Phys. Rev. Lett.
|v 117
|y 2016
999 C 5 |a 10.1016/j.physrep.2017.11.004
|9 -- missing cx lookup --
|1 S Tulin
|p 1 -
|2 Crossref
|u S. Tulin, H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure. Phys. Rept. 730, 1–57 (2018). https://doi.org/10.1016/j.physrep.2017.11.004. arXiv:1705.02358
|t Phys. Rept.
|v 730
|y 2018
999 C 5 |a 10.1103/PhysRevLett.110.111301
|1 S Tulin
|9 -- missing cx lookup --
|2 Crossref
|u S. Tulin, H.-B. Yu, K.M. Zurek, Resonant Dark Forces and Small Scale Structure. Phys. Rev. Lett. 110(11), 111301 (2013). https://doi.org/10.1103/PhysRevLett.110.111301. arXiv:1210.0900
|t Phys. Rev. Lett.
|v 110
|y 2013
999 C 5 |a 10.1103/PhysRevD.87.115007
|1 S Tulin
|9 -- missing cx lookup --
|2 Crossref
|u S. Tulin, H.-B. Yu, K.M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure. Phys. Rev. D 87(11), 115007 (2013). https://doi.org/10.1103/PhysRevD.87.115007. arXiv:1302.3898
|t Phys. Rev. D
|v 87
|y 2013
999 C 5 |a 10.1103/PhysRevLett.123.031803
|1 D Aloni
|9 -- missing cx lookup --
|2 Crossref
|u D. Aloni, Y. Soreq, M. Williams, Coupling QCD-Scale Axionlike Particles to Gluons. Phys. Rev. Lett. 123(3), 031803 (2019). https://doi.org/10.1103/PhysRevLett.123.031803. arXiv:1811.03474
|t Phys. Rev. Lett.
|v 123
|y 2019
999 C 5 |a 10.1103/PhysRevLett.123.071801
|1 D Aloni
|9 -- missing cx lookup --
|2 Crossref
|u D. Aloni, C. Fanelli, Y. Soreq, M. Williams, Photoproduction of Axionlike Particles. Phys. Rev. Lett. 123(7), 071801 (2019). https://doi.org/10.1103/PhysRevLett.123.071801. arXiv:1903.03586
|t Phys. Rev. Lett.
|v 123
|y 2019
999 C 5 |a 10.1007/JHEP12(2017)094
|9 -- missing cx lookup --
|2 Crossref
|u M. J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer, K. Schmidt-Hoberg, Revised constraints and Belle II sensitivity for visible and invisible axion-like particles, JHEP 12 (2017) 094, [Erratum: JHEP 03, 190 (2021)]. https://doi.org/10.1007/JHEP12(2017)094. arXiv:1709.00009
999 C 5 |a 10.1103/PhysRevD.38.3375
|9 -- missing cx lookup --
|1 JD Bjorken
|p 3375 -
|2 Crossref
|u J.D. Bjorken, S. Ecklund, W.R. Nelson, A. Abashian, C. Church, B. Lu, L.W. Mo, T.A. Nunamaker, P. Rassmann, Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump. Phys. Rev. D 38, 3375 (1988). https://doi.org/10.1103/PhysRevD.38.3375
|t Phys. Rev. D
|v 38
|y 1988
999 C 5 |a 10.1140/epjc/s2002-01074-5
|9 -- missing cx lookup --
|1 G Abbiendi
|p 331 -
|2 Crossref
|u G. Abbiendi et al., Multiphoton production in e+ e- collisions at s**(1/2) = 181-GeV to 209-GeV. Eur. Phys. J. C 26, 331–344 (2003). https://doi.org/10.1140/epjc/s2002-01074-5. arXiv:hep-ex/0210016
|t Eur. Phys. J. C
|v 26
|y 2003
999 C 5 |a 10.1103/PhysRevLett.118.171801
|9 -- missing cx lookup --
|2 Crossref
|u S. Knapen, T. Lin, H.K. Lou, T. Melia, Searching for Axionlike Particles with Ultraperipheral Heavy-Ion Collisions. Phys. Rev. Lett. 118(17), 171801 (2017). https://doi.org/10.1103/PhysRevLett.118.171801. arXiv:1607.06083
999 C 5 |a 10.1142/S0217751X9200171X
|9 -- missing cx lookup --
|1 J Blumlein
|p 3835 -
|2 Crossref
|u J. Blumlein et al., Limits on the mass of light (pseudo)scalar particles from Bethe-Heitler e+ e- and mu+ mu- pair production in a proton - iron beam dump experiment. Int. J. Mod. Phys. A 7, 3835–3850 (1992). https://doi.org/10.1142/S0217751X9200171X
|t Int. J. Mod. Phys. A
|v 7
|y 1992
999 C 5 |2 Crossref
|u P. A. Souder, P. E. Reimer, X. Zheng, Precision Measurement of Parity-violation in Deep Inelastic Scattering Over a Broad Kinematic Range, Jefferson Lab Experiment E12-10-007, 2010 with 2022 update
999 C 5 |a 10.1103/PhysRevLett.129.081801
|1 D Akimov
|9 -- missing cx lookup --
|2 Crossref
|u D. Akimov et al., Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENT. Phys. Rev. Lett. 129(8), 081801 (2022). https://doi.org/10.1103/PhysRevLett.129.081801. arXiv:2110.07730
|t Phys. Rev. Lett.
|v 129
|y 2022
999 C 5 |a 10.2172/1322154
|9 -- missing cx lookup --
|2 Crossref
|u M. Battaglieri, et al., Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab (7 2016). arXiv:1607.01390
999 C 5 |a 10.1103/PhysRevD.98.115022
|1 L Marsicano
|9 -- missing cx lookup --
|2 Crossref
|u L. Marsicano, M. Battaglieri, A. Celentano, R. De Vita, Y.-M. Zhong, Probing Leptophilic Dark Sectors at Electron Beam-Dump Facilities. Phys. Rev. D 98(11), 115022 (2018). https://doi.org/10.1103/PhysRevD.98.115022. arXiv:1812.03829
|t Phys. Rev. D
|v 98
|y 2018
999 C 5 |a 10.1103/PhysRevD.106.072011
|9 -- missing cx lookup --
|2 Crossref
|u M. Battaglieri et al., Dark matter search with the BDX-MINI experiment. Phys. Rev. D 106(7), 072011 (2022). https://doi.org/10.1103/PhysRevD.106.072011. arXiv:2208.01387
999 C 5 |a 10.1103/PhysRevLett.125.044803
|1 A Bartnik
|9 -- missing cx lookup --
|2 Crossref
|u A. Bartnik et al., CBETA: First Multipass Superconducting Linear Accelerator with Energy Recovery. Phys. Rev. Lett. 125(4), 044803 (2020). https://doi.org/10.1103/PhysRevLett.125.044803
|t Phys. Rev. Lett.
|v 125
|y 2020
999 C 5 |a 10.18429/JACoW-IPAC2021-MOPAB216
|9 -- missing cx lookup --
|2 Crossref
|u S. Bogacz, et al., 20-24 GeV FFA CEBAF Energy Upgrade, Proc. IPAC’21, Campinas, Brazil, May 2021 (2023) 715–718 https://doi.org/10.18429/JACoW-IPAC2021-MOPAB216
999 C 5 |a 10.18429/JACoW-IPAC2022-THPOTK011
|9 -- missing cx lookup --
|2 Crossref
|u S. Brooks, S. Bogacz, Permanent Magnets forthe CEBAF 24GeV Upgrade, Proc. IPAC’22, Bangkok, Thailand, Jun. 2022 (2022) 2792–2795 https://doi.org/10.18429/JACoW-IPAC2022-THPOTK011
999 C 5 |2 Crossref
|u S. Brooks, et al., Open-Midplane Gradient Permanent Magnet with 1.53 T Peak Field, Proc. IPAC’23, Venice, Italy, May 2023 (2023)


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21