Home > Publications database > Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab > print |
001 | 622276 | ||
005 | 20250625130036.0 | ||
024 | 7 | _ | |a 10.1140/epja/s10050-024-01282-x |2 doi |
024 | 7 | _ | |a 1434-6001 |2 ISSN |
024 | 7 | _ | |a 1434-601X |2 ISSN |
024 | 7 | _ | |a WOS:001325234200001 |2 WOS |
037 | _ | _ | |a PUBDB-2025-00314 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Accardi, A. |b 0 |
245 | _ | _ | |a Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab |
260 | _ | _ | |a Heidelberg |c 2024 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1737990619_2170208 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF4-611) |0 G:(DE-HGF)POF4-611 |c POF4-611 |f POF IV |x 0 |
542 | _ | _ | |i 2024-09-04 |2 Crossref |u https://www.springernature.com/gp/researchers/text-and-data-mining |
542 | _ | _ | |i 2024-09-04 |2 Crossref |u https://www.springernature.com/gp/researchers/text-and-data-mining |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Achenbach, P. |b 1 |
700 | 1 | _ | |a Adhikari, D. |b 2 |
700 | 1 | _ | |a Afanasev, A. |b 3 |
700 | 1 | _ | |a Akondi, C. S. |b 4 |
700 | 1 | _ | |a Akopov, N. |b 5 |
700 | 1 | _ | |a Albaladejo, M. |b 6 |
700 | 1 | _ | |a Albataineh, H. |b 7 |
700 | 1 | _ | |a Albrecht, M. |b 8 |
700 | 1 | _ | |a Almeida-Zamora, B. |b 9 |
700 | 1 | _ | |a Amaryan, M. |b 10 |
700 | 1 | _ | |a Androić, D. |b 11 |
700 | 1 | _ | |a Armstrong, W. |b 12 |
700 | 1 | _ | |a Armstrong, D. S. |b 13 |
700 | 1 | _ | |a Arratia, M. |b 14 |
700 | 1 | _ | |a Arrington, J. |b 15 |
700 | 1 | _ | |a Asaturyan, A. |b 16 |
700 | 1 | _ | |a Austregesilo, A. |b 17 |
700 | 1 | _ | |a Avakian, H. |b 18 |
700 | 1 | _ | |a Averett, T. |b 19 |
700 | 1 | _ | |a Gayoso, C. Ayerbe |b 20 |
700 | 1 | _ | |a Bacchetta, A. |b 21 |
700 | 1 | _ | |a Balantekin, A. B. |b 22 |
700 | 1 | _ | |a Baltzell, N. |b 23 |
700 | 1 | _ | |a Barion, L. |0 P:(DE-HGF)0 |b 24 |
700 | 1 | _ | |a Barry, P. C. |b 25 |
700 | 1 | _ | |a Bashir, A. |b 26 |
700 | 1 | _ | |a Battaglieri, M. |b 27 |
700 | 1 | _ | |a Bellini, V. |b 28 |
700 | 1 | _ | |a Belov, I. |b 29 |
700 | 1 | _ | |a Benhar, O. |b 30 |
700 | 1 | _ | |a Benkel, B. |b 31 |
700 | 1 | _ | |a Benmokhtar, F. |b 32 |
700 | 1 | _ | |a Bentz, W. |b 33 |
700 | 1 | _ | |a Bertone, V. |b 34 |
700 | 1 | _ | |a Bhatt, H. |b 35 |
700 | 1 | _ | |a Bianconi, A. |b 36 |
700 | 1 | _ | |a Bibrzycki, L. |b 37 |
700 | 1 | _ | |a Bijker, R. |b 38 |
700 | 1 | _ | |a Binosi, D. |b 39 |
700 | 1 | _ | |a Biswas, D. |b 40 |
700 | 1 | _ | |a Boër, M. |b 41 |
700 | 1 | _ | |a Boeglin, W. |b 42 |
700 | 1 | _ | |a Bogacz, S. A. |b 43 |
700 | 1 | _ | |a Boglione, M. |b 44 |
700 | 1 | _ | |a Bondí, M. |b 45 |
700 | 1 | _ | |a Boos, E. E. |b 46 |
700 | 1 | _ | |a Bosted, P. |b 47 |
700 | 1 | _ | |a Bozzi, G. |b 48 |
700 | 1 | _ | |a Brash, E. J. |b 49 |
700 | 1 | _ | |a Briceño, R. A. |b 50 |
700 | 1 | _ | |a Brindza, P. D. |b 51 |
700 | 1 | _ | |a Briscoe, W. J. |b 52 |
700 | 1 | _ | |a Brodsky, S. J. |b 53 |
700 | 1 | _ | |a Brooks, W. K. |b 54 |
700 | 1 | _ | |a Burkert, V. D. |b 55 |
700 | 1 | _ | |a Camsonne, A. |b 56 |
700 | 1 | _ | |a Cao, T. |b 57 |
700 | 1 | _ | |a Cardman, L. S. |b 58 |
700 | 1 | _ | |a Carman, D. S. |b 59 |
700 | 1 | _ | |a Carpinelli, M. |b 60 |
700 | 1 | _ | |a Cates, G. D. |b 61 |
700 | 1 | _ | |a Caylor, J. |b 62 |
700 | 1 | _ | |a Celentano, A. |b 63 |
700 | 1 | _ | |a Celiberto, F. G. |b 64 |
700 | 1 | _ | |a Cerutti, M. |b 65 |
700 | 1 | _ | |a Chang, L. |b 66 |
700 | 1 | _ | |a Chatagnon, P. |b 67 |
700 | 1 | _ | |a Chen, C. |b 68 |
700 | 1 | _ | |a Chen, J.-P. |b 69 |
700 | 1 | _ | |a Chetry, T. |b 70 |
700 | 1 | _ | |a Christopher, A. |b 71 |
700 | 1 | _ | |a Christy, E. |b 72 |
700 | 1 | _ | |a Chudakov, E. |b 73 |
700 | 1 | _ | |a Cisbani, E. |b 74 |
700 | 1 | _ | |a Cloët, I. C. |b 75 |
700 | 1 | _ | |a Cobos-Martinez, J. J. |b 76 |
700 | 1 | _ | |a Cohen, E. O. |b 77 |
700 | 1 | _ | |a Colangelo, P. |b 78 |
700 | 1 | _ | |a Cole, P. L. |b 79 |
700 | 1 | _ | |a Constantinou, M. |b 80 |
700 | 1 | _ | |a Contalbrigo, M. |b 81 |
700 | 1 | _ | |a Costantini, G. |b 82 |
700 | 1 | _ | |a Cosyn, W. |b 83 |
700 | 1 | _ | |a Cotton, C. |b 84 |
700 | 1 | _ | |a Courtoy, A. |b 85 |
700 | 1 | _ | |a Dusa, S. Covrig |b 86 |
700 | 1 | _ | |a Crede, V. |b 87 |
700 | 1 | _ | |a Cui, Z.-F. |b 88 |
700 | 1 | _ | |a D’Angelo, A. |b 89 |
700 | 1 | _ | |a Döring, M. |b 90 |
700 | 1 | _ | |a Dalton, M. M. |b 91 |
700 | 1 | _ | |a Danilkin, I. |b 92 |
700 | 1 | _ | |a Davydov, M. |b 93 |
700 | 1 | _ | |a Day, D. |b 94 |
700 | 1 | _ | |a De Fazio, F. |b 95 |
700 | 1 | _ | |a De Napoli, M. |b 96 |
700 | 1 | _ | |a De Vita, R. |b 97 |
700 | 1 | _ | |a Dean, D. J. |b 98 |
700 | 1 | _ | |a Defurne, M. |b 99 |
700 | 1 | _ | |a de Paula, W. |b 100 |
700 | 1 | _ | |a de Téramond, G. F. |b 101 |
700 | 1 | _ | |a Deur, A. |b 102 |
700 | 1 | _ | |a Devkota, B. |b 103 |
700 | 1 | _ | |a Dhital, S. |b 104 |
700 | 1 | _ | |a Di Nezza, P. |b 105 |
700 | 1 | _ | |a Diefenthaler, M. |b 106 |
700 | 1 | _ | |a Diehl, S. |b 107 |
700 | 1 | _ | |a Dilks, C. |b 108 |
700 | 1 | _ | |a Ding, M. |b 109 |
700 | 1 | _ | |a Djalali, C. |b 110 |
700 | 1 | _ | |a Dobbs, S. |b 111 |
700 | 1 | _ | |a Dupré, R. |b 112 |
700 | 1 | _ | |a Dutta, D. |b 113 |
700 | 1 | _ | |a Edwards, R. G. |b 114 |
700 | 1 | _ | |a Egiyan, H. |b 115 |
700 | 1 | _ | |a Ehinger, L. |b 116 |
700 | 1 | _ | |a Eichmann, G. |b 117 |
700 | 1 | _ | |a Elaasar, M. |b 118 |
700 | 1 | _ | |a Elouadrhiri, L. |b 119 |
700 | 1 | _ | |a Alaoui, A. El |b 120 |
700 | 1 | _ | |a Fassi, L. El |b 121 |
700 | 1 | _ | |a Emmert, A. |b 122 |
700 | 1 | _ | |a Engelhardt, M. |b 123 |
700 | 1 | _ | |a Ent, R. |b 124 |
700 | 1 | _ | |a Ernst, D. J. |b 125 |
700 | 1 | _ | |a Eugenio, P. |b 126 |
700 | 1 | _ | |a Evans, G. |b 127 |
700 | 1 | _ | |a Fanelli, C. |b 128 |
700 | 1 | _ | |a Fegan, S. |b 129 |
700 | 1 | _ | |a Fernández-Ramírez, C. |b 130 |
700 | 1 | _ | |a Fernandez, L. A. |b 131 |
700 | 1 | _ | |a Fernando, I. P. |b 132 |
700 | 1 | _ | |a Filippi, A. |b 133 |
700 | 1 | _ | |a Fischer, C. S. |b 134 |
700 | 1 | _ | |a Fogler, C. |b 135 |
700 | 1 | _ | |a Fomin, N. |b 136 |
700 | 1 | _ | |a Frankfurt, L. |b 137 |
700 | 1 | _ | |a Frederico, T. |b 138 |
700 | 1 | _ | |a Freese, A. |b 139 |
700 | 1 | _ | |a Fu, Y. |b 140 |
700 | 1 | _ | |a Gamberg, L. |b 141 |
700 | 1 | _ | |a Gan, L. |b 142 |
700 | 1 | _ | |a Gao, F. |b 143 |
700 | 1 | _ | |a Garcia-Tecocoatzi, H. |b 144 |
700 | 1 | _ | |a Gaskell, D. |b 145 |
700 | 1 | _ | |a Gasparian, A. |b 146 |
700 | 1 | _ | |a Gates, K. |b 147 |
700 | 1 | _ | |a Gavalian, G. |b 148 |
700 | 1 | _ | |a Ghoshal, P. K. |b 149 |
700 | 1 | _ | |a Giachino, A. |b 150 |
700 | 1 | _ | |a Giacosa, F. |b 151 |
700 | 1 | _ | |a Giannuzzi, F. |b 152 |
700 | 1 | _ | |a Gilfoyle, G.-P. |b 153 |
700 | 1 | _ | |a Girod, F.-X. |b 154 |
700 | 1 | _ | |a Glazier, D. I. |b 155 |
700 | 1 | _ | |a Gleason, C. |b 156 |
700 | 1 | _ | |a Godfrey, S. |b 157 |
700 | 1 | _ | |a Goity, J. L. |b 158 |
700 | 1 | _ | |a Golubenko, A. A. |b 159 |
700 | 1 | _ | |a Gonzàlez-Solís, S. |b 160 |
700 | 1 | _ | |a Gothe, R. W. |b 161 |
700 | 1 | _ | |a Gotra, Y. |b 162 |
700 | 1 | _ | |a Griffioen, K. |b 163 |
700 | 1 | _ | |a Grocholski, Oskar |0 P:(DE-H253)PIP1097931 |b 164 |
700 | 1 | _ | |a Grube, B. |b 165 |
700 | 1 | _ | |a Guèye, P. |b 166 |
700 | 1 | _ | |a Guo, F.-K. |b 167 |
700 | 1 | _ | |a Guo, Y. |b 168 |
700 | 1 | _ | |a Guo, L. |b 169 |
700 | 1 | _ | |a Hague, T. J. |b 170 |
700 | 1 | _ | |a Hammoud, N. |b 171 |
700 | 1 | _ | |a Hansen, J.-O. |b 172 |
700 | 1 | _ | |a Hattawy, M. |b 173 |
700 | 1 | _ | |a Hauenstein, F. |b 174 |
700 | 1 | _ | |a Hayward, T. |b 175 |
700 | 1 | _ | |a Heddle, D. |b 176 |
700 | 1 | _ | |a Heinrich, N. |b 177 |
700 | 1 | _ | |a Hen, O. |b 178 |
700 | 1 | _ | |a Higinbotham, D. W. |b 179 |
700 | 1 | _ | |a Higuera-Angulo, I. M. |b 180 |
700 | 1 | _ | |a Hiller Blin, A. N. |b 181 |
700 | 1 | _ | |a Hobart, A. |b 182 |
700 | 1 | _ | |a Hobbs, T. |b 183 |
700 | 1 | _ | |a Holmberg, D. E. |b 184 |
700 | 1 | _ | |a Horn, T. |b 185 |
700 | 1 | _ | |a Hoyer, P. |b 186 |
700 | 1 | _ | |a Huber, G. M. |b 187 |
700 | 1 | _ | |a Hurck, P. |b 188 |
700 | 1 | _ | |a Hutauruk, P. T. P. |b 189 |
700 | 1 | _ | |a Ilieva, Y. |b 190 |
700 | 1 | _ | |a Illari, I. |b 191 |
700 | 1 | _ | |a Ireland, D. G. |b 192 |
700 | 1 | _ | |a Isupov, E. L. |b 193 |
700 | 1 | _ | |a Italiano, A. |b 194 |
700 | 1 | _ | |a Jaegle, I. |b 195 |
700 | 1 | _ | |a Jarvis, N. S. |b 196 |
700 | 1 | _ | |a Jenkins, D. J. |b 197 |
700 | 1 | _ | |a Jeschonnek, S. |b 198 |
700 | 1 | _ | |a Ji, C.-R. |b 199 |
700 | 1 | _ | |a Jo, H. S. |b 200 |
700 | 1 | _ | |a Jones, M. |b 201 |
700 | 1 | _ | |a Jones, R. T. |b 202 |
700 | 1 | _ | |a Jones, D. C. |b 203 |
700 | 1 | _ | |a Joo, K. |b 204 |
700 | 1 | _ | |a Junaid, M. |b 205 |
700 | 1 | _ | |a Kageya, T. |b 206 |
700 | 1 | _ | |a Kalantarians, N. |b 207 |
700 | 1 | _ | |a Karki, A. |b 208 |
700 | 1 | _ | |a Karyan, G. |b 209 |
700 | 1 | _ | |a Katramatou, A. T. |b 210 |
700 | 1 | _ | |a Kay, S. J. D. |b 211 |
700 | 1 | _ | |a Kazimi, R. |b 212 |
700 | 1 | _ | |a Keith, C. D. |b 213 |
700 | 1 | _ | |a Keppel, C. |b 214 |
700 | 1 | _ | |a Kerbizi, A. |b 215 |
700 | 1 | _ | |a Khachatryan, V. |b 216 |
700 | 1 | _ | |a Khanal, A. |b 217 |
700 | 1 | _ | |a Khandaker, M. |b 218 |
700 | 1 | _ | |a Kim, A. |b 219 |
700 | 1 | _ | |a Kinney, E. R. |b 220 |
700 | 1 | _ | |a Kohl, M. |b 221 |
700 | 1 | _ | |a Kotzinian, A. |b 222 |
700 | 1 | _ | |a Kriesten, B. T. |b 223 |
700 | 1 | _ | |a Kubarovsky, V. |b 224 |
700 | 1 | _ | |a Kubis, B. |b 225 |
700 | 1 | _ | |a Kuhn, S. E. |b 226 |
700 | 1 | _ | |a Kumar, V. |b 227 |
700 | 1 | _ | |a Kutz, T. |b 228 |
700 | 1 | _ | |a Leali, M. |b 229 |
700 | 1 | _ | |a Lebed, R. F. |b 230 |
700 | 1 | _ | |a Lenisa, P. |b 231 |
700 | 1 | _ | |a Leskovec, L. |b 232 |
700 | 1 | _ | |a Li, S. |b 233 |
700 | 1 | _ | |a Li, X. |b 234 |
700 | 1 | _ | |a Liao, J. |b 235 |
700 | 1 | _ | |a Lin, H.-W. |b 236 |
700 | 1 | _ | |a Liu, L. |b 237 |
700 | 1 | _ | |a Liuti, S. |b 238 |
700 | 1 | _ | |a Liyanage, N. |b 239 |
700 | 1 | _ | |a Lu, Y. |b 240 |
700 | 1 | _ | |a MacGregor, I. J. D. |b 241 |
700 | 1 | _ | |a Mack, D. J. |b 242 |
700 | 1 | _ | |a Maiani, L. |b 243 |
700 | 1 | _ | |a Mamo, K. A. |b 244 |
700 | 1 | _ | |a Mandaglio, G. |b 245 |
700 | 1 | _ | |a Mariani, C. |b 246 |
700 | 1 | _ | |a Markowitz, P. |b 247 |
700 | 1 | _ | |a Marukyan, H. |b 248 |
700 | 1 | _ | |a Mascagna, V. |b 249 |
700 | 1 | _ | |a Mathieu, V. |b 250 |
700 | 1 | _ | |a Maxwell, J. |b 251 |
700 | 1 | _ | |a Mazouz, M. |b 252 |
700 | 1 | _ | |a McCaughan, M. |b 253 |
700 | 1 | _ | |a McKeown, R. D. |b 254 |
700 | 1 | _ | |a McKinnon, B. |b 255 |
700 | 1 | _ | |a Meekins, D. |b 256 |
700 | 1 | _ | |a Melnitchouk, W. |b 257 |
700 | 1 | _ | |a Metz, A. |b 258 |
700 | 1 | _ | |a Meyer, C. A. |b 259 |
700 | 1 | _ | |a Meziani, Z.-E. |b 260 |
700 | 1 | _ | |a Mezrag, C. |b 261 |
700 | 1 | _ | |a Michaels, R. |b 262 |
700 | 1 | _ | |a Miller, G. A. |b 263 |
700 | 1 | _ | |a Mineeva, T. |b 264 |
700 | 1 | _ | |a Miramontes, A. S. |b 265 |
700 | 1 | _ | |a Mirazita, M. |b 266 |
700 | 1 | _ | |a Mizutani, K. |b 267 |
700 | 1 | _ | |a Mkrtchyan, A. |b 268 |
700 | 1 | _ | |a Mkrtchyan, H. |b 269 |
700 | 1 | _ | |a Moffit, B. |b 270 |
700 | 1 | _ | |a Mohanmurthy, P. |b 271 |
700 | 1 | _ | |a Mokeev, V. I. |b 272 |
700 | 1 | _ | |a Monaghan, P. |b 273 |
700 | 1 | _ | |a Montaña, G. |b 274 |
700 | 1 | _ | |a Montgomery, R. |b 275 |
700 | 1 | _ | |a Moretti, A. |b 276 |
700 | 1 | _ | |a Chàvez, J. M. Morgado |b 277 |
700 | 1 | _ | |a Mosel, U. |b 278 |
700 | 1 | _ | |a Movsisyan, A. |b 279 |
700 | 1 | _ | |a Musico, P. |b 280 |
700 | 1 | _ | |a Nadeeshani, S. A. |b 281 |
700 | 1 | _ | |a Nadolsky, P. M. |b 282 |
700 | 1 | _ | |a Nakamura, S. X. |b 283 |
700 | 1 | _ | |a Nazeer, J. |b 284 |
700 | 1 | _ | |a Nefediev, A. V. |b 285 |
700 | 1 | _ | |a Neupane, K. |b 286 |
700 | 1 | _ | |a Nguyen, D. |b 287 |
700 | 1 | _ | |a Niccolai, S. |b 288 |
700 | 1 | _ | |a Niculescu, I. |b 289 |
700 | 1 | _ | |a Niculescu, G. |b 290 |
700 | 1 | _ | |a Nocera, E. R. |b 291 |
700 | 1 | _ | |a Nycz, M. |b 292 |
700 | 1 | _ | |a Olness, F. I. |b 293 |
700 | 1 | _ | |a Ortega, P. G. |b 294 |
700 | 1 | _ | |a Osipenko, M. |b 295 |
700 | 1 | _ | |a Pace, E. |b 296 |
700 | 1 | _ | |a Pandey, B. |b 297 |
700 | 1 | _ | |a Pandey, P. |b 298 |
700 | 1 | _ | |a Papandreou, Z. |b 299 |
700 | 1 | _ | |a Papavassiliou, J. |b 300 |
700 | 1 | _ | |a Pappalardo, L. L. |b 301 |
700 | 1 | _ | |a Paredes-Torres, G. |b 302 |
700 | 1 | _ | |a Paremuzyan, R. |b 303 |
700 | 1 | _ | |a Park, S. |b 304 |
700 | 1 | _ | |a Parsamyan, B. |b 305 |
700 | 1 | _ | |a Paschke, K. D. |b 306 |
700 | 1 | _ | |a Pasquini, B. |b 307 |
700 | 1 | _ | |a Passemar, E. |b 308 |
700 | 1 | _ | |a Pasyuk, E. |b 309 |
700 | 1 | _ | |a Patel, T. |b 310 |
700 | 1 | _ | |a Paudel, C. |b 311 |
700 | 1 | _ | |a Paul, S. J. |b 312 |
700 | 1 | _ | |a Peng, J.-C. |b 313 |
700 | 1 | _ | |a Pentchev, L. |b 314 |
700 | 1 | _ | |a Perrino, R. |b 315 |
700 | 1 | _ | |a Perry, R. J. |b 316 |
700 | 1 | _ | |a Peters, K. |b 317 |
700 | 1 | _ | |a Petratos, G. G. |b 318 |
700 | 1 | _ | |a Phelps, W. |b 319 |
700 | 1 | _ | |a Piasetzky, E. |b 320 |
700 | 1 | _ | |a Pilloni, A. |b 321 |
700 | 1 | _ | |a Pire, B. |b 322 |
700 | 1 | _ | |a Pitonyak, D. |b 323 |
700 | 1 | _ | |a Pitt, M. L. |b 324 |
700 | 1 | _ | |a Polosa, A. D. |b 325 |
700 | 1 | _ | |a Pospelov, M. |b 326 |
700 | 1 | _ | |a Postuma, A. C. |b 327 |
700 | 1 | _ | |a Poudel, J. |b 328 |
700 | 1 | _ | |a Preet, L. |b 329 |
700 | 1 | _ | |a Prelovsek, S. |b 330 |
700 | 1 | _ | |a Price, J. W. |b 331 |
700 | 1 | _ | |a Prokudin, A. |b 332 |
700 | 1 | _ | |a Puckett, A. J. R. |b 333 |
700 | 1 | _ | |a Pybus, J. R. |b 334 |
700 | 1 | _ | |a Qin, S.-X. |b 335 |
700 | 1 | _ | |a Qiu, J.-W. |b 336 |
700 | 1 | _ | |a Radici, M. |b 337 |
700 | 1 | _ | |a Rashidi, H. |b 338 |
700 | 1 | _ | |a Rathnayake, A. D. |b 339 |
700 | 1 | _ | |a Raue, B. A. |b 340 |
700 | 1 | _ | |a Reed, T. |b 341 |
700 | 1 | _ | |a Reimer, P. E. |b 342 |
700 | 1 | _ | |a Reinhold, J. |b 343 |
700 | 1 | _ | |a Richard, J.-M. |b 344 |
700 | 1 | _ | |a Rinaldi, M. |b 345 |
700 | 1 | _ | |a Ringer, F. |b 346 |
700 | 1 | _ | |a Ripani, M. |b 347 |
700 | 1 | _ | |a Ritman, J. |b 348 |
700 | 1 | _ | |a West, J. Rittenhouse |b 349 |
700 | 1 | _ | |a Rivero-Acosta, A. |b 350 |
700 | 1 | _ | |a Roberts, C. D. |b 351 |
700 | 1 | _ | |a Rodas, A. |b 352 |
700 | 1 | _ | |a Rodini, S. |0 P:(DE-H253)PIP1098620 |b 353 |
700 | 1 | _ | |a Rodríguez-Quintero, J. |b 354 |
700 | 1 | _ | |a Rogers, T. C. |b 355 |
700 | 1 | _ | |a Rojo, J. |0 P:(DE-HGF)0 |b 356 |
700 | 1 | _ | |a Rossi, P. |0 P:(DE-HGF)0 |b 357 |e Corresponding author |
700 | 1 | _ | |a Rossi, G. C. |b 358 |
700 | 1 | _ | |a Salmè, G. |b 359 |
700 | 1 | _ | |a Santiesteban, S. N. |b 360 |
700 | 1 | _ | |a Santopinto, E. |b 361 |
700 | 1 | _ | |a Sargsian, M. |b 362 |
700 | 1 | _ | |a Sato, N. |b 363 |
700 | 1 | _ | |a Schadmand, S. |b 364 |
700 | 1 | _ | |a Schmidt, A. |b 365 |
700 | 1 | _ | |a Schmidt, S. M. |b 366 |
700 | 1 | _ | |a Schnell, G. |b 367 |
700 | 1 | _ | |a Schumacher, R. A. |b 368 |
700 | 1 | _ | |a Schweitzer, P. |b 369 |
700 | 1 | _ | |a Scimemi, I. |b 370 |
700 | 1 | _ | |a Scott, K. C. |b 371 |
700 | 1 | _ | |a Seay, D. A. |b 372 |
700 | 1 | _ | |a Segovia, J. |b 373 |
700 | 1 | _ | |a Semenov-Tian-Shansky, K. |b 374 |
700 | 1 | _ | |a Seryi, A. |b 375 |
700 | 1 | _ | |a Sharda, A. S. |b 376 |
700 | 1 | _ | |a Shepherd, M. R. |b 377 |
700 | 1 | _ | |a Shirokov, E. V. |b 378 |
700 | 1 | _ | |a Shrestha, S. |b 379 |
700 | 1 | _ | |a Shrestha, U. |b 380 |
700 | 1 | _ | |a Shvedunov, V. I. |b 381 |
700 | 1 | _ | |a Signori, A. |b 382 |
700 | 1 | _ | |a Slifer, K. J. |b 383 |
700 | 1 | _ | |a Smith, W. A. |b 384 |
700 | 1 | _ | |a Somov, A. |b 385 |
700 | 1 | _ | |a Souder, P. |b 386 |
700 | 1 | _ | |a Sparveris, N. |b 387 |
700 | 1 | _ | |a Spizzo, F. |b 388 |
700 | 1 | _ | |a Spreafico, M. |b 389 |
700 | 1 | _ | |a Stepanyan, S. |b 390 |
700 | 1 | _ | |a Stevens, J. R. |b 391 |
700 | 1 | _ | |a Strakovsky, I. I. |b 392 |
700 | 1 | _ | |a Strauch, S. |b 393 |
700 | 1 | _ | |a Strikman, M. |b 394 |
700 | 1 | _ | |a Su, S. |b 395 |
700 | 1 | _ | |a Sumner, B. C. L. |b 396 |
700 | 1 | _ | |a Sun, E. |b 397 |
700 | 1 | _ | |a Suresh, M. |b 398 |
700 | 1 | _ | |a Sutera, C. |b 399 |
700 | 1 | _ | |a Swanson, E. S. |b 400 |
700 | 1 | _ | |a Szczepaniak, A. P. |b 401 |
700 | 1 | _ | |a Sznajder, P. |b 402 |
700 | 1 | _ | |a Szumila-Vance, H. |b 403 |
700 | 1 | _ | |a Szymanowski, L. |b 404 |
700 | 1 | _ | |a Tadepalli, A.-S. |b 405 |
700 | 1 | _ | |a Tadevosyan, V. |b 406 |
700 | 1 | _ | |a Tamang, B. |b 407 |
700 | 1 | _ | |a Tarasov, V. V. |b 408 |
700 | 1 | _ | |a Thiel, A. |b 409 |
700 | 1 | _ | |a Tong, X.-B. |b 410 |
700 | 1 | _ | |a Tyson, R. |b 411 |
700 | 1 | _ | |a Ungaro, M. |b 412 |
700 | 1 | _ | |a Urciuoli, G. M. |b 413 |
700 | 1 | _ | |a Usman, A. |b 414 |
700 | 1 | _ | |a Valcarce, A. |b 415 |
700 | 1 | _ | |a Vallarino, S. |b 416 |
700 | 1 | _ | |a Vaquera-Araujo, C. A. |b 417 |
700 | 1 | _ | |a Venturelli, L. |b 418 |
700 | 1 | _ | |a Vera, F. |b 419 |
700 | 1 | _ | |a Vladimirov, A. |b 420 |
700 | 1 | _ | |a Vossen, A. |b 421 |
700 | 1 | _ | |a Wagner, J. |b 422 |
700 | 1 | _ | |a Wei, X. |b 423 |
700 | 1 | _ | |a Weinstein, L. B. |b 424 |
700 | 1 | _ | |a Weiss, C. |b 425 |
700 | 1 | _ | |a Williams, R. |b 426 |
700 | 1 | _ | |a Winney, D. |b 427 |
700 | 1 | _ | |a Wojtsekhowski, B. |b 428 |
700 | 1 | _ | |a Wood, M. H. |b 429 |
700 | 1 | _ | |a Xiao, T. |b 430 |
700 | 1 | _ | |a Xu, S.-S. |b 431 |
700 | 1 | _ | |a Ye, Z. |b 432 |
700 | 1 | _ | |a Yero, C. |b 433 |
700 | 1 | _ | |a Yuan, C.-P. |0 P:(DE-H253)PIP1103338 |b 434 |
700 | 1 | _ | |a Yurov, M. |b 435 |
700 | 1 | _ | |a Zachariou, N. |b 436 |
700 | 1 | _ | |a Zhang, Z. |b 437 |
700 | 1 | _ | |a Zhao, Y. |b 438 |
700 | 1 | _ | |a Zhao, Z. W. |b 439 |
700 | 1 | _ | |a Zheng, X. |b 440 |
700 | 1 | _ | |a Zhou, X. |b 441 |
700 | 1 | _ | |a Ziegler, V. |b 442 |
700 | 1 | _ | |a Zihlmann, B. |b 443 |
773 | 1 | 8 | |a 10.1140/epja/s10050-024-01282-x |b Springer Science and Business Media LLC |d 2024-09-04 |n 9 |p 173 |3 journal-article |2 Crossref |t The European Physical Journal A |v 60 |y 2024 |x 1434-601X |
773 | _ | _ | |a 10.1140/epja/s10050-024-01282-x |g Vol. 60, no. 9, p. 173 |0 PERI:(DE-600)1459066-9 |n 9 |p 173 |t The European physical journal / A |v 60 |y 2024 |x 1434-601X |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622276/files/s10050-024-01282-x.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622276/files/s10050-024-01282-x.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:622276 |p VDB |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 164 |6 P:(DE-H253)PIP1097931 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 353 |6 P:(DE-H253)PIP1098620 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 434 |6 P:(DE-H253)PIP1103338 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-611 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2024-12-21 |w ger |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2024-12-21 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-21 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-21 |
920 | 1 | _ | |0 I:(DE-H253)T-20120731 |k T |l Theorie-Gruppe |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)T-20120731 |
980 | _ | _ | |a UNRESTRICTED |
999 | C | 5 | |a 10.1016/j.ppnp.2022.103985 |1 J Arrington |9 -- missing cx lookup -- |2 Crossref |u J. Arrington et al., Physics with CEBAF at 12 GeV and future opportunities. Prog. Part. Nucl. Phys. 127, 103985 (2022). https://doi.org/10.1016/j.ppnp.2022.103985. arXiv:2112.00060 |t Prog. Part. Nucl. Phys. |v 127 |y 2022 |
999 | C | 5 | |2 Crossref |u J. Bulava, et al., Hadron Spectroscopy with Lattice QCD, in: Snowmass 2021, (2022). arXiv:2203.03230 |
999 | C | 5 | |a 10.1016/j.ppnp.2015.03.001 |9 -- missing cx lookup -- |1 CA Meyer |p 21 - |2 Crossref |u C.A. Meyer, E.S. Swanson, Hybrid Mesons. Prog. Part. Nucl. Phys. 82, 21–58 (2015). https://doi.org/10.1016/j.ppnp.2015.03.001. arXiv:1502.07276 |t Prog. Part. Nucl. Phys. |v 82 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevLett.122.042002 |1 A Rodas |9 -- missing cx lookup -- |2 Crossref |u A. Rodas et al., Determination of the pole position of the lightest hybrid meson candidate. Phys. Rev. Lett. 122(4), 042002 (2019). https://doi.org/10.1103/PhysRevLett.122.042002. arXiv:1810.04171 |t Phys. Rev. Lett. |v 122 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevLett.129.192002 |9 -- missing cx lookup -- |2 Crossref |u M. Ablikim, et al., Observation of an Isoscalar Resonance with Exotic JPC=1-+ Quantum Numbers in $$\text{J}/\psi \rightarrow \gamma \eta \eta $$’, Phys. Rev. Lett. 129 (19) (2022) 192002, [Erratum: Phys.Rev.Lett. 130, 159901 (2023)]. arXiv:2202.00621, https://doi.org/10.1103/PhysRevLett.129.192002 |
999 | C | 5 | |a 10.1103/RevModPhys.90.015003 |9 -- missing cx lookup -- |2 Crossref |u S.L. Olsen, T. Skwarnicki, D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence. Rev. Mod. Phys. 90(1), 015003 (2018). https://doi.org/10.1103/RevModPhys.90.015003. arXiv:1708.04012 |
999 | C | 5 | |a 10.1016/j.ppnp.2016.11.003 |9 -- missing cx lookup -- |1 RF Lebed |p 143 - |2 Crossref |u R.F. Lebed, R.E. Mitchell, E.S. Swanson, Heavy-Quark QCD Exotica. Prog. Part. Nucl. Phys. 93, 143–194 (2017). https://doi.org/10.1016/j.ppnp.2016.11.003. arXiv:1610.04528 |t Prog. Part. Nucl. Phys. |v 93 |y 2017 |
999 | C | 5 | |a 10.1088/1674-1137/40/4/042001 |1 RA Briceno |9 -- missing cx lookup -- |2 Crossref |u R.A. Briceno et al., Issues and Opportunities in Exotic Hadrons. Chin. Phys. C 40(4), 042001 (2016). https://doi.org/10.1088/1674-1137/40/4/042001. arXiv:1511.06779 |t Chin. Phys. C |v 40 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevLett.110.252001 |1 M Ablikim |9 -- missing cx lookup -- |2 Crossref |u M. Ablikim et al., Observation of a Charged Charmoniumlike Structure in $$e^+e^- \rightarrow \pi ^+\pi ^- J/\psi $$ at $$\sqrt{s}$$ =4.26 GeV. Phys. Rev. Lett. 110, 252001 (2013). https://doi.org/10.1103/PhysRevLett.110.252001. arXiv:1303.5949 |t Phys. Rev. Lett. |v 110 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevLett.110.252002 |9 -- missing cx lookup -- |2 Crossref |u Z. Q. Liu, et al., Study of $$e^+e^- \rightarrow \pi ^+ \pi ^- J/\psi $$ and Observation of a Charged Charmoniumlike State at Belle, Phys. Rev. Lett. 110 (2013) 252002, [Erratum: Phys.Rev.Lett. 111, 019901 (2013)]. arXiv:1304.0121, https://doi.org/10.1103/PhysRevLett.110.252002 |
999 | C | 5 | |a 10.1103/PhysRevLett.108.122001 |1 A Bondar |9 -- missing cx lookup -- |2 Crossref |u A. Bondar et al., Observation of two charged bottomonium-like resonances in Y(5S) decays. Phys. Rev. Lett. 108, 122001 (2012). https://doi.org/10.1103/PhysRevLett.108.122001. arXiv:1110.2251 |t Phys. Rev. Lett. |v 108 |y 2012 |
999 | C | 5 | |a 10.1103/PhysRevLett.111.242001 |1 M Ablikim |9 -- missing cx lookup -- |2 Crossref |u M. Ablikim et al., Observation of a Charged Charmoniumlike Structure $$Z_c$$(4020) and Search for the $$Z_c$$(3900) in $$e^+e^- \rightarrow \pi ^+\pi ^- h_c$$. Phys. Rev. Lett. 111(24), 242001 (2013). https://doi.org/10.1103/PhysRevLett.111.242001. arXiv:1309.1896 |t Phys. Rev. Lett. |v 111 |y 2013 |
999 | C | 5 | |a 10.1016/j.nima.2020.163419 |1 VD Burkert |9 -- missing cx lookup -- |2 Crossref |u V.D. Burkert et al., The CLAS12 Spectrometer at Jefferson Laboratory. Nucl. Instrum. Meth. A 959, 163419 (2020). https://doi.org/10.1016/j.nima.2020.163419 |t Nucl. Instrum. Meth. A |v 959 |y 2020 |
999 | C | 5 | |a 10.1016/j.nima.2020.164807 |1 S Adhikari |9 -- missing cx lookup -- |2 Crossref |u S. Adhikari et al., The GLUEX beamline and detector. Nucl. Instrum. Meth. A 987, 164807 (2021). https://doi.org/10.1016/j.nima.2020.164807. arXiv:2005.14272 |t Nucl. Instrum. Meth. A |v 987 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevD.104.L091102 |9 -- missing cx lookup -- |2 Crossref |u R. Aaij et al., Observation of excited $$\Omega _c^0$$ baryons in $$\Omega _b^- \rightarrow \Xi _c^+ K^-\pi ^-$$decays. Phys. Rev. D 104(9), L091102 (2021). https://doi.org/10.1103/PhysRevD.104.L091102. arXiv:2107.03419 |
999 | C | 5 | |a 10.1103/PhysRevLett.112.222002 |1 R Aaij |9 -- missing cx lookup -- |2 Crossref |u R. Aaij et al., Observation of the resonant character of the $$Z(4430)^-$$ state. Phys. Rev. Lett. 112(22), 222002 (2014). https://doi.org/10.1103/PhysRevLett.112.222002. arXiv:1404.1903 |t Phys. Rev. Lett. |v 112 |y 2014 |
999 | C | 5 | |a 10.1103/PhysRevD.90.112009 |1 K Chilikin |9 -- missing cx lookup -- |2 Crossref |u K. Chilikin et al., Observation of a new charged charmoniumlike state in $${\bar{B}}^0 \rightarrow J/\psi K^- \pi ^+$$ decays. Phys. Rev. D 90(11), 112009 (2014). https://doi.org/10.1103/PhysRevD.90.112009. arXiv:1408.6457 |t Phys. Rev. D |v 90 |y 2014 |
999 | C | 5 | |a 10.1016/j.physrep.2016.05.004 |9 -- missing cx lookup -- |1 H-X Chen |p 1 - |2 Crossref |u H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, The hidden-charm pentaquark and tetraquark states. Phys. Rept. 639, 1–121 (2016). https://doi.org/10.1016/j.physrep.2016.05.004. arXiv:1601.02092 |t Phys. Rept. |v 639 |y 2016 |
999 | C | 5 | |a 10.1016/j.physrep.2020.05.001 |9 -- missing cx lookup -- |2 Crossref |u N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C.E. Thomas, A. Vairo, C.-Z. Yuan, The $$XYZ$$ states: experimental and theoretical status and perspectives. Phys. Rept. 873, 1–154 (2020). https://doi.org/10.1016/j.physrep.2020.05.001. arXiv:1907.07583 |
999 | C | 5 | |a 10.1103/RevModPhys.90.015004 |9 -- missing cx lookup -- |2 Crossref |u F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Hadronic molecules, Rev. Mod. Phys. 90 (1) (2018) 015004, [Erratum: Rev.Mod.Phys. 94, 029901 (2022)]. https://doi.org/10.1103/RevModPhys.90.015004. arXiv:1705.00141 |
999 | C | 5 | |2 Crossref |u S. Adhikari, et al., Measurement of the J/$$\psi $$ photoproduction cross section over the full near-threshold kinematic region (4 2023). arXiv:2304.03845 |
999 | C | 5 | |a 10.1103/PhysRevD.94.034002 |1 AN Hiller Blin |9 -- missing cx lookup -- |2 Crossref |u A.N. Hiller Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V.I. Mokeev, A. Pilloni, A.P. Szczepaniak, Studying the $$\text{ P}_c$$(4450) resonance in J/$$\psi $$ photoproduction off protons. Phys. Rev. D 94(3), 034002 (2016). https://doi.org/10.1103/PhysRevD.94.034002. arXiv:1606.08912 |t Phys. Rev. D |v 94 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevD.106.094009 |1 D Winney |9 -- missing cx lookup -- |2 Crossref |u D. Winney, A. Pilloni, V. Mathieu, A.N. Hiller Blin, M. Albaladejo, W.A. Smith, A. Szczepaniak, XYZ spectroscopy at electron-hadron facilities. II. Semi-inclusive processes with pion exchange. Phys. Rev. D 106(9), 094009 (2022). https://doi.org/10.1103/PhysRevD.106.094009. arXiv:2209.05882 |t Phys. Rev. D |v 106 |y 2022 |
999 | C | 5 | |1 RL Workman |y 2022 |2 Crossref |u R.L. Workman et al., Review of Particle Physics. PTEP 2022, 083C01 (2022) |
999 | C | 5 | |a 10.1140/epja/i2016-16318-4 |9 -- missing cx lookup -- |1 F-K Guo |p 318 - |2 Crossref |u F.-K. Guo, U.G. Meißner, J. Nieves, Z. Yang, Remarks on the $$P_c$$ structures and triangle singularities. Eur. Phys. J. A 52(10), 318 (2016). https://doi.org/10.1140/epja/i2016-16318-4. arXiv:1605.05113 |t Eur. Phys. J. A |v 52 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevD.94.074039 |1 M Bayar |9 -- missing cx lookup -- |2 Crossref |u M. Bayar, F. Aceti, F.-K. Guo, E. Oset, A Discussion on Triangle Singularities in the $$\Lambda _b \rightarrow J/\psi K^{-} p$$ Reaction. Phys. Rev. D 94(7), 074039 (2016). https://doi.org/10.1103/PhysRevD.94.074039. arXiv:1609.04133 |t Phys. Rev. D |v 94 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevD.103.L111503 |1 SX Nakamura |9 -- missing cx lookup -- |2 Crossref |u S.X. Nakamura, $$P_c(4312)^+$$, $$P_c(4380)^+$$, and $$P_c(4457)^+$$ as double triangle cusps. Phys. Rev. D 103, 111503 (2021). https://doi.org/10.1103/PhysRevD.103.L111503. arXiv:2103.06817 |t Phys. Rev. D |v 103 |y 2021 |
999 | C | 5 | |a 10.1016/j.ppnp.2020.103757 |1 F-K Guo |9 -- missing cx lookup -- |2 Crossref |u F.-K. Guo, X.-H. Liu, S. Sakai, Threshold cusps and triangle singularities in hadronic reactions. Prog. Part. Nucl. Phys. 112, 103757 (2020). https://doi.org/10.1016/j.ppnp.2020.103757. arXiv:1912.07030 |t Prog. Part. Nucl. Phys. |v 112 |y 2020 |
999 | C | 5 | |a 10.1016/j.physletb.2017.06.030 |9 -- missing cx lookup -- |1 A Pilloni |p 200 - |2 Crossref |u A. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, A.P. Szczepaniak, Amplitude analysis and the nature of the $$\text{ Z}_c$$(3900). Phys. Lett. B 772, 200–209 (2017). https://doi.org/10.1016/j.physletb.2017.06.030. arXiv:1612.06490 |t Phys. Lett. B |v 772 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevLett.91.262001 |1 SK Choi |9 -- missing cx lookup -- |2 Crossref |u S.K. Choi et al., Observation of a narrow charmonium-like state in exclusive $$B^\pm \rightarrow K^\pm \pi ^+ \pi ^- J/\psi $$ decays. Phys. Rev. Lett. 91, 262001 (2003). https://doi.org/10.1103/PhysRevLett.91.262001. arXiv:hep-ex/0309032 |t Phys. Rev. Lett. |v 91 |y 2003 |
999 | C | 5 | |a 10.1103/PhysRevLett.110.222001 |1 R Aaij |9 -- missing cx lookup -- |2 Crossref |u R. Aaij et al., Determination of the X(3872) meson quantum numbers. Phys. Rev. Lett. 110, 222001 (2013). https://doi.org/10.1103/PhysRevLett.110.222001. arXiv:1302.6269 |t Phys. Rev. Lett. |v 110 |y 2013 |
999 | C | 5 | |a 10.1016/j.physletb.2018.07.008 |9 -- missing cx lookup -- |1 M Aghasyan |p 334 - |2 Crossref |u M. Aghasyan et al., Search for muoproduction of $$X (3872)$$ at COMPASS and indication of a new state $${\widetilde{X}}(3872)$$. Phys. Lett. B 783, 334–340 (2018). https://doi.org/10.1016/j.physletb.2018.07.008. arXiv:1707.01796 |t Phys. Lett. B |v 783 |y 2018 |
999 | C | 5 | |a 10.1093/ptep/ptac097 |9 -- missing cx lookup -- |1 RL Workman |p 083C01 - |2 Crossref |u R.L. Workman et al., Review of Particle Physics. PTEP 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097 |t PTEP |v 2022 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.115.072001 |1 R Aaij |9 -- missing cx lookup -- |2 Crossref |u R. Aaij et al., Observation of $$J/\psi p$$ Resonances Consistent with Pentaquark States in $$\Lambda _b^0 \rightarrow J/\psi K^- p$$ Decays. Phys. Rev. Lett. 115, 072001 (2015). https://doi.org/10.1103/PhysRevLett.115.072001. arXiv:1507.03414 |t Phys. Rev. Lett. |v 115 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevLett.122.222001 |1 R Aaij |9 -- missing cx lookup -- |2 Crossref |u R. Aaij et al., Observation of a narrow pentaquark state, $$P_c(4312)^+$$, and of two-peak structure of the $$P_c(4450)^+$$. Phys. Rev. Lett. 122(22), 222001 (2019). https://doi.org/10.1103/PhysRevLett.122.222001. arXiv:1904.03947 |t Phys. Rev. Lett. |v 122 |y 2019 |
999 | C | 5 | |2 Crossref |u D. Winney, et al., Dynamics in near-threshold $$J/\psi $$ photoproduction (5 2023). arXiv:2305.01449 |
999 | C | 5 | |a 10.1007/JHEP11(2017)033 |9 -- missing cx lookup -- |1 GKC Cheung |p 033 - |2 Crossref |u G.K.C. Cheung, C.E. Thomas, J.J. Dudek, R.G. Edwards, Tetraquark operators in lattice QCD and exotic flavour states in the charm sector. JHEP 11, 033 (2017). https://doi.org/10.1007/JHEP11(2017)033. arXiv:1709.01417 |t JHEP |v 11 |y 2017 |
999 | C | 5 | |2 Crossref |u Y. Lyu, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, J. Meng, Doubly charmed tetraquark $$T^+_{cc}$$ from Lattice QCD near Physical Point (2 2023). arXiv:2302.04505 |
999 | C | 5 | |a 10.1103/PhysRevLett.129.032002 |1 M Padmanath |9 -- missing cx lookup -- |2 Crossref |u M. Padmanath, S. Prelovsek, Signature of a Doubly Charm Tetraquark Pole in DD* Scattering on the Lattice. Phys. Rev. Lett. 129(3), 032002 (2022). https://doi.org/10.1103/PhysRevLett.129.032002. arXiv:2202.10110 |t Phys. Rev. Lett. |v 129 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.99.054505 |1 A Francis |9 -- missing cx lookup -- |2 Crossref |u A. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Evidence for charm-bottom tetraquarks and the mass dependence of heavy-light tetraquark states from lattice QCD. Phys. Rev. D 99(5), 054505 (2019). https://doi.org/10.1103/PhysRevD.99.054505. arXiv:1810.10550 |t Phys. Rev. D |v 99 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevD.65.014013 |1 J Pumplin |9 -- missing cx lookup -- |2 Crossref |u J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk, H.L. Lai, W.K. Tung, Uncertainties of predictions from parton distribution functions. 2. The Hessian method. Phys. Rev. D 65, 014013 (2001). https://doi.org/10.1103/PhysRevD.65.014013. arXiv:hep-ph/0101032 |t Phys. Rev. D |v 65 |y 2001 |
999 | C | 5 | |1 PM Nadolsky |y 2001 |2 Crossref |u P.M. Nadolsky, Z. Sullivan, PDF Uncertainties in WH Production at Tevatron. eConf C010630, P510 (2001). arXiv:hep-ph/0110378 |
999 | C | 5 | |a 10.1103/PhysRevD.78.013004 |1 PM Nadolsky |9 -- missing cx lookup -- |2 Crossref |u P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, C.P. Yuan, Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). https://doi.org/10.1103/PhysRevD.78.013004. arXiv:0802.0007 |t Phys. Rev. D |v 78 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevLett.106.252002 |1 W-C Chang |9 -- missing cx lookup -- |2 Crossref |u W.-C. Chang, J.-C. Peng, Flavor Asymmetry of the Nucleon Sea and the Five-Quark Components of the Nucleons. Phys. Rev. Lett. 106, 252002 (2011). https://doi.org/10.1103/PhysRevLett.106.252002. arXiv:1102.5631 |t Phys. Rev. Lett. |v 106 |y 2011 |
999 | C | 5 | |a 10.1016/0370-2693(80)90364-0 |9 -- missing cx lookup -- |1 SJ Brodsky |p 451 - |2 Crossref |u S.J. Brodsky, P. Hoyer, C. Peterson, N. Sakai, The Intrinsic Charm of the Proton. Phys. Lett. B 93, 451–455 (1980). https://doi.org/10.1016/0370-2693(80)90364-0 |t Phys. Lett. B |v 93 |y 1980 |
999 | C | 5 | |a 10.1038/s41586-021-03282-z 10.1038/s41586-022-04707-z |9 -- missing cx lookup -- |2 Crossref |u J. Dove, et al., Publisher Correction: The asymmetry of antimatter in the proton [https://doi.org/10.1038/s41586-021-03282-z], Nature 590 (7847) (2021) 561–565. arXiv:2103.04024, https://doi.org/10.1038/s41586-022-04707-z |
999 | C | 5 | |a 10.1103/PhysRevD.64.052002 |1 RS Towell |9 -- missing cx lookup -- |2 Crossref |u R.S. Towell et al., Improved measurement of the dbar/ubar asymmetry in the nucleon sea. Phys. Rev. D 64, 052002 (2001). https://doi.org/10.1103/PhysRevD.64.052002 |t Phys. Rev. D |v 64 |y 2001 |
999 | C | 5 | |a 10.1103/PhysRevLett.81.5519 |9 -- missing cx lookup -- |1 K Ackerstaff |p 5519 - |2 Crossref |u K. Ackerstaff et al., The Flavor asymmetry of the light quark sea from semiinclusive deep inelastic scattering. Phys. Rev. Lett. 81, 5519–5523 (1998). https://doi.org/10.1103/PhysRevLett.81.5519. arXiv:hep-ex/9807013 |t Phys. Rev. Lett. |v 81 |y 1998 |
999 | C | 5 | |a 10.22323/1.247.0005 |9 -- missing cx lookup -- |2 Crossref |u A. M. Cooper-Sarkar, HERA Collider Results, PoS DIS2015 (2015) 005https://doi.org/10.22323/1.247.0005. arXiv:1507.03849 |
999 | C | 5 | |a 10.1007/BF01571875 |9 -- missing cx lookup -- |1 AO Bazarko |p 189 - |2 Crossref |u A.O. Bazarko et al., Determination of the strange quark content of the nucleon from a next-to-leading order QCD analysis of neutrino charm production. Z. Phys. C 65, 189–198 (1995). https://doi.org/10.1007/BF01571875. arXiv:hep-ex/9406007 |t Z. Phys. C |v 65 |y 1995 |
999 | C | 5 | |a 10.1103/PhysRevLett.99.192001 |1 D Mason |9 -- missing cx lookup -- |2 Crossref |u D. Mason et al., Measurement of the Nucleon Strange-Antistrange Asymmetry at Next-to-Leading Order in QCD from NuTeV Dimuon Data. Phys. Rev. Lett. 99, 192001 (2007). https://doi.org/10.1103/PhysRevLett.99.192001 |t Phys. Rev. Lett. |v 99 |y 2007 |
999 | C | 5 | |a 10.1088/1367-2630/13/9/093002 |1 A Kayis-Topaksu |9 -- missing cx lookup -- |2 Crossref |u A. Kayis-Topaksu et al., Measurement of charm production in neutrino charged-current interactions. New J. Phys. 13, 093002 (2011). https://doi.org/10.1088/1367-2630/13/9/093002. arXiv:1107.0613 |t New J. Phys. |v 13 |y 2011 |
999 | C | 5 | |a 10.1016/j.nuclphysb.2013.08.021 |9 -- missing cx lookup -- |1 O Samoylov |p 339 - |2 Crossref |u O. Samoylov et al., A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment. Nucl. Phys. B 876, 339–375 (2013). https://doi.org/10.1016/j.nuclphysb.2013.08.021. arXiv:1308.4750 |t Nucl. Phys. B |v 876 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevC.96.032201 |1 N Kalantarians |9 -- missing cx lookup -- |2 Crossref |u N. Kalantarians, C. Keppel, M.E. Christy, Comparison of the Structure Function F2 as Measured by Charged Lepton and Neutrino Scattering from Iron Targets. Phys. Rev. C 96(3), 032201 (2017). https://doi.org/10.1103/PhysRevC.96.032201. arXiv:1706.02002 |t Phys. Rev. C |v 96 |y 2017 |
999 | C | 5 | |a 10.1393/ncr/i2009-10048-0 |9 -- missing cx lookup -- |1 A Accardi |p 439 - |2 Crossref |u A. Accardi, F. Arleo, W.K. Brooks, D. D’Enterria, V. Muccifora, Parton Propagation and Fragmentation in QCD Matter. Riv. Nuovo Cim. 32(9–10), 439–554 (2009). https://doi.org/10.1393/ncr/i2009-10048-0. arXiv:0907.3534 |t Riv. Nuovo Cim. |v 32 |y 2009 |
999 | C | 5 | |a 10.1016/j.ppnp.2010.09.001 |9 -- missing cx lookup -- |1 A Majumder |p 41 - |2 Crossref |u A. Majumder, M. Van Leeuwen, The Theory and Phenomenology of Perturbative QCD Based Jet Quenching. Prog. Part. Nucl. Phys. 66, 41–92 (2011). https://doi.org/10.1016/j.ppnp.2010.09.001. arXiv:1002.2206 |t Prog. Part. Nucl. Phys. |v 66 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevLett.109.012001 |1 G Aad |9 -- missing cx lookup -- |2 Crossref |u G. Aad et al., Determination of the strange quark density of the proton from ATLAS measurements of the $$W \rightarrow \ell \nu $$ and $$Z \rightarrow \ell \ell $$ cross sections. Phys. Rev. Lett. 109, 012001 (2012). https://doi.org/10.1103/PhysRevLett.109.012001. arXiv:1203.4051 |t Phys. Rev. Lett. |v 109 |y 2012 |
999 | C | 5 | |a 10.1140/epjc/s10052-017-4911-9 |9 -- missing cx lookup -- |1 M Aaboud |p 367 - |2 Crossref |u M. Aaboud et al., Precision measurement and interpretation of inclusive $$W^+$$, $$W^-$$ and $$Z/\gamma ^*$$ production cross sections with the ATLAS detector. Eur. Phys. J. C 77(6), 367 (2017). https://doi.org/10.1140/epjc/s10052-017-4911-9. arXiv:1612.03016 |t Eur. Phys. J. C |v 77 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevLett.80.3715 |9 -- missing cx lookup -- |1 EA Hawker |p 3715 - |2 Crossref |u E.A. Hawker et al., Measurement of the light anti-quark flavor asymmetry in the nucleon sea. Phys. Rev. Lett. 80, 3715–3718 (1998). https://doi.org/10.1103/PhysRevLett.80.3715. arXiv:hep-ex/9803011 |t Phys. Rev. Lett. |v 80 |y 1998 |
999 | C | 5 | |a 10.1103/PhysRevD.64.052002 |1 RS Towell |9 -- missing cx lookup -- |2 Crossref |u R.S. Towell et al., Improved measurement of the anti-d / anti-u asymmetry in the nucleon sea. Phys. Rev. D 64, 052002 (2001). https://doi.org/10.1103/PhysRevD.64.052002. arXiv:hep-ex/0103030 |t Phys. Rev. D |v 64 |y 2001 |
999 | C | 5 | |a 10.1016/j.physletb.2009.04.033 |9 -- missing cx lookup -- |1 S Alekhin |p 433 - |2 Crossref |u S. Alekhin, S.A. Kulagin, R. Petti, Determination of Strange Sea Distributions from Neutrino-Nucleon Deep Inelastic Scattering. Phys. Lett. B 675, 433–440 (2009). https://doi.org/10.1016/j.physletb.2009.04.033. arXiv:0812.4448 |t Phys. Lett. B |v 675 |y 2009 |
999 | C | 5 | |a 10.1103/PhysRevD.91.094002 |1 S Alekhin |9 -- missing cx lookup -- |2 Crossref |u S. Alekhin, J. Blumlein, L. Caminada, K. Lipka, K. Lohwasser, S. Moch, R. Petti, R. Placakyte, Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data. Phys. Rev. D 91(9), 094002 (2015). https://doi.org/10.1103/PhysRevD.91.094002. arXiv:1404.6469 |t Phys. Rev. D |v 91 |y 2015 |
999 | C | 5 | |a 10.1016/j.physletb.2017.12.024 |9 -- missing cx lookup -- |1 S Alekhin |p 134 - |2 Crossref |u S. Alekhin, J. Blümlein, S. Moch, Strange sea determination from collider data. Phys. Lett. B 777, 134–140 (2018). https://doi.org/10.1016/j.physletb.2017.12.024. arXiv:1708.01067 |t Phys. Lett. B |v 777 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevD.96.014011 |1 S Alekhin |9 -- missing cx lookup -- |2 Crossref |u S. Alekhin, J. Blümlein, S. Moch, R. Placakyte, Parton distribution functions, $$\alpha _s$$, and heavy-quark masses for LHC Run II. Phys. Rev. D 96(1), 014011 (2017). https://doi.org/10.1103/PhysRevD.96.014011. arXiv:1701.05838 |t Phys. Rev. D |v 96 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevD.98.014027 |1 AM Cooper-Sarkar |9 -- missing cx lookup -- |2 Crossref |u A.M. Cooper-Sarkar, K. Wichmann, QCD analysis of the ATLAS and CMS $$W^{\pm }$$ and $$Z$$ cross-section measurements and implications for the strange sea density. Phys. Rev. D 98(1), 014027 (2018). https://doi.org/10.1103/PhysRevD.98.014027. arXiv:1803.00968 |t Phys. Rev. D |v 98 |y 2018 |
999 | C | 5 | |a 10.1016/j.physletb.2008.07.090 |9 -- missing cx lookup -- |1 A Airapetian |p 446 - |2 Crossref |u A. Airapetian et al., Measurement of Parton Distributions of Strange Quarks in the Nucleon from Charged-Kaon Production in Deep-Inelastic Scattering on the Deuteron. Phys. Lett. B 666, 446–450 (2008). https://doi.org/10.1016/j.physletb.2008.07.090. arXiv:0803.2993 |t Phys. Lett. B |v 666 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevD.89.097101 |1 A Airapetian |9 -- missing cx lookup -- |2 Crossref |u A. Airapetian et al., Reevaluation of the parton distribution of strange quarks in the nucleon. Phys. Rev. D 89(9), 097101 (2014). https://doi.org/10.1103/PhysRevD.89.097101. arXiv:1312.7028 |t Phys. Rev. D |v 89 |y 2014 |
999 | C | 5 | |a 10.1103/PhysRevD.82.114018 |1 E Leader |9 -- missing cx lookup -- |2 Crossref |u E. Leader, A.V. Sidorov, D.B. Stamenov, Determination of Polarized PDFs from a QCD Analysis of Inclusive and Semi-inclusive Deep Inelastic Scattering Data. Phys. Rev. D 82, 114018 (2010). https://doi.org/10.1103/PhysRevD.82.114018. arXiv:1010.0574 |t Phys. Rev. D |v 82 |y 2010 |
999 | C | 5 | |a 10.1103/PhysRevD.84.014002 |1 E Leader |9 -- missing cx lookup -- |2 Crossref |u E. Leader, A.V. Sidorov, D.B. Stamenov, A Possible Resolution of the Strange Quark Polarization Puzzle? Phys. Rev. D 84, 014002 (2011). https://doi.org/10.1103/PhysRevD.84.014002. arXiv:1103.5979 |t Phys. Rev. D |v 84 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevD.94.114004 |1 N Sato |9 -- missing cx lookup -- |2 Crossref |u N. Sato, J.J. Ethier, W. Melnitchouk, M. Hirai, S. Kumano, A. Accardi, First Monte Carlo analysis of fragmentation functions from single-inclusive $$e^+ e^-$$ annihilation. Phys. Rev. D 94(11), 114004 (2016). https://doi.org/10.1103/PhysRevD.94.114004. arXiv:1609.00899 |t Phys. Rev. D |v 94 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevD.92.098102 |1 EC Aschenauer |9 -- missing cx lookup -- |2 Crossref |u E.C. Aschenauer, H.E. Jackson, S. Joosten, K. Rith, G. Schnell, C. Van Hulse, Reply to Comment on Reevaluation of the parton distribution of strange quarks in the nucleon. Phys. Rev. D 92(9), 098102 (2015). https://doi.org/10.1103/PhysRevD.92.098102. arXiv:1508.04020 |t Phys. Rev. D |v 92 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevD.96.094020 |1 I Borsa |9 -- missing cx lookup -- |2 Crossref |u I. Borsa, R. Sassot, M. Stratmann, Probing the Sea Quark Content of the Proton with One-Particle-Inclusive Processes. Phys. Rev. D 96(9), 094020 (2017). https://doi.org/10.1103/PhysRevD.96.094020 |t Phys. Rev. D |v 96 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevD.101.074020 |1 N Sato |9 -- missing cx lookup -- |2 Crossref |u N. Sato, C. Andres, J.J. Ethier, W. Melnitchouk, Strange quark suppression from a simultaneous Monte Carlo analysis of parton distributions and fragmentation functions. Phys. Rev. D 101(7), 074020 (2020). https://doi.org/10.1103/PhysRevD.101.074020. arXiv:1905.03788 |t Phys. Rev. D |v 101 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevD.84.074008 |9 -- missing cx lookup -- |2 Crossref |u L. T. Brady, A. Accardi, T. J. Hobbs, W. Melnitchouk, Next-to leading order analysis of target mass corrections to structure functions and asymmetries, Phys. Rev. D 84 (2011) 074008, [Erratum: Phys.Rev.D 85, 039902 (2012)]. arXiv:1108.4734, https://doi.org/10.1103/PhysRevD.84.074008 |
999 | C | 5 | |a 10.1103/PhysRevD.77.114023 |1 T Hobbs |9 -- missing cx lookup -- |2 Crossref |u T. Hobbs, W. Melnitchouk, Finite-Q**2 corrections to parity-violating DIS. Phys. Rev. D 77, 114023 (2008). https://doi.org/10.1103/PhysRevD.77.114023. arXiv:0801.4791 |t Phys. Rev. D |v 77 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevD.107.076018 |9 -- missing cx lookup -- |2 Crossref |u T.-J. Hou, H.-W. Lin, M. Yan, C. P. Yuan, Impact of Lattice Strangeness Asymmetry Data in the CTEQ-TEA Global Analysis (11 2022). arXiv:2211.11064 |
999 | C | 5 | |a 10.1103/PhysRevD.104.094033 |1 T Liu |9 -- missing cx lookup -- |2 Crossref |u T. Liu, W. Melnitchouk, J.-W. Qiu, N. Sato, Factorized approach to radiative corrections for inelastic lepton-hadron collisions. Phys. Rev. D 104(9), 094033 (2021). https://doi.org/10.1103/PhysRevD.104.094033. arXiv:2008.02895 |t Phys. Rev. D |v 104 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevD.106.L031502 |9 -- missing cx lookup -- |1 C Cocuzza |p L031502 - |2 Crossref |u C. Cocuzza, W. Melnitchouk, A. Metz, N. Sato, Polarized antimatter in the proton from a global QCD analysis. Phys. Rev. D 106(3), L031502 (2022). https://doi.org/10.1103/PhysRevD.106.L031502. arXiv:2202.03372 |t Phys. Rev. D |v 106 |y 2022 |
999 | C | 5 | |a 10.1140/epjc/s10052-016-4469-y |9 -- missing cx lookup -- |1 RD Ball |p 647 - |2 Crossref |u R.D. Ball, V. Bertone, M. Bonvini, S. Carrazza, S. Forte, A. Guffanti, N.P. Hartland, J. Rojo, L. Rottoli, A Determination of the Charm Content of the Proton. Eur. Phys. J. C 76(11), 647 (2016). https://doi.org/10.1140/epjc/s10052-016-4469-y. arXiv:1605.06515 |t Eur. Phys. J. C |v 76 |y 2016 |
999 | C | 5 | |a 10.1038/s41586-022-04998-2 |9 -- missing cx lookup -- |1 RD Ball |p 483 - |2 Crossref |u R.D. Ball, A. Candido, J. Cruz-Martinez, S. Forte, T. Giani, F. Hekhorn, K. Kudashkin, G. Magni, J. Rojo, Evidence for intrinsic charm quarks in the proton. Nature 608(7923), 483–487 (2022). https://doi.org/10.1038/s41586-022-04998-2. arXiv:2208.08372 |t Nature |v 608 |y 2022 |
999 | C | 5 | |a 10.1140/epjc/s10052-022-10328-7 |9 -- missing cx lookup -- |1 RD Ball |p 428 - |2 Crossref |u R.D. Ball et al., The path to proton structure at 1% accuracy. Eur. Phys. J. C 82(5), 428 (2022). https://doi.org/10.1140/epjc/s10052-022-10328-7. arXiv:2109.02653 |t Eur. Phys. J. C |v 82 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.89.074008 |1 TJ Hobbs |9 -- missing cx lookup -- |2 Crossref |u T.J. Hobbs, J.T. Londergan, W. Melnitchouk, Phenomenology of nonperturbative charm in the nucleon. Phys. Rev. D 89(7), 074008 (2014). https://doi.org/10.1103/PhysRevD.89.074008. arXiv:1311.1578 |t Phys. Rev. D |v 89 |y 2014 |
999 | C | 5 | |a 10.1016/j.physletb.2023.137975 |9 -- missing cx lookup -- |2 Crossref |u M. Guzzi, T. J. Hobbs, K. Xie, J. Huston, P. Nadolsky, C. P. Yuan, The persistent nonperturbative charm enigma (11 2022). arXiv:2211.01387 |
999 | C | 5 | |a 10.1103/PhysRevD.104.054002 |1 M Kelsey |9 -- missing cx lookup -- |2 Crossref |u M. Kelsey, R. Cruz-Torres, X. Dong, Y. Ji, S. Radhakrishnan, E. Sichtermann, Constraints on gluon distribution functions in the nucleon and nucleus from open charm hadron production at the Electron-Ion Collider. Phys. Rev. D 104(5), 054002 (2021). https://doi.org/10.1103/PhysRevD.104.054002. arXiv:2107.05632 |t Phys. Rev. D |v 104 |y 2021 |
999 | C | 5 | |a 10.1016/j.nuclphysa.2022.122447 |1 R Abdul Khalek |9 -- missing cx lookup -- |2 Crossref |u R. Abdul Khalek et al., Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report. Nucl. Phys. A 1026, 122447 (2022). https://doi.org/10.1016/j.nuclphysa.2022.122447. arXiv:2103.05419 |t Nucl. Phys. A |v 1026 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.105.L011503 |9 -- missing cx lookup -- |1 J Gao |p L011503 - |2 Crossref |u J. Gao, T.J. Hobbs, P.M. Nadolsky, C. Sun, C.P. Yuan, General heavy-flavor mass scheme for charged-current DIS at NNLO and beyond. Phys. Rev. D 105(1), L011503 (2022). https://doi.org/10.1103/PhysRevD.105.L011503. arXiv:2107.00460 |t Phys. Rev. D |v 105 |y 2022 |
999 | C | 5 | |a 10.1007/JHEP11(2015)009 |9 -- missing cx lookup -- |1 R Gauld |p 009 - |2 Crossref |u R. Gauld, J. Rojo, L. Rottoli, J. Talbert, Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy. JHEP 11, 009 (2015). https://doi.org/10.1007/JHEP11(2015)009. arXiv:1506.08025 |t JHEP |v 11 |y 2015 |
999 | C | 5 | |a 10.1016/j.physrep.2018.03.002 |9 -- missing cx lookup -- |1 J Gao |p 1 - |2 Crossref |u J. Gao, L. Harland-Lang, J. Rojo, The Structure of the Proton in the LHC Precision Era. Phys. Rept. 742, 1–121 (2018). https://doi.org/10.1016/j.physrep.2018.03.002. arXiv:1709.04922 |t Phys. Rept. |v 742 |y 2018 |
999 | C | 5 | |a 10.1088/1361-6471/ac7216 |1 RD Ball |9 -- missing cx lookup -- |2 Crossref |u R.D. Ball et al., The PDF4LHC21 combination of global PDF fits for the LHC Run III. J. Phys. G 49(8), 080501 (2022). https://doi.org/10.1088/1361-6471/ac7216. arXiv:2203.05506 |t J. Phys. G |v 49 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.103.014013 |1 T-J Hou |9 -- missing cx lookup -- |2 Crossref |u T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Phys. Rev. D 103(1), 014013 (2021). https://doi.org/10.1103/PhysRevD.103.014013. arXiv:1912.10053 |t Phys. Rev. D |v 103 |y 2021 |
999 | C | 5 | |a 10.1140/epjc/s10052-021-09057-0 |9 -- missing cx lookup -- |1 S Bailey |p 341 - |2 Crossref |u S. Bailey, T. Cridge, L.A. Harland-Lang, A.D. Martin, R.S. Thorne, Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs. Eur. Phys. J. C 81(4), 341 (2021). https://doi.org/10.1140/epjc/s10052-021-09057-0. arXiv:2012.04684 |t Eur. Phys. J. C |v 81 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevD.16.2219 |9 -- missing cx lookup -- |1 JC Collins |p 2219 - |2 Crossref |u J.C. Collins, D.E. Soper, Angular Distribution of Dileptons in High-Energy Hadron Collisions. Phys. Rev. D 16, 2219 (1977). https://doi.org/10.1103/PhysRevD.16.2219 |t Phys. Rev. D |v 16 |y 1977 |
999 | C | 5 | |a 10.1140/epjc/s10052-022-11133-y |9 -- missing cx lookup -- |1 RD Ball |p 1160 - |2 Crossref |u R.D. Ball, A. Candido, S. Forte, F. Hekhorn, E.R. Nocera, J. Rojo, C. Schwan, Parton distributions and new physics searches: the Drell-Yan forward-backward asymmetry as a case study. Eur. Phys. J. C 82(12), 1160 (2022). https://doi.org/10.1140/epjc/s10052-022-11133-y. arXiv:2209.08115 |t Eur. Phys. J. C |v 82 |y 2022 |
999 | C | 5 | |a 10.1007/JHEP07(2021)122 |9 -- missing cx lookup -- |1 A Greljo |p 122 - |2 Crossref |u A. Greljo, S. Iranipour, Z. Kassabov, M. Madigan, J. Moore, J. Rojo, M. Ubiali, C. Voisey, Parton distributions in the SMEFT from high-energy Drell-Yan tails. JHEP 07, 122 (2021). https://doi.org/10.1007/JHEP07(2021)122. arXiv:2104.02723 |t JHEP |v 07 |y 2021 |
999 | C | 5 | |a 10.1007/JHEP05(2023)003 |9 -- missing cx lookup -- |1 J Gao |p 003 - |2 Crossref |u J. Gao, M. Gao, T.J. Hobbs, D. Liu, X. Shen, Simultaneous CTEQ-TEA extraction of PDFs and SMEFT parameters from jet and $$ t{\overline{t}} $$ data. JHEP 05, 003 (2023). https://doi.org/10.1007/JHEP05(2023)003. arXiv:2211.01094 |t JHEP |v 05 |y 2023 |
999 | C | 5 | |a 10.2172/1865357 |9 -- missing cx lookup -- |2 Crossref |u L. A. Ruso, et al., Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators (3 2022). arXiv:2203.09030 |
999 | C | 5 | |a 10.1103/PhysRevLett.124.082003 |1 T Liu |9 -- missing cx lookup -- |2 Crossref |u T. Liu, R.S. Sufian, G.F. de Téramond, H.G. Dosch, S.J. Brodsky, A. Deur, Unified description of polarized and unpolarized quark distributions in the proton. Phys. Rev. Lett. 124, 082003 (2020). https://doi.org/10.1103/PhysRevLett.124.082003 |t Phys. Rev. Lett. |v 124 |y 2020 |
999 | C | 5 | |a 10.1016/j.ppnp.2016.04.003 |9 -- missing cx lookup -- |1 A Deur |p 1 - |2 Crossref |u A. Deur, S.J. Brodsky, G.F. de Teramond, The QCD Running Coupling. Nucl. Phys. 90, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.04.003. arXiv:1604.08082 |t Nucl. Phys. |v 90 |y 2016 |
999 | C | 5 | |a 10.1093/ptep/ptaa104 |9 -- missing cx lookup -- |1 PA Zyla |p 083C01 - |2 Crossref |u P.A. Zyla et al., Review of Particle Physics. PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104 |t PTEP |v 2020 |y 2020 |
999 | C | 5 | |2 Crossref |u D. d’Enterria, et al., The strong coupling constant: State of the art and the decade ahead (3 2022). arXiv:2203.08271 |
999 | C | 5 | |a 10.1103/PhysRev.148.1467 |9 -- missing cx lookup -- |1 JD Bjorken |p 1467 - |2 Crossref |u J.D. Bjorken, Applications of the Chiral U(6) x (6) Algebra of Current Densities. Phys. Rev. 148, 1467–1478 (1966). https://doi.org/10.1103/PhysRev.148.1467 |t Phys. Rev. |v 148 |y 1966 |
999 | C | 5 | |2 Crossref |u S. Kuhn, et al., The Longitudinal Spin Structure of the Nucleon Jlab experiment E12-06-109 ”. (2006). https://misportal.jlab.org/mis/physics/experiments/viewProposal.cfm?paperId=688 |
999 | C | 5 | |a 10.1103/PhysRevD.50.R5469 |9 -- missing cx lookup -- |1 AL Kataev |p R5469 - |2 Crossref |u A.L. Kataev, The Ellis-Jaffe sum rule: The Estimates of the next to next-to-leading order QCD corrections. Phys. Rev. D 50, R5469–R5472 (1994). https://doi.org/10.1103/PhysRevD.50.R5469. arXiv:hep-ph/9408248 |t Phys. Rev. D |v 50 |y 1994 |
999 | C | 5 | |2 Crossref |u A. L. Kataev, private communication in S. Incerti, Ph. D dissertation “Mesure de la fonction de structure polarisée $$g_1^n$$ du neutron par l’experience e154 au slac”. (Jan. 1998). https://www.slac.stanford.edu/exp/e154/incerti_thesis.pdf |
999 | C | 5 | |a 10.1103/PhysRevD.90.012009 |1 A Deur |9 -- missing cx lookup -- |2 Crossref |u A. Deur, Y. Prok, V. Burkert, D. Crabb, F.X. Girod, K.A. Griffioen, N. Guler, S.E. Kuhn, N. Kvaltine, High precision determination of the $$Q^2$$ evolution of the Bjorken Sum. Phys. Rev. D 90(1), 012009 (2014). https://doi.org/10.1103/PhysRevD.90.012009. arXiv:1405.7854 |t Phys. Rev. D |v 90 |y 2014 |
999 | C | 5 | |a 10.1103/PhysRevLett.97.042001 |1 BA Kniehl |9 -- missing cx lookup -- |2 Crossref |u B.A. Kniehl, A.V. Kotikov, A.I. Onishchenko, O.L. Veretin, Strong-coupling constant with flavor thresholds at five loops in the anti-MS scheme. Phys. Rev. Lett. 97, 042001 (2006). https://doi.org/10.1103/PhysRevLett.97.042001. arXiv:hep-ph/0607202 |t Phys. Rev. Lett. |v 97 |y 2006 |
999 | C | 5 | |a 10.3390/particles5020015 |9 -- missing cx lookup -- |1 A Deur |p 171 - |2 Crossref |u A. Deur, V. Burkert, J.P. Chen, W. Korsch, Experimental determination of the QCD effective charge $$\alpha _{g_1}(Q)$$. Particles 5, 171 (2022). https://doi.org/10.3390/particles5020015. arXiv:2205.01169 |t Particles |v 5 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.81.096010 |1 SJ Brodsky |9 -- missing cx lookup -- |2 Crossref |u S.J. Brodsky, G.F. de Teramond, A. Deur, Nonperturbative QCD Coupling and its $$\beta $$-function from Light-Front Holography. Phys. Rev. D 81, 096010 (2010). https://doi.org/10.1103/PhysRevD.81.096010. arXiv:1002.3948 |t Phys. Rev. D |v 81 |y 2010 |
999 | C | 5 | |a 10.1088/1674-1137/44/8/083102 |1 Z-F Cui |9 -- missing cx lookup -- |2 Crossref |u Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, S. Zafeiropoulos, Effective charge from lattice QCD. Chin. Phys. C 44(8), 083102 (2020). https://doi.org/10.1088/1674-1137/44/8/083102. arXiv:1912.08232 |t Chin. Phys. C |v 44 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevD.108.L091504 |9 -- missing cx lookup -- |2 Crossref |u P. C. Barry, L. Gamberg, W. Melnitchouk, E. Moffat, D. Pitonyak, A. Prokudin, N. Sato, Tomography of pions and protons via transverse momentum dependent distributions (2 2023). arXiv:2302.01192 |
999 | C | 5 | |a 10.1103/PhysRevD.103.114014 |1 NY Cao |9 -- missing cx lookup -- |2 Crossref |u N.Y. Cao, P.C. Barry, N. Sato, W. Melnitchouk, Towards the three-dimensional parton structure of the pion: Integrating transverse momentum data into global QCD analysis. Phys. Rev. D 103(11), 114014 (2021). https://doi.org/10.1103/PhysRevD.103.114014. arXiv:2103.02159 |t Phys. Rev. D |v 103 |y 2021 |
999 | C | 5 | |2 Crossref |u C. E. Keppel, et al., C12-15-006 JLab experiment: Measurement of tagged deep inelastic scattering (2015) |
999 | C | 5 | |2 Crossref |u K. Park, et al., C12-15-006A JLab run group: Measurement of kaon structure through tagged deep inelastic scattering (2017) |
999 | C | 5 | |a 10.1007/BF01550243 |9 -- missing cx lookup -- |1 B Betev |p 9 - |2 Crossref |u B. Betev et al., Differential Cross-section of High Mass Muon Pairs Produced by a 194-GeV/$$c \pi ^-$$ Beam on a Tungsten Target. Z. Phys. C 28, 9 (1985). https://doi.org/10.1007/BF01550243 |t Z. Phys. C |v 28 |y 1985 |
999 | C | 5 | |a 10.1103/PhysRevD.39.92 |9 -- missing cx lookup -- |1 JS Conway |p 92 - |2 Crossref |u J.S. Conway et al., Experimental Study of Muon Pairs Produced by 252-GeV Pions on Tungsten. Phys. Rev. D 39, 92–122 (1989). https://doi.org/10.1103/PhysRevD.39.92 |t Phys. Rev. D |v 39 |y 1989 |
999 | C | 5 | |a 10.1140/epjc/s10052-010-1369-4 |9 -- missing cx lookup -- |1 FD Aaron |p 381 - |2 Crossref |u F.D. Aaron et al., Measurement of Leading Neutron Production in Deep-Inelastic Scattering at HERA. Eur. Phys. J. C 68, 381–399 (2010). https://doi.org/10.1140/epjc/s10052-010-1369-4. arXiv:1001.0532 |t Eur. Phys. J. C |v 68 |y 2010 |
999 | C | 5 | |a 10.1016/S0550-3213(02)00439-X |9 -- missing cx lookup -- |1 S Chekanov |p 3 - |2 Crossref |u S. Chekanov et al., Leading neutron production in e+ p collisions at HERA. Nucl. Phys. B 637, 3–56 (2002). https://doi.org/10.1016/S0550-3213(02)00439-X. arXiv:hep-ex/0205076 |t Nucl. Phys. B |v 637 |y 2002 |
999 | C | 5 | |a 10.1088/1361-6471/abf5c3 |1 J Arrington |9 -- missing cx lookup -- |2 Crossref |u J. Arrington et al., Revealing the Structure of Light Pseudoscalar Mesons at the Electron-Ion Collider. J. Phys. G 48, 075106 (2021) |t J. Phys. G |v 48 |y 2021 |
999 | C | 5 | |a 10.1088/1126-6708/2007/02/093 |9 -- missing cx lookup -- |1 A Bacchetta |p 093 - |2 Crossref |u A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders, M. Schlegel, Semi-inclusive deep inelastic scattering at small transverse momentum. JHEP 02, 093 (2007). https://doi.org/10.1088/1126-6708/2007/02/093. arXiv:hep-ph/0611265 |t JHEP |v 02 |y 2007 |
999 | C | 5 | |a 10.1103/PhysRevD.98.114005 |1 J Gonzalez-Hernandez |9 -- missing cx lookup -- |2 Crossref |u J. Gonzalez-Hernandez, T. Rogers, N. Sato, B. Wang, Challenges with Large Transverse Momentum in Semi-Inclusive Deeply Inelastic Scattering. Phys. Rev. D 98(11), 114005 (2018). https://doi.org/10.1103/PhysRevD.98.114005. arXiv:1808.04396 |t Phys. Rev. D |v 98 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevD.99.094029 |1 B Wang |9 -- missing cx lookup -- |2 Crossref |u B. Wang, J.O. Gonzalez-Hernandez, T.C. Rogers, N. Sato, Large Transverse Momentum in Semi-Inclusive Deeply Inelastic Scattering Beyond Lowest Order. Phys. Rev. D 99(9), 094029 (2019). https://doi.org/10.1103/PhysRevD.99.094029. arXiv:1903.01529 |t Phys. Rev. D |v 99 |y 2019 |
999 | C | 5 | |a 10.1016/j.physletb.2017.01.021 |9 -- missing cx lookup -- |1 M Boglione |p 245 - |2 Crossref |u M. Boglione, J. Collins, L. Gamberg, J.O. Gonzalez-Hernandez, T.C. Rogers, N. Sato, Kinematics of Current Region Fragmentation in Semi-Inclusive Deeply Inelastic Scattering. Phys. Lett. B 766, 245–253 (2017). https://doi.org/10.1016/j.physletb.2017.01.021. arXiv:1611.10329 |t Phys. Lett. B |v 766 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevD.94.034014 |1 J Collins |9 -- missing cx lookup -- |2 Crossref |u J. Collins, L. Gamberg, A. Prokudin, T.C. Rogers, N. Sato, B. Wang, Relating Transverse Momentum Dependent and Collinear Factorization Theorems in a Generalized Formalism. Phys. Rev. D 94(3), 034014 (2016). https://doi.org/10.1103/PhysRevD.94.034014. arXiv:1605.00671 |t Phys. Rev. D |v 94 |y 2016 |
999 | C | 5 | |a 10.1007/JHEP10(2019)122 |9 -- missing cx lookup -- |1 M Boglione |p 122 - |2 Crossref |u M. Boglione, A. Dotson, L. Gamberg, S. Gordon, J. Gonzalez-Hernandez, A. Prokudin, T. Rogers, N. Sato, Mapping the Kinematical Regimes of Semi-Inclusive Deep Inelastic Scattering. JHEP 10, 122 (2019). https://doi.org/10.1007/JHEP10(2019)122. arXiv:1904.12882 |t JHEP |v 10 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevLett.105.262002 |1 H Avakian |9 -- missing cx lookup -- |2 Crossref |u H. Avakian et al., Measurement of Single and Double Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target. Phys. Rev. Lett. 105, 262002 (2010). https://doi.org/10.1103/PhysRevLett.105.262002. arXiv:1003.4549 |t Phys. Rev. Lett. |v 105 |y 2010 |
999 | C | 5 | |a 10.1016/j.physletb.2018.06.014 |9 -- missing cx lookup -- |1 S Jawalkar |p 662 - |2 Crossref |u S. Jawalkar et al., Semi-Inclusive $$\pi _0$$ target and beam-target asymmetries from 6 GeV electron scattering with CLAS. Phys. Lett. B 782, 662–667 (2018). https://doi.org/10.1016/j.physletb.2018.06.014. arXiv:1709.10054 |t Phys. Lett. B |v 782 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevD.83.094507 |1 BU Musch |9 -- missing cx lookup -- |2 Crossref |u B.U. Musch, P. Hagler, J.W. Negele, A. Schafer, Exploring quark transverse momentum distributions with lattice QCD. Phys. Rev. D 83, 094507 (2011). https://doi.org/10.1103/PhysRevD.83.094507. arXiv:1011.1213 |t Phys. Rev. D |v 83 |y 2011 |
999 | C | 5 | |a 10.22323/1.352.0265 |9 -- missing cx lookup -- |2 Crossref |u H. Avakian, Hadronization of quarks and correlated di-hadron production in hard scattering, PoS DIS2019 (2019) 265. https://doi.org/10.22323/1.352.0265 |
999 | C | 5 | |a 10.1103/PhysRevLett.34.759 |9 -- missing cx lookup -- |1 CJ Bebek |p 759 - |2 Crossref |u C.J. Bebek, C.N. Brown, M. Herzlinger, S.D. Holmes, C.A. Lichtenstein, F.M. Pipkin, S. Raither, L.K. Sisterson, Scaling Behavior of Inclusive Pion Electroproduction. Phys. Rev. Lett. 34, 759 (1975). https://doi.org/10.1103/PhysRevLett.34.759 |t Phys. Rev. Lett. |v 34 |y 1975 |
999 | C | 5 | |a 10.1103/PhysRevLett.37.1525 |9 -- missing cx lookup -- |1 CJ Bebek |p 1525 - |2 Crossref |u C.J. Bebek, A. Browman, C.N. Brown, K.M. Hanson, R.V. Kline, D. Larson, F.M. Pipkin, S.W. Raither, A. Silverman, L.K. Sisterson, Charged Pion Electroproduction from Protons Up to Q**2 = 9.5-GeV**2. Phys. Rev. Lett. 37, 1525–1528 (1976). https://doi.org/10.1103/PhysRevLett.37.1525 |t Phys. Rev. Lett. |v 37 |y 1976 |
999 | C | 5 | |a 10.1103/PhysRevD.15.3085 |9 -- missing cx lookup -- |1 CJ Bebek |p 3085 - |2 Crossref |u C.J. Bebek, C.N. Brown, M.S. Herzlinger, S.D. Holmes, C.A. Lichtenstein, F.M. Pipkin, S.W. Raither, L.K. Sisterson, Inclusive Charged Pion Electroproduction. Phys. Rev. D 15, 3085 (1977). https://doi.org/10.1103/PhysRevD.15.3085 |t Phys. Rev. D |v 15 |y 1977 |
999 | C | 5 | |a 10.1088/1126-6708/2008/08/023 |9 -- missing cx lookup -- |1 A Bacchetta |p 023 - |2 Crossref |u A. Bacchetta, D. Boer, M. Diehl, P.J. Mulders, Matches and mismatches in the descriptions of semi-inclusive processes at low and high transverse momentum. JHEP 08, 023 (2008). https://doi.org/10.1088/1126-6708/2008/08/023. arXiv:0803.0227 |t JHEP |v 08 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevD.71.074006 |1 M Anselmino |9 -- missing cx lookup -- |2 Crossref |u M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin, The Role of Cahn and sivers effects in deep inelastic scattering. Phys. Rev. D 71, 074006 (2005). https://doi.org/10.1103/PhysRevD.71.074006. arXiv:hep-ph/0501196 |t Phys. Rev. D |v 71 |y 2005 |
999 | C | 5 | |a 10.1007/JHEP10(2022)127 |9 -- missing cx lookup -- |1 A Bacchetta |p 127 - |2 Crossref |u A. Bacchetta, V. Bertone, C. Bissolotti, G. Bozzi, M. Cerutti, F. Piacenza, M. Radici, A. Signori, Unpolarized transverse momentum distributions from a global fit of Drell-Yan and semi-inclusive deep-inelastic scattering data. JHEP 10, 127 (2022). https://doi.org/10.1007/JHEP10(2022)127. arXiv:2206.07598 |t JHEP |v 10 |y 2022 |
999 | C | 5 | |a 10.1016/j.nuclphysb.2014.07.019 |9 -- missing cx lookup -- |1 C Adolph |p 1046 - |2 Crossref |u C. Adolph et al., Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons. Nucl. Phys. B 886, 1046–1077 (2014). https://doi.org/10.1016/j.nuclphysb.2014.07.019. arXiv:1401.6284 |t Nucl. Phys. B |v 886 |y 2014 |
999 | C | 5 | |a 10.21468/SciPostPhysProc.8.144 |9 -- missing cx lookup -- |1 A Moretti |p 144 - |2 Crossref |u A. Moretti, TMD observables in unpolarised Semi-Inclusive DIS at COMPASS. SciPost Phys. Proc. 8, 144 (2022). https://doi.org/10.21468/SciPostPhysProc.8.144. arXiv:2107.10740 |t SciPost Phys. Proc. |v 8 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.87.012010 |1 A Airapetian |9 -- missing cx lookup -- |2 Crossref |u A. Airapetian et al., Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons. Phys. Rev. D 87(1), 012010 (2013). https://doi.org/10.1103/PhysRevD.87.012010. arXiv:1204.4161 |t Phys. Rev. D |v 87 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevD.80.032004 |1 M Osipenko |9 -- missing cx lookup -- |2 Crossref |u M. Osipenko et al., Measurement of unpolarized semi-inclusive pi+ electroproduction off the proton. Phys. Rev. D 80, 032004 (2009). https://doi.org/10.1103/PhysRevD.80.032004. arXiv:0809.1153 |t Phys. Rev. D |v 80 |y 2009 |
999 | C | 5 | |2 Crossref |u S. Diehl, et al., First multidimensional, high precision measurements of semi-inclusive $$\pi ^+$$ beam single spin asymmetries from the proton over a wide range of kinematics (1 2021). arXiv:2101.03544 |
999 | C | 5 | |a 10.1016/0550-3213(93)90262-N |9 -- missing cx lookup -- |1 JC Collins |p 161 - |2 Crossref |u J.C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions. Nucl. Phys. B 396, 161–182 (1993). https://doi.org/10.1016/0550-3213(93)90262-N. arXiv:hep-ph/9208213 |t Nucl. Phys. B |v 396 |y 1993 |
999 | C | 5 | |a 10.1103/PhysRevD.97.074010 |1 A Kerbizi |9 -- missing cx lookup -- |2 Crossref |u A. Kerbizi, X. Artru, Z. Belghobsi, F. Bradamante, A. Martin, Recursive model for the fragmentation of polarized quarks. Phys. Rev. D 97(7), 074010 (2018). https://doi.org/10.1103/PhysRevD.97.074010. arXiv:1802.00962 |t Phys. Rev. D |v 97 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevD.95.014021 |1 HH Matevosyan |9 -- missing cx lookup -- |2 Crossref |u H.H. Matevosyan, A. Kotzinian, A.W. Thomas, Monte Carlo Implementation of Polarized Hadronization. Phys. Rev. D 95(1), 014021 (2017). https://doi.org/10.1103/PhysRevD.95.014021. arXiv:1610.05624 |t Phys. Rev. D |v 95 |y 2017 |
999 | C | 5 | |a 10.1016/j.cpc.2021.108234 |1 A Kerbizi |9 -- missing cx lookup -- |2 Crossref |u A. Kerbizi, L. Lönnblad, StringSpinner - adding spin to the PYTHIA string fragmentation. Comput. Phys. Commun. 272, 108234 (2022). https://doi.org/10.1016/j.cpc.2021.108234. arXiv:2105.09730 |t Comput. Phys. Commun. |v 272 |y 2022 |
999 | C | 5 | |a 10.1016/j.cpc.2015.01.024 |9 -- missing cx lookup -- |1 T Sjöstrand |p 159 - |2 Crossref |u T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). https://doi.org/10.1016/j.cpc.2015.01.024. arXiv:1410.3012 |t Comput. Phys. Commun. |v 191 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevLett.126.152501 |1 TB Hayward |9 -- missing cx lookup -- |2 Crossref |u T.B. Hayward et al., Observation of Beam Spin Asymmetries in the Process $$ep\rightarrow {e}^{^{\prime }}{\pi }^{+}{\pi }^{-}X$$ with CLAS12. Phys. Rev. Lett. 126, 152501 (2021). https://doi.org/10.1103/PhysRevLett.126.152501. arXiv:2101.04842 |t Phys. Rev. Lett. |v 126 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevD.104.114038 |1 A Kerbizi |9 -- missing cx lookup -- |2 Crossref |u A. Kerbizi, X. Artru, A. Martin, Production of vector mesons in the String+$$ ^3P_0$$ model of polarized quark fragmentation. Phys. Rev. D 104(11), 114038 (2021). https://doi.org/10.1103/PhysRevD.104.114038. arXiv:2109.06124 |t Phys. Rev. D |v 104 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevD.62.114004 |1 A Bacchetta |9 -- missing cx lookup -- |2 Crossref |u A. Bacchetta, P.J. Mulders, Deep inelastic leptoproduction of spin-one hadrons. Phys. Rev. D 62, 114004 (2000). https://doi.org/10.1103/PhysRevD.62.114004. arXiv:hep-ph/0007120 |t Phys. Rev. D |v 62 |y 2000 |
999 | C | 5 | |2 Crossref |u T. C. Collaboration, Collins and Sivers transverse-spin asymmetries in inclusive muoproduction of $$\rho ^0$$ mesons, CERN-EP-2022-234 (10 2022). arXiv:2211.00093 |
999 | C | 5 | |a 10.1016/j.physletb.2015.03.056 |9 -- missing cx lookup -- |1 C Adolph |p 250 - |2 Crossref |u C. Adolph et al., Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons. Phys. Lett. B 744, 250–259 (2015). https://doi.org/10.1016/j.physletb.2015.03.056. arXiv:1408.4405 |t Phys. Lett. B |v 744 |y 2015 |
999 | C | 5 | |a 10.1016/0370-2693(94)90292-5 |9 -- missing cx lookup -- |1 L Trentadue |p 201 - |2 Crossref |u L. Trentadue, G. Veneziano, Fracture functions: An Improved description of inclusive hard processes in QCD. Phys. Lett. B 323, 201–211 (1994). https://doi.org/10.1016/0370-2693(94)90292-5 |t Phys. Lett. B |v 323 |y 1994 |
999 | C | 5 | |a 10.1016/j.physletb.2011.03.067 |9 -- missing cx lookup -- |1 M Anselmino |p 108 - |2 Crossref |u M. Anselmino, V. Barone, A. Kotzinian, SIDIS in the target fragmentation region: Polarized and transverse momentum dependent fracture functions. Phys. Lett. B 699, 108–118 (2011). https://doi.org/10.1016/j.physletb.2011.03.067. arXiv:1102.4214 |t Phys. Lett. B |v 699 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevLett.130.022501 |1 H Avakian |9 -- missing cx lookup -- |2 Crossref |u H. Avakian et al., Observation of Correlations between Spin and Transverse Momenta in Back-to-Back Dihadron Production at CLAS12. Phys. Rev. Lett. 130(2), 022501 (2023). https://doi.org/10.1103/PhysRevLett.130.022501. arXiv:2208.05086 |t Phys. Rev. Lett. |v 130 |y 2023 |
999 | C | 5 | |a 10.1007/JHEP01(2013)163 |9 -- missing cx lookup -- |1 P Schweitzer |p 163 - |2 Crossref |u P. Schweitzer, M. Strikman, C. Weiss, Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking. JHEP 01, 163 (2013). https://doi.org/10.1007/JHEP01(2013)163. arXiv:1210.1267 |t JHEP |v 01 |y 2013 |
999 | C | 5 | |a 10.1016/j.physletb.2006.05.091 |9 -- missing cx lookup -- |1 M Sargsian |p 223 - |2 Crossref |u M. Sargsian, M. Strikman, Model independent method for determination of the DIS structure of free neutron. Phys. Lett. B 639, 223–231 (2006). https://doi.org/10.1016/j.physletb.2006.05.091. arXiv:hep-ph/0511054 |t Phys. Lett. B |v 639 |y 2006 |
999 | C | 5 | |a 10.1103/PhysRevC.102.065204 |1 W Cosyn |9 -- missing cx lookup -- |2 Crossref |u W. Cosyn, C. Weiss, Polarized electron-deuteron deep-inelastic scattering with spectator nucleon tagging. Phys. Rev. C 102, 065204 (2020). https://doi.org/10.1103/PhysRevC.102.065204. arXiv:2006.03033 |t Phys. Rev. C |v 102 |y 2020 |
999 | C | 5 | |2 Crossref |u S. Bueltmann, M. Christy, H. Fenker, K. Griffioen, C. Keppel, S. Kuhn, W. Melnitchouk, V. s. Tvaskis, The Structure of the Free Neutron at Large x-Bjorken; http://www.jlab.org/exp_prog/12GEV_EXP/E1206113.html JLab Experiment E1206113 (2006) |
999 | C | 5 | |2 Crossref |u W. Armstrong, et al., Partonic Structure of Light Nuclei (2017). arXiv:1708.00888 |
999 | C | 5 | |a 10.1103/PhysRevD.54.3154 |9 -- missing cx lookup -- |1 JT Londergan |p 3154 - |2 Crossref |u J.T. Londergan, A. Pang, A.W. Thomas, Probing charge symmetry violating quark distributions in semiinclusive leptoproduction of hadrons. Phys. Rev. D 54, 3154–3161 (1996). https://doi.org/10.1103/PhysRevD.54.3154. arXiv:hep-ph/9604446 |t Phys. Rev. D |v 54 |y 1996 |
999 | C | 5 | |a 10.1140/epjc/s2004-01825-2 |9 -- missing cx lookup -- |1 AD Martin |p 325 - |2 Crossref |u A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Uncertainties of predictions from parton distributions. 2. Theoretical errors. Eur. Phys. J. C 35, 325–348 (2004). https://doi.org/10.1140/epjc/s2004-01825-2. arXiv:hep-ph/0308087 |t Eur. Phys. J. C |v 35 |y 2004 |
999 | C | 5 | |a 10.1103/PhysRevD.75.114010 |1 D de Florian |9 -- missing cx lookup -- |2 Crossref |u D. de Florian, R. Sassot, M. Stratmann, Global analysis of fragmentation functions for pions and kaons and their uncertainties. Phys. Rev. D 75, 114010 (2007). https://doi.org/10.1103/PhysRevD.75.114010. arXiv:hep-ph/0703242 |t Phys. Rev. D |v 75 |y 2007 |
999 | C | 5 | |a 10.1007/JHEP06(2020)137 |9 -- missing cx lookup -- |1 I Scimemi |p 137 - |2 Crossref |u I. Scimemi, A. Vladimirov, Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum. JHEP 06, 137 (2020). https://doi.org/10.1007/JHEP06(2020)137. arXiv:1912.06532 |t JHEP |v 06 |y 2020 |
999 | C | 5 | |a 10.1007/JHEP10(2022)118 |9 -- missing cx lookup -- |1 M Bury |p 118 - |2 Crossref |u M. Bury, F. Hautmann, S. Leal-Gomez, I. Scimemi, A. Vladimirov, P. Zurita, PDF bias and flavor dependence in TMD distributions. JHEP 10, 118 (2022). https://doi.org/10.1007/JHEP10(2022)118. arXiv:2201.07114 |t JHEP |v 10 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.106.L091501 |9 -- missing cx lookup -- |1 A Bermudez Martinez |p L091501 - |2 Crossref |u A. Bermudez Martinez, A. Vladimirov, Determination of the Collins-Soper kernel from cross-sections ratios. Phys. Rev. D 106(9), L091501 (2022). https://doi.org/10.1103/PhysRevD.106.L091501. arXiv:2206.01105 |t Phys. Rev. D |v 106 |y 2022 |
999 | C | 5 | |a 10.1007/JHEP02(2015)095 |9 -- missing cx lookup -- |1 M Boglione |p 095 - |2 Crossref |u M. Boglione, J.O. Gonzalez Hernandez, S. Melis, A. Prokudin, A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes. JHEP 02, 095 (2015). https://doi.org/10.1007/JHEP02(2015)095. arXiv:1412.1383 |t JHEP |v 02 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevD.96.094508 |1 B Yoon |9 -- missing cx lookup -- |2 Crossref |u B. Yoon, M. Engelhardt, R. Gupta, T. Bhattacharya, J.R. Green, B.U. Musch, J.W. Negele, A.V. Pochinsky, A. Schäfer, S.N. Syritsyn, Nucleon Transverse Momentum-dependent Parton Distributions in Lattice QCD: Renormalization Patterns and Discretization Effects. Phys. Rev. D 96(9), 094508 (2017). https://doi.org/10.1103/PhysRevD.96.094508. arXiv:1706.03406 |t Phys. Rev. D |v 96 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevLett.110.262002 |1 X Ji |9 -- missing cx lookup -- |2 Crossref |u X. Ji, Parton Physics on a Euclidean Lattice. Phys. Rev. Lett. 110, 262002 (2013). https://doi.org/10.1103/PhysRevLett.110.262002. arXiv:1305.1539 |t Phys. Rev. Lett. |v 110 |y 2013 |
999 | C | 5 | |a 10.1103/RevModPhys.93.035005 |1 X Ji |9 -- missing cx lookup -- |2 Crossref |u X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, Y. Zhao, Large-momentum effective theory. Rev. Mod. Phys. 93(3), 035005 (2021). https://doi.org/10.1103/RevModPhys.93.035005. arXiv:2004.03543 |t Rev. Mod. Phys. |v 93 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevD.99.034505 |1 MA Ebert |9 -- missing cx lookup -- |2 Crossref |u M.A. Ebert, I.W. Stewart, Y. Zhao, Determining the Nonperturbative Collins-Soper Kernel From Lattice QCD. Phys. Rev. D 99(3), 034505 (2019). https://doi.org/10.1103/PhysRevD.99.034505. arXiv:1811.00026 |t Phys. Rev. D |v 99 |y 2019 |
999 | C | 5 | |a 10.1016/j.physletb.2020.135946 |1 X Ji |9 -- missing cx lookup -- |2 Crossref |u X. Ji, Y. Liu, Y.-S. Liu, Transverse-momentum-dependent parton distribution functions from large-momentum effective theory. Phys. Lett. B 811, 135946 (2020). https://doi.org/10.1016/j.physletb.2020.135946. arXiv:1911.03840 |t Phys. Lett. B |v 811 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevD.102.014511 |1 P Shanahan |9 -- missing cx lookup -- |2 Crossref |u P. Shanahan, M. Wagman, Y. Zhao, Collins-Soper kernel for TMD evolution from lattice QCD. Phys. Rev. D 102(1), 014511 (2020). https://doi.org/10.1103/PhysRevD.102.014511. arXiv:2003.06063 |t Phys. Rev. D |v 102 |y 2020 |
999 | C | 5 | |a 10.22323/1.396.0477 |9 -- missing cx lookup -- |1 Q.-A. Zhang |p 192001 - |2 Crossref |u Q..-A.. Zhang et al., Lattice-QCD Calculations of TMD Soft Function Through Large-Momentum Effective Theory. Phys. Rev. Lett. 125(19), 192001 (2020). https://doi.org/10.22323/1.396.0477. arXiv:2005.14572 |t Phys. Rev. Lett. |v 125 |y 2020 |
999 | C | 5 | |a 10.1007/JHEP08(2021)004 |9 -- missing cx lookup -- |1 M Schlemmer |p 004 - |2 Crossref |u M. Schlemmer, A. Vladimirov, C. Zimmermann, M. Engelhardt, A. Schäfer, Determination of the Collins-Soper Kernel from Lattice QCD. JHEP 08, 004 (2021). https://doi.org/10.1007/JHEP08(2021)004. arXiv:2103.16991 |t JHEP |v 08 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevD.106.034509 |1 M-H Chu |9 -- missing cx lookup -- |2 Crossref |u M.-H. Chu et al., Nonperturbative determination of the Collins-Soper kernel from quasitransverse-momentum-dependent wave functions. Phys. Rev. D 106(3), 034509 (2022). https://doi.org/10.1103/PhysRevD.106.034509. arXiv:2204.00200 |t Phys. Rev. D |v 106 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.108.074519 |9 -- missing cx lookup -- |2 Crossref |u H.-T. Shu, M. Schlemmer, T. Sizmann, A. Vladimirov, L. Walter, M. Engelhardt, A. Schäfer, Y.-B. Yang, Universality of the Collins-Soper kernel in lattice calculations (2 2023). arXiv:2302.06502 |
999 | C | 5 | |2 Crossref |u J.-C. He, M.-H. Chu, J. Hua, X. Ji, A. Schäfer, Y. Su, W. Wang, Y. Yang, J.-H. Zhang, Q.-A. Zhang, Unpolarized Transverse-Momentum-Dependent Parton Distributions of the Nucleon from Lattice QCD (11 2022). arXiv:2211.02340 |
999 | C | 5 | |a 10.1103/PhysRevD.105.074022 |1 Y Zhou |9 -- missing cx lookup -- |2 Crossref |u Y. Zhou, N. Sato, W. Melnitchouk, How well do we know the gluon polarization in the proton? Phys. Rev. D 105(7), 074022 (2022). https://doi.org/10.1103/PhysRevD.105.074022. arXiv:2201.02075 |t Phys. Rev. D |v 105 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevC.100.035205 |1 M Alberg |9 -- missing cx lookup -- |2 Crossref |u M. Alberg, G.A. Miller, Chiral Light Front Perturbation Theory and the Flavor Dependence of the Light-Quark Nucleon Sea. Phys. Rev. C 100(3), 035205 (2019). https://doi.org/10.1103/PhysRevC.100.035205. arXiv:1712.05814 |t Phys. Rev. C |v 100 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevLett.66.2712 |9 -- missing cx lookup -- |1 P Amaudruz |p 2712 - |2 Crossref |u P. Amaudruz et al., The Gottfried sum from the ratio F2(n) / F2(p). Phys. Rev. Lett. 66, 2712–2715 (1991). https://doi.org/10.1103/PhysRevLett.66.2712 |t Phys. Rev. Lett. |v 66 |y 1991 |
999 | C | 5 | |a 10.1016/S0146-6410(01)00155-7 |9 -- missing cx lookup -- |1 GT Garvey |p 203 - |2 Crossref |u G.T. Garvey, J.-C. Peng, Flavor asymmetry of light quarks in the nucleon sea. Prog. Part. Nucl. Phys. 47, 203–243 (2001). https://doi.org/10.1016/S0146-6410(01)00155-7. arXiv:nucl-ex/0109010 |t Prog. Part. Nucl. Phys. |v 47 |y 2001 |
999 | C | 5 | |a 10.7566/JPSCP.13.020051 |1 K Nagai |9 -- missing cx lookup -- |2 Crossref |u K. Nagai, Measurement of Antiquark Flavor Asymmetry in the Proton by the Drell-Yan Experiment SeaQuest at Fermilab. JPS Conf. Proc. 13, 020051 (2017). https://doi.org/10.7566/JPSCP.13.020051 |t JPS Conf. Proc. |v 13 |y 2017 |
999 | C | 5 | |a 10.1103/RevModPhys.85.655 |9 -- missing cx lookup -- |1 CA Aidala |p 655 - |2 Crossref |u C.A. Aidala, S.D. Bass, D. Hasch, G.K. Mallot, The Spin Structure of the Nucleon. Rev. Mod. Phys. 85, 655–691 (2013). https://doi.org/10.1103/RevModPhys.85.655. arXiv:1209.2803 |t Rev. Mod. Phys. |v 85 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevLett.115.092002 |1 L Adamczyk |9 -- missing cx lookup -- |2 Crossref |u L. Adamczyk et al., Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $$\sqrt{s}=200$$ GeV. Phys. Rev. Lett. 115(9), 092002 (2015). https://doi.org/10.1103/PhysRevLett.115.092002. arXiv:1405.5134 |t Phys. Rev. Lett. |v 115 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevD.100.052005 |1 J Adam |9 -- missing cx lookup -- |2 Crossref |u J. Adam et al., Longitudinal double-spin asymmetry for inclusive jet and dijet production in pp collisions at $$\sqrt{s} = 510$$ GeV. Phys. Rev. D 100(5), 052005 (2019). https://doi.org/10.1103/PhysRevD.100.052005. arXiv:1906.02740 |t Phys. Rev. D |v 100 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevD.103.L091103 |9 -- missing cx lookup -- |1 MS Abdallah |p L091103 - |2 Crossref |u M.S. Abdallah et al., Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $$\sqrt{s}=200$$ GeV. Phys. Rev. D 103(9), L091103 (2021). https://doi.org/10.1103/PhysRevD.103.L091103. arXiv:2103.05571 |t Phys. Rev. D |v 103 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevD.105.092011 |1 MS Abdallah |9 -- missing cx lookup -- |2 Crossref |u M.S. Abdallah et al., Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $$\sqrt{s}=510$$ GeV. Phys. Rev. D 105(9), 092011 (2022). https://doi.org/10.1103/PhysRevD.105.092011. arXiv:2110.11020 |t Phys. Rev. D |v 105 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.84.012006 |1 A Adare |9 -- missing cx lookup -- |2 Crossref |u A. Adare et al., Event Structure and Double Helicity Asymmetry in Jet Production from Polarized $$p+p$$ Collisions at $$\sqrt{s} = 200$$ GeV. Phys. Rev. D 84, 012006 (2011). https://doi.org/10.1103/PhysRevD.84.012006. arXiv:1009.4921 |t Phys. Rev. D |v 84 |y 2011 |
999 | C | 5 | |a 10.1016/j.physletb.2010.01.008 |9 -- missing cx lookup -- |1 SD Bass |p 216 - |2 Crossref |u S.D. Bass, A.W. Thomas, The Nucleon’s octet axial-charge g(A)**(8) with chiral corrections. Phys. Lett. B 684, 216–220 (2010). https://doi.org/10.1016/j.physletb.2010.01.008. arXiv:0912.1765 |t Phys. Lett. B |v 684 |y 2010 |
999 | C | 5 | |a 10.1103/PhysRevLett.119.132001 |1 JJ Ethier |9 -- missing cx lookup -- |2 Crossref |u J.J. Ethier, N. Sato, W. Melnitchouk, First simultaneous extraction of spin-dependent parton distributions and fragmentation functions from a global QCD analysis. Phys. Rev. Lett. 119(13), 132001 (2017). https://doi.org/10.1103/PhysRevLett.119.132001. arXiv:1705.05889 |t Phys. Rev. Lett. |v 119 |y 2017 |
999 | C | 5 | |a 10.1007/JHEP11(2020)129 |9 -- missing cx lookup -- |1 A Candido |p 129 - |2 Crossref |u A. Candido, S. Forte, F. Hekhorn, Can $$ \overline{\rm MS } $$ parton distributions be negative? JHEP 11, 129 (2020). https://doi.org/10.1007/JHEP11(2020)129. arXiv:2006.07377 |t JHEP |v 11 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevD.105.076010 |1 J Collins |9 -- missing cx lookup -- |2 Crossref |u J. Collins, T.C. Rogers, N. Sato, Positivity and renormalization of parton densities. Phys. Rev. D 105(7), 076010 (2022). https://doi.org/10.1103/PhysRevD.105.076010. arXiv:2111.01170 |t Phys. Rev. D |v 105 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.92.121803 |1 B Jager |9 -- missing cx lookup -- |2 Crossref |u B. Jager, M. Stratmann, S. Kretzer, W. Vogelsang, QCD hard scattering and the sign of the spin asymmetry A**pi(LL). Phys. Rev. Lett. 92, 121803 (2004). https://doi.org/10.1103/PhysRevLett.92.121803. arXiv:hep-ph/0310197 |t Phys. Rev. Lett. |v 92 |y 2004 |
999 | C | 5 | |a 10.1103/PhysRevD.93.011501 |1 A Adare |9 -- missing cx lookup -- |2 Crossref |u A. Adare et al., Inclusive cross section and double-helicity asymmetry for $$\pi ^{0}$$ production at midrapidity in $$p+p$$ collisions at $$\sqrt{s}=510$$ GeV. Phys. Rev. D 93(1), 011501 (2016). https://doi.org/10.1103/PhysRevD.93.011501. arXiv:1510.02317 |t Phys. Rev. D |v 93 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevD.91.032001 |1 A Adare |9 -- missing cx lookup -- |2 Crossref |u A. Adare et al., Charged-pion cross sections and double-helicity asymmetries in polarized p+p collisions at $$\sqrt{s}$$=200 GeV. Phys. Rev. D 91(3), 032001 (2015). https://doi.org/10.1103/PhysRevD.91.032001. arXiv:1409.1907 |t Phys. Rev. D |v 91 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevD.102.032001 |1 UA Acharya |9 -- missing cx lookup -- |2 Crossref |u U.A. Acharya et al., Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized $$p+p$$ collisions at $$\sqrt{s}$$ = 510 GeV. Phys. Rev. D 102(3), 032001 (2020). https://doi.org/10.1103/PhysRevD.102.032001. arXiv:2004.02681 |t Phys. Rev. D |v 102 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevD.107.034033 |1 RM Whitehill |9 -- missing cx lookup -- |2 Crossref |u R.M. Whitehill, Y. Zhou, N. Sato, W. Melnitchouk, Accessing gluon polarization with high-PT hadrons in SIDIS. Phys. Rev. D 107(3), 034033 (2023). https://doi.org/10.1103/PhysRevD.107.034033. arXiv:2210.12295 |t Phys. Rev. D |v 107 |y 2023 |
999 | C | 5 | |a 10.1142/S0217751X18300259 |9 -- missing cx lookup -- |1 MV Polyakov |p 1830025 - |2 Crossref |u M.V. Polyakov, P. Schweitzer, Forces inside hadrons: pressure, surface tension, mechanical radius, and all that. Int. J. Mod. Phys. A 33(26), 1830025 (2018). https://doi.org/10.1142/S0217751X18300259. arXiv:1805.06596 |t Int. J. Mod. Phys. A |v 33 |y 2018 |
999 | C | 5 | |a 10.1140/epjc/s10052-019-6572-3 |9 -- missing cx lookup -- |1 C Lorcé |p 89 - |2 Crossref |u C. Lorcé, H. Moutarde, A.P. Trawiński, Revisiting the mechanical properties of the nucleon. Eur. Phys. J. C 79(1), 89 (2019). https://doi.org/10.1140/epjc/s10052-019-6572-3. arXiv:1810.09837 |t Eur. Phys. J. C |v 79 |y 2019 |
999 | C | 5 | |a 10.1140/epjc/s10052-018-5561-2 |9 -- missing cx lookup -- |2 Crossref |u C. Lorcé, On the hadron mass decomposition. Eur. Phys. J. C 78(2), 120 (2018). https://doi.org/10.1140/epjc/s10052-018-5561-2. arXiv:1706.05853 |
999 | C | 5 | |a 10.1007/JHEP12(2018)008 |9 -- missing cx lookup -- |1 Y Hatta |p 008 - |2 Crossref |u Y. Hatta, A. Rajan, K. Tanaka, Quark and gluon contributions to the QCD trace anomaly. JHEP 12, 008 (2018). https://doi.org/10.1007/JHEP12(2018)008. arXiv:1810.05116 |t JHEP |v 12 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevD.102.114042 |1 A Metz |9 -- missing cx lookup -- |2 Crossref |u A. Metz, B. Pasquini, S. Rodini, Revisiting the proton mass decomposition. Phys. Rev. D 102(11), 114042 (2021). https://doi.org/10.1103/PhysRevD.102.114042. arXiv:2006.11171 |t Phys. Rev. D |v 102 |y 2021 |
999 | C | 5 | |a 10.1016/S0146-6410(01)00158-2 |9 -- missing cx lookup -- |1 K Goeke |p 401 - |2 Crossref |u K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Hard exclusive reactions and the structure of hadrons. Prog. Part. Nucl. Phys. 47, 401–515 (2001). https://doi.org/10.1016/S0146-6410(01)00158-2. arXiv:hep-ph/0106012 |t Prog. Part. Nucl. Phys. |v 47 |y 2001 |
999 | C | 5 | |a 10.1016/j.physrep.2003.08.002 |9 -- missing cx lookup -- |1 M Diehl |p 41 - |2 Crossref |u M. Diehl, Generalized parton distributions. Phys. Rept. 388, 41–277 (2003). https://doi.org/10.1016/j.physrep.2003.08.002. arXiv:hep-ph/0307382 |t Generalized parton distributions. Phys. Rept. |v 388 |y 2003 |
999 | C | 5 | |a 10.1016/j.physrep.2005.06.002 |9 -- missing cx lookup -- |1 AV Belitsky |p 1 - |2 Crossref |u A.V. Belitsky, A.V. Radyushkin, Unraveling hadron structure with generalized parton distributions. Phys. Rept. 418, 1–387 (2005). https://doi.org/10.1016/j.physrep.2005.06.002. arXiv:hep-ph/0504030 |t Phys. Rept. |v 418 |y 2005 |
999 | C | 5 | |a 10.1103/PhysRevLett.74.1071 |9 -- missing cx lookup -- |1 X-D Ji |p 1071 - |2 Crossref |u X.-D. Ji, A QCD analysis of the mass structure of the nucleon. Phys. Rev. Lett. 74, 1071–1074 (1995). https://doi.org/10.1103/PhysRevLett.74.1071. arXiv:hep-ph/9410274 |t Phys. Rev. Lett. |v 74 |y 1995 |
999 | C | 5 | |a 10.1103/PhysRevD.52.271 |9 -- missing cx lookup -- |1 X-D Ji |p 271 - |2 Crossref |u X.-D. Ji, Breakup of hadron masses and energy - momentum tensor of QCD. Phys. Rev. D 52, 271–281 (1995). arXiv:hep-ph/9502213 |t Phys. Rev. D |v 52 |y 1995 |
999 | C | 5 | |a 10.1007/s100529900047 |9 -- missing cx lookup -- |1 D Kharzeev |p 459 - |2 Crossref |u D. Kharzeev, H. Satz, A. Syamtomov, G. Zinovjev, $$J/\psi $$ photoproduction and the gluon structure of the nucleon. Eur. Phys. J. C 9, 459–462 (1999). https://doi.org/10.1007/s100529900047. arXiv:hep-ph/9901375 |t Eur. Phys. J. C |v 9 |y 1999 |
999 | C | 5 | |a 10.1103/PhysRevD.94.074001 |1 O Gryniuk |9 -- missing cx lookup -- |2 Crossref |u O. Gryniuk, M. Vanderhaeghen, Accessing the real part of the forward $$J/\psi $$-p scattering amplitude from $$J/\psi $$ photoproduction on protons around threshold. Phys. Rev. D 94(7), 074001 (2016). https://doi.org/10.1103/PhysRevD.94.074001. arXiv:1608.08205 |t Phys. Rev. D |v 94 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevD.101.086003 |1 KA Mamo |9 -- missing cx lookup -- |2 Crossref |u K.A. Mamo, I. Zahed, Diffractive photoproduction of $$J/\psi $$ and $$\Upsilon $$ using holographic QCD: gravitational form factors and GPD of gluons in the proton. Phys. Rev. D 101(8), 086003 (2020). https://doi.org/10.1103/PhysRevD.101.086003. arXiv:1910.04707 |t Phys. Rev. D |v 101 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevD.106.086004 |1 KA Mamo |9 -- missing cx lookup -- |2 Crossref |u K.A. Mamo, I. Zahed, J/$$\psi $$ near threshold in holographic QCD: A and D gravitational form factors. Phys. Rev. D 106(8), 086004 (2022). https://doi.org/10.1103/PhysRevD.106.086004. arXiv:2204.08857 |t Phys. Rev. D |v 106 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.103.096010 |1 Y Guo |9 -- missing cx lookup -- |2 Crossref |u Y. Guo, X. Ji, Y. Liu, QCD Analysis of Near-Threshold Photon-Proton Production of Heavy Quarkonium. Phys. Rev. D 103(9), 096010 (2021). https://doi.org/10.1103/PhysRevD.103.096010. arXiv:2103.11506 |t Phys. Rev. D |v 103 |y 2021 |
999 | C | 5 | |a 10.1038/s41586-023-05730-4 |9 -- missing cx lookup -- |1 B Duran |p 813 - |2 Crossref |u B. Duran et al., Determining the gluonic gravitational form factors of the proton. Nature 615(7954), 813–816 (2023). https://doi.org/10.1038/s41586-023-05730-4. arXiv:2207.05212 |t Nature |v 615 |y 2023 |
999 | C | 5 | |a 10.1103/PhysRevD.105.054509 |1 DA Pefkou |9 -- missing cx lookup -- |2 Crossref |u D.A. Pefkou, D.C. Hackett, P.E. Shanahan, Gluon gravitational structure of hadrons of different spin. Phys. Rev. D 105(5), 054509 (2022). https://doi.org/10.1103/PhysRevD.105.054509. arXiv:2107.10368 |t Phys. Rev. D |v 105 |y 2022 |
999 | C | 5 | |2 Crossref |u J. P. Chen, H. Gao, T. K. Hemmick, Z. E. Meziani, P. A. Souder, A White Paper on SoLID (Solenoidal Large Intensity Device) (9 2014). arXiv:1409.7741 |
999 | C | 5 | |a 10.1103/PhysRevD.60.114017 |1 MV Polyakov |9 -- missing cx lookup -- |2 Crossref |u M.V. Polyakov, C. Weiss, Skewed and double distributions in pion and nucleon. Phys. Rev. D 60, 114017 (1999). https://doi.org/10.1103/PhysRevD.60.114017. arXiv:hep-ph/9902451 |t Phys. Rev. D |v 60 |y 1999 |
999 | C | 5 | |a 10.1016/S0370-2693(03)00036-4 |9 -- missing cx lookup -- |1 MV Polyakov |p 57 - |2 Crossref |u M.V. Polyakov, Generalized parton distributions and strong forces inside nucleons and nuclei. Phys. Lett. B 555, 57–62 (2003). https://doi.org/10.1016/S0370-2693(03)00036-4. arXiv:hep-ph/0210165 |t Phys. Lett. B |v 555 |y 2003 |
999 | C | 5 | |a 10.1038/s41586-018-0060-z |9 -- missing cx lookup -- |1 VD Burkert |p 396 - |2 Crossref |u V.D. Burkert, L. Elouadrhiri, F.X. Girod, The pressure distribution inside the proton. Nature 557(7705), 396–399 (2018). https://doi.org/10.1038/s41586-018-0060-z |t Nature |v 557 |y 2018 |
999 | C | 5 | |a 10.1103/RevModPhys.95.041002 |9 -- missing cx lookup -- |2 Crossref |u V. D. Burkert, L. Elouadrhiri, F. X. Girod, C. Lorcé, P. Schweitzer, P. E. Shanahan, Colloquium: Gravitational Form Factors of the Proton (3 2023). arXiv:2303.08347 |
999 | C | 5 | |a 10.1038/s41586-019-1211-6 |9 -- missing cx lookup -- |1 K Kumerički |p E1 - |2 Crossref |u K. Kumerički, Measurability of pressure inside the proton. Nature 570(7759), E1–E2 (2019). https://doi.org/10.1038/s41586-019-1211-6 |t Nature |v 570 |y 2019 |
999 | C | 5 | |a 10.1140/epjc/s10052-019-7117-5 |9 -- missing cx lookup -- |1 H Moutarde |p 614 - |2 Crossref |u H. Moutarde, P. Sznajder, J. Wagner, Unbiased determination of DVCS Compton Form Factors. Eur. Phys. J. C 79(7), 614 (2019). https://doi.org/10.1140/epjc/s10052-019-7117-5. arXiv:1905.02089 |t Eur. Phys. J. C |v 79 |y 2019 |
999 | C | 5 | |2 Crossref |u G. Christiaens, et al., First CLAS12 measurement of DVCS beam-spin asymmetries in the extended valence region (11 2022). arXiv:2211.11274 |
999 | C | 5 | |a 10.1103/PhysRevLett.78.610 |9 -- missing cx lookup -- |1 X-D Ji |p 610 - |2 Crossref |u X.-D. Ji, Gauge-Invariant Decomposition of Nucleon Spin. Phys. Rev. Lett. 78, 610–613 (1997). https://doi.org/10.1103/PhysRevLett.78.610. arXiv:hep-ph/9603249 |t Phys. Rev. Lett. |v 78 |y 1997 |
999 | C | 5 | |a 10.1103/PhysRevD.56.5524 |9 -- missing cx lookup -- |1 A Radyushkin |p 5524 - |2 Crossref |u A. Radyushkin, Nonforward parton distributions. Phys. Rev. D 56, 5524–5557 (1997). https://doi.org/10.1103/PhysRevD.56.5524. arXiv:hep-ph/9704207 |t Phys. Rev. D |v 56 |y 1997 |
999 | C | 5 | |a 10.1140/epja/i2016-16157-3 |9 -- missing cx lookup -- |1 K Kumericki |p 157 - |2 Crossref |u K. Kumericki, S. Liuti, H. Moutarde, GPD phenomenology and DVCS fitting: Entering the high-precision era. Eur. Phys. J. A 52(6), 157 (2016). https://doi.org/10.1140/epja/i2016-16157-3. arXiv:1602.02763 |t Eur. Phys. J. A |v 52 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevD.15.1141 |9 -- missing cx lookup -- |1 DE Soper |p 1141 - |2 Crossref |u D.E. Soper, The Parton Model and the Bethe-Salpeter Wave Function. Phys. Rev. D 15, 1141 (1977). https://doi.org/10.1103/PhysRevD.15.1141 |t Phys. Rev. D |v 15 |y 1977 |
999 | C | 5 | |a 10.1103/PhysRevD.62.071503 |9 -- missing cx lookup -- |2 Crossref |u M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for zeta —$${>}$$ 0, Phys. Rev. D 62 (2000) 071503, [Erratum: Phys.Rev.D 66, 119903 (2002)]. arXiv:hep-ph/0005108, https://doi.org/10.1103/PhysRevD.62.071503 |
999 | C | 5 | |a 10.1016/S0550-3213(02)00144-X |9 -- missing cx lookup -- |1 AV Belitsky |p 323 - |2 Crossref |u A.V. Belitsky, D. Mueller, A. Kirchner, Theory of deeply virtual Compton scattering on the nucleon. Nucl. Phys. B 629, 323–392 (2002). https://doi.org/10.1016/S0550-3213(02)00144-X. arXiv:hep-ph/0112108 |t Nucl. Phys. B |v 629 |y 2002 |
999 | C | 5 | |a 10.1103/PhysRevD.82.074010 |1 AV Belitsky |9 -- missing cx lookup -- |2 Crossref |u A.V. Belitsky, D. Mueller, Exclusive electroproduction revisited: treating kinematical effects. Phys. Rev. D 82, 074010 (2010). https://doi.org/10.1103/PhysRevD.82.074010. arXiv:1005.5209 |t Phys. Rev. D |v 82 |y 2010 |
999 | C | 5 | |a 10.1016/j.physletb.2022.137051 |1 B Kriesten |9 -- missing cx lookup -- |2 Crossref |u B. Kriesten, S. Liuti, A. Meyer, Novel Rosenbluth extraction framework for Compton form factors from deeply virtual exclusive experiments. Phys. Lett. B 829, 137051 (2022). https://doi.org/10.1016/j.physletb.2022.137051. arXiv:2011.04484 |t Phys. Lett. B |v 829 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.105.016015 |1 B Kriesten |9 -- missing cx lookup -- |2 Crossref |u B. Kriesten, S. Liuti, Theory of deeply virtual Compton scattering off the unpolarized proton. Phys. Rev. D 105(1), 016015 (2022). https://doi.org/10.1103/PhysRevD.105.016015. arXiv:2004.08890 |t Phys. Rev. D |v 105 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.101.054021 |1 B Kriesten |9 -- missing cx lookup -- |2 Crossref |u B. Kriesten, S. Liuti, L. Calero-Diaz, D. Keller, A. Meyer, G.R. Goldstein, J. Osvaldo Gonzalez-Hernandez, Extraction of generalized parton distribution observables from deeply virtual electron proton scattering experiments. Phys. Rev. D 101(5), 054021 (2020). https://doi.org/10.1103/PhysRevD.101.054021. arXiv:1903.05742 |t Phys. Rev. D |v 101 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevD.105.056022 |1 B Kriesten |9 -- missing cx lookup -- |2 Crossref |u B. Kriesten, P. Velie, E. Yeats, F.Y. Lopez, S. Liuti, Parametrization of quark and gluon generalized parton distributions in a dynamical framework. Phys. Rev. D 105(5), 056022 (2022). https://doi.org/10.1103/PhysRevD.105.056022. arXiv:2101.01826 |t Phys. Rev. D |v 105 |y 2022 |
999 | C | 5 | |a 10.1142/9789811214950_0005 |9 -- missing cx lookup -- |2 Crossref |u K. Kumerički, Extraction of DVCS form factors with uncertainties, in: Probing Nucleons and Nuclei in High Energy Collisions: Dedicated to the Physics of the Electron Ion Collider, 2020, pp. 25–29. https://doi.org/10.1142/9789811214950_0005arXiv:1910.04806 |
999 | C | 5 | |a 10.1103/PhysRevD.104.016001 |1 J Grigsby |9 -- missing cx lookup -- |2 Crossref |u J. Grigsby, B. Kriesten, J. Hoskins, S. Liuti, P. Alonzi, M. Burkardt, Deep learning analysis of deeply virtual exclusive photoproduction. Phys. Rev. D 104(1), 016001 (2021). https://doi.org/10.1103/PhysRevD.104.016001. arXiv:2012.04801 |t Phys. Rev. D |v 104 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevLett.125.232005 |1 M Čuić |9 -- missing cx lookup -- |2 Crossref |u M. Čuić, K. Kumerički, A. Schäfer, Separation of Quark Flavors Using Deeply Virtual Compton Scattering Data. Phys. Rev. Lett. 125(23), 232005 (2020). https://doi.org/10.1103/PhysRevLett.125.232005. arXiv:2007.00029 |t Phys. Rev. Lett. |v 125 |y 2020 |
999 | C | 5 | |2 Crossref |u M. Almaeen, J. Grigsby, J. Hoskins, B. Kriesten, Y. Li, H.-W. Lin, S. Liuti, Benchmarks for a Global Extraction of Information from Deeply Virtual Exclusive Scattering (7 2022). arXiv:2207.10766 |
999 | C | 5 | |a 10.1103/PhysRevLett.90.012001 |1 M Guidal |9 -- missing cx lookup -- |2 Crossref |u M. Guidal, M. Vanderhaeghen, Double deeply virtual Compton scattering off the nucleon. Phys. Rev. Lett. 90, 012001 (2003). https://doi.org/10.1103/PhysRevLett.90.012001. arXiv:hep-ph/0208275 |t Phys. Rev. Lett. |v 90 |y 2003 |
999 | C | 5 | |a 10.1103/PhysRevLett.90.022001 |1 AV Belitsky |9 -- missing cx lookup -- |2 Crossref |u A.V. Belitsky, D. Mueller, Exclusive electroproduction of lepton pairs as a probe of nucleon structure. Phys. Rev. Lett. 90, 022001 (2003). https://doi.org/10.1103/PhysRevLett.90.022001. arXiv:hep-ph/0210313 |t Phys. Rev. Lett. |v 90 |y 2003 |
999 | C | 5 | |a 10.1140/epja/s10050-021-00551-3 |9 -- missing cx lookup -- |1 S Zhao |p 240 - |2 Crossref |u S. Zhao, A. Camsonne, D. Marchand, M. Mazouz, N. Sparveris, S. Stepanyan, E. Voutier, Z.W. Zhao, Double deeply virtual Compton scattering with positron beams at SoLID. Eur. Phys. J. A 57(7), 240 (2021). https://doi.org/10.1140/epja/s10050-021-00551-3. arXiv:2103.12773 |t Eur. Phys. J. A |v 57 |y 2021 |
999 | C | 5 | |a 10.1016/S0370-2693(02)02856-3 |9 -- missing cx lookup -- |1 DY Ivanov |p 65 - |2 Crossref |u D.Y. Ivanov, B. Pire, L. Szymanowski, O.V. Teryaev, Probing chiral odd GPD’s in diffractive electroproduction of two vector mesons. Phys. Lett. B 550, 65–76 (2002). https://doi.org/10.1016/S0370-2693(02)02856-3. arXiv:hep-ph/0209300 |t Phys. Lett. B |v 550 |y 2002 |
999 | C | 5 | |a 10.1007/JHEP02(2017)054 |9 -- missing cx lookup -- |2 Crossref |u R. Boussarie, B. Pire, L. Szymanowski, S. Wallon, Exclusive photoproduction of a $$\gamma \,\rho $$ pair with a large invariant mass, JHEP 02 (2017) 054, [Erratum: JHEP 10, 029 (2018)]. arXiv:hep-ph/1609.03830, https://doi.org/10.1007/JHEP02(2017)054 |
999 | C | 5 | |a 10.1007/JHEP03(2023)241 |9 -- missing cx lookup -- |2 Crossref |u G. Duplančić, S. Nabeebaccus, K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon, Probing chiral-even and chiral-odd leading twist quark generalised parton distributions through the exclusive photoproduction of a $$ \gamma \rho $$ pair (2 2023). arXiv:2302.12026 |
999 | C | 5 | |a 10.1103/PhysRevD.96.074008 |9 -- missing cx lookup -- |2 Crossref |u A. Pedrak, B. Pire, L. Szymanowski, J. Wagner, Hard photoproduction of a diphoton with a large invariant mass, Phys. Rev. D 96 (7) (2017) 074008, [Erratum: Phys.Rev.D 100, 039901 (2019)]. arXiv:hep-ph/1708.01043, https://doi.org/10.1103/PhysRevD.96.074008 |
999 | C | 5 | |a 10.1103/PhysRevD.105.094025 |1 O Grocholski |9 -- missing cx lookup -- |2 Crossref |u O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner, Phenomenology of diphoton photoproduction at next-to-leading order. Phys. Rev. D 105(9), 094025 (2022). https://doi.org/10.1103/PhysRevD.105.094025. arXiv:2204.00396 |t Phys. Rev. D |v 105 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.104.114006 |1 O Grocholski |9 -- missing cx lookup -- |2 Crossref |u O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner, Collinear factorization of diphoton photoproduction at next to leading order. Phys. Rev. D 104(11), 114006 (2021). https://doi.org/10.1103/PhysRevD.104.114006. arXiv:2110.00048 |t Phys. Rev. D |v 104 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevD.107.014007 |1 J-W Qiu |9 -- missing cx lookup -- |2 Crossref |u J.-W. Qiu, Z. Yu, Single diffractive hard exclusive processes for the study of generalized parton distributions. Phys. Rev. D 107(1), 014007 (2023). https://doi.org/10.1103/PhysRevD.107.014007. arXiv:2210.07995 |t Phys. Rev. D |v 107 |y 2023 |
999 | C | 5 | |a 10.1140/epja/i2014-14146-2 |9 -- missing cx lookup -- |2 Crossref |u S. V. Goloskokov, P. Kroll, The pion pole in hard exclusive vector-meson leptoproduction, The European Physical Journal A 50 (9) (sep 2014). https://doi.org/10.1140/epja/i2014-14146-2.https://doi.org/10.1140%2Fepja%2Fi2014-14146-2 |
999 | C | 5 | |a 10.1103/PhysRevD.88.014001 |1 C Mezrag |9 -- missing cx lookup -- |2 Crossref |u C. Mezrag, H. Moutarde, F. Sabatié, Test of two new parametrizations of the generalized parton distribution H. Phys. Rev. D 88(1), 014001 (2013). https://doi.org/10.1103/PhysRevD.88.014001. arXiv:1304.7645 |t Phys. Rev. D |v 88 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevD.101.114027 |1 A Pedrak |9 -- missing cx lookup -- |2 Crossref |u A. Pedrak, B. Pire, L. Szymanowski, J. Wagner, Electroproduction of a large invariant mass photon pair. Phys. Rev. D 101(11), 114027 (2020). https://doi.org/10.1103/PhysRevD.101.114027. arXiv:hep-ph/2003.03263 |t Phys. Rev. D |v 101 |y 2020 |
999 | C | 5 | |a 10.1140/epjc/s10052-018-5948-0 |9 -- missing cx lookup -- |1 B Berthou |p 478 - |2 Crossref |u B. Berthou et al., PARTONS: PARtonic Tomography Of Nucleon Software: A computing framework for the phenomenology of Generalized Parton Distributions. Eur. Phys. J. C 78(6), 478 (2018). https://doi.org/10.1140/epjc/s10052-018-5948-0. arXiv:hep-ph/1512.06174 |t Eur. Phys. J. C |v 78 |y 2018 |
999 | C | 5 | |a 10.1140/epjc/s10052-022-10651-z |9 -- missing cx lookup -- |1 EC Aschenauer |p 819 - |2 Crossref |u E.C. Aschenauer, V. Batozskaya, S. Fazio, K. Gates, H. Moutarde, D. Sokhan, H. Spiesberger, P. Sznajder, K. Tezgin, EpIC: novel Monte Carlo generator for exclusive processes. Eur. Phys. J. C 82(9), 819 (2022). https://doi.org/10.1140/epjc/s10052-022-10651-z. arXiv:2205.01762 |t Eur. Phys. J. C |v 82 |y 2022 |
999 | C | 5 | |a 10.1007/JHEP08(2022)103 |9 -- missing cx lookup -- |1 J-W Qiu |p 103 - |2 Crossref |u J.-W. Qiu, Z. Yu, Exclusive production of a pair of high transverse momentum photons in pion-nucleon collisions for extracting generalized parton distributions. JHEP 08, 103 (2022). https://doi.org/10.1007/JHEP08(2022)103. arXiv:2205.07846 |t JHEP |v 08 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.131.161902 |9 -- missing cx lookup -- |2 Crossref |u J.-W. Qiu, Z. Yu, Extraction of the $$x$$-dependence of generalized parton distributions from exclusive photoproduction (5 2023). arXiv:2305.15397 |
999 | C | 5 | |a 10.1140/epjc/s2005-02298-5 |9 -- missing cx lookup -- |1 SV Goloskokov |p 281 - |2 Crossref |u S.V. Goloskokov, P. Kroll, Vector meson electroproduction at small Bjorken-x and generalized parton distributions. Eur. Phys. J. C 42, 281–301 (2005). https://doi.org/10.1140/epjc/s2005-02298-5. arXiv:hep-ph/0501242 |t Eur. Phys. J. C |v 42 |y 2005 |
999 | C | 5 | |a 10.1140/epjc/s10052-007-0466-5 |9 -- missing cx lookup -- |1 S Goloskokov |p 367 - |2 Crossref |u S. Goloskokov, P. Kroll, The Role of the quark and gluon GPDs in hard vector-meson electroproduction. Eur. Phys. J. C 53, 367–384 (2008). https://doi.org/10.1140/epjc/s10052-007-0466-5. arXiv:0708.3569 |t Eur. Phys. J. C |v 53 |y 2008 |
999 | C | 5 | |a 10.1140/epjc/s10052-009-1178-9 |9 -- missing cx lookup -- |1 SV Goloskokov |p 137 - |2 Crossref |u S.V. Goloskokov, P. Kroll, An Attempt to understand exclusive pi+ electroproduction. Eur. Phys. J. C 65, 137–151 (2010). https://doi.org/10.1140/epjc/s10052-009-1178-9. arXiv:0906.0460 |t Eur. Phys. J. C |v 65 |y 2010 |
999 | C | 5 | |a 10.1140/epjc/s10052-013-2278-0 |9 -- missing cx lookup -- |1 P Kroll |p 2278 - |2 Crossref |u P. Kroll, H. Moutarde, F. Sabatie, From hard exclusive meson electroproduction to deeply virtual Compton scattering. Eur. Phys. J. C 73(1), 2278 (2013). https://doi.org/10.1140/epjc/s10052-013-2278-0. arXiv:1210.6975 |t Eur. Phys. J. C |v 73 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevD.103.114019 |1 V Bertone |9 -- missing cx lookup -- |2 Crossref |u V. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, P. Sznajder, Deconvolution problem of deeply virtual Compton scattering. Phys. Rev. D 103(11), 114019 (2021). https://doi.org/10.1103/PhysRevD.103.114019. arXiv:2104.03836 |t Phys. Rev. D |v 103 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevD.108.036027 |9 -- missing cx lookup -- |2 Crossref |u E. Moffat, A. Freese, I. Cloët, T. Donohoe, L. Gamberg, W. Melnitchouk, A. Metz, A. Prokudin, N. Sato, Shedding light on shadow generalized parton distributions (3 2023). arXiv:2303.12006 |
999 | C | 5 | |a 10.1103/PhysRevD.107.054009 |1 P Kroll |9 -- missing cx lookup -- |2 Crossref |u P. Kroll, K. Passek-Kumerički, Transition GPDs and exclusive electroproduction of $$\pi $$-$$\Delta (1232)$$ final states. Phys. Rev. D 107(5), 054009 (2023). https://doi.org/10.1103/PhysRevD.107.054009. arXiv:2211.09474 |t Phys. Rev. D |v 107 |y 2023 |
999 | C | 5 | |a 10.1103/PhysRevD.68.034018 |1 PAM Guichon |9 -- missing cx lookup -- |2 Crossref |u P.A.M. Guichon, L. Mossé, M. Vanderhaeghen, Pion production in deeply virtual Compton scattering. Phys. Rev. D 68, 034018 (2003). https://doi.org/10.1103/PhysRevD.68.034018. arXiv:hep-ph/0305231 |t Phys. Rev. D |v 68 |y 2003 |
999 | C | 5 | |2 Crossref |u K. M. Semenov-Tian-Shansky, M. Vanderhaeghen, Deeply-Virtual Compton Process $$e^- N \rightarrow e^- \gamma \pi N$$ to Study Nucleon to Resonance Transitions - arXiv:2303.00119 [hep-ph] (2023). arXiv:2303.00119 |
999 | C | 5 | |a 10.1016/0003-4916(73)90476-4 |9 -- missing cx lookup -- |1 HF Jones |p 1 - |2 Crossref |u H.F. Jones, M.D. Scadron, Multipole $$\gamma N$$-$$\Delta $$ form factors and resonant photoproduction and electroproduction. Annals Phys. 81, 1–14 (1973). https://doi.org/10.1016/0003-4916(73)90476-4 |t Annals Phys. |v 81 |y 1973 |
999 | C | 5 | |a 10.1016/0003-4916(68)90278-9 |9 -- missing cx lookup -- |1 SL Adler |p 189 - |2 Crossref |u S.L. Adler, Photoproduction, electroproduction and weak single pion production in the (3,3) resonance region. Annals Phys. 50, 189–311 (1968). https://doi.org/10.1016/0003-4916(68)90278-9 |t Annals Phys. |v 50 |y 1968 |
999 | C | 5 | |a 10.1103/PhysRevD.12.2644 |9 -- missing cx lookup -- |1 SL Adler |p 2644 - |2 Crossref |u S.L. Adler, Application of Current Algebra Techniques to Soft Pion Production by the Weak Neutral Current: V, a Case. Phys. Rev. D 12, 2644 (1975). https://doi.org/10.1103/PhysRevD.12.2644 |t Phys. Rev. D |v 12 |y 1975 |
999 | C | 5 | |a 10.1016/j.physletb.2022.137442 |1 J-Y Kim |9 -- missing cx lookup -- |2 Crossref |u J.-Y. Kim, Parametrization of transition energy-momentum tensor form factors. Phys. Lett. B 834, 137442 (2022). https://doi.org/10.1016/j.physletb.2022.137442. arXiv:2206.10202 |t Phys. Lett. B |v 834 |y 2022 |
999 | C | 5 | |a 10.1016/j.physletb.2023.138083 |9 -- missing cx lookup -- |2 Crossref |u J.-Y. Kim, H.-Y. Won, J. L. Goity, C. Weiss, QCD angular momentum in $$N \rightarrow \Delta $$ transitions (4 2023). arXiv:2304.08575 |
999 | C | 5 | |2 Crossref |u V. Pascalutsa, M. Vanderhaeghen, New large-N(c) relations among the nucleon and nucleon-to-Delta GPDs (11 2006). arXiv:hep-ph/0611050 |
999 | C | 5 | |a 10.1103/PhysRevC.94.045202 |1 P Schweitzer |9 -- missing cx lookup -- |2 Crossref |u P. Schweitzer, C. Weiss, Spin-flavor structure of chiral-odd generalized parton distributions in the large- $$\text{ N}_c$$ limit. Phys. Rev. C 94(4), 045202 (2016). https://doi.org/10.1103/PhysRevC.94.045202. arXiv:1606.08388 |t Phys. Rev. C |v 94 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevLett.131.021901 |1 S Diehl |9 -- missing cx lookup -- |2 Crossref |u S. Diehl et al., First Measurement of Hard Exclusive $$\pi ^{-}\Delta ^{++}$$ Electroproduction Beam-Spin Asymmetries off the Proton. Phys. Rev. Lett. 131(2), 021901 (2023). https://doi.org/10.1103/PhysRevLett.131.021901. arXiv:2303.11762 |t Phys. Rev. Lett. |v 131 |y 2023 |
999 | C | 5 | |a 10.1016/j.physletb.2023.137761 |1 S Diehl |9 -- missing cx lookup -- |2 Crossref |u S. Diehl et al., A multidimensional study of the structure function ratio $$\sigma $$LT’/$$\sigma $$0 from hard exclusive $$\pi $$+ electro-production off protons in the GPD regime. Phys. Lett. B 839, 137761 (2023). https://doi.org/10.1016/j.physletb.2023.137761. arXiv:2210.14557 |t Phys. Lett. B |v 839 |y 2023 |
999 | C | 5 | |a 10.1016/j.physletb.2024.138459 |1 A Kim |9 -- missing cx lookup -- |2 Crossref |u A. Kim et al., Beam spin asymmetry measurements of deeply virtual $$\pi $$0 production with CLAS12. Phys. Lett. B 849, 138459 (2024). https://doi.org/10.1016/j.physletb.2024.138459. arXiv:2307.07874 |t Phys. Lett. B |v 849 |y 2024 |
999 | C | 5 | |a 10.1140/epja/s10050-021-00625-2 |9 -- missing cx lookup -- |1 CA Gayoso |p 342 - |2 Crossref |u C.A. Gayoso et al., Progress and opportunities in backward angle (u-channel) physics. Eur. Phys. J. A 57(12), 342 (2021). https://doi.org/10.1140/epja/s10050-021-00625-2. arXiv:2107.06748 |t Eur. Phys. J. A |v 57 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevD.60.014010 |1 LL Frankfurt |9 -- missing cx lookup -- |2 Crossref |u L.L. Frankfurt, P.V. Pobylitsa, M.V. Polyakov, M. Strikman, Hard exclusive pseudoscalar meson electroproduction and spin structure of a nucleon. Phys. Rev. D 60, 014010 (1999). https://doi.org/10.1103/PhysRevD.60.014010. arXiv:hep-ph/9901429 |t Phys. Rev. D |v 60 |y 1999 |
999 | C | 5 | |a 10.1103/PhysRevD.71.111501 |1 B Pire |9 -- missing cx lookup -- |2 Crossref |u B. Pire, L. Szymanowski, Hadron annihilation into two photons and backward VCS in the scaling regime of QCD. Phys. Rev. D 71, 111501 (2005). https://doi.org/10.1103/PhysRevD.71.111501. arXiv:hep-ph/0411387 |t Phys. Rev. D |v 71 |y 2005 |
999 | C | 5 | |a 10.1016/j.physrep.2021.09.002 |9 -- missing cx lookup -- |1 B Pire |p 1 - |2 Crossref |u B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Transition distribution amplitudes and hard exclusive reactions with baryon number transfer. Phys. Rept. 940, 1–121 (2021). https://doi.org/10.1016/j.physrep.2021.09.002. arXiv:2103.01079 |t Phys. Rept. |v 940 |y 2021 |
999 | C | 5 | |a 10.1016/j.physletb.2018.03.026 |9 -- missing cx lookup -- |1 K Park |p 340 - |2 Crossref |u K. Park et al., Hard exclusive pion electroproduction at backward angles with CLAS. Phys. Lett. B 780, 340–345 (2018). https://doi.org/10.1016/j.physletb.2018.03.026. arXiv:1711.08486 |t Phys. Lett. B |v 780 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevLett.123.182501 |1 WB Li |9 -- missing cx lookup -- |2 Crossref |u W.B. Li et al., Unique Access to $$u$$-Channel Physics: Exclusive Backward-Angle Omega Meson Electroproduction. Phys. Rev. Lett. 123(18), 182501 (2019). https://doi.org/10.1103/PhysRevLett.123.182501. arXiv:1910.00464 |t Phys. Rev. Lett. |v 123 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevLett.125.182001 |1 S Diehl |9 -- missing cx lookup -- |2 Crossref |u S. Diehl et al., Extraction of Beam-Spin Asymmetries from the Hard Exclusive $$\pi ^+$$ Channel off Protons in a Wide Range of Kinematics. Phys. Rev. Lett. 125(18), 182001 (2020). https://doi.org/10.1103/PhysRevLett.125.182001. arXiv:2007.15677 |t Phys. Rev. Lett. |v 125 |y 2020 |
999 | C | 5 | |2 Crossref |u W. B. Li, et al., Backward-angle Exclusive pi0 Production above the Resonance Region (8 2020). arXiv:2008.10768 |
999 | C | 5 | |a 10.1103/PhysRevD.84.074014 |1 B Pire |9 -- missing cx lookup -- |2 Crossref |u B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, $$\pi $$ N transition distribution amplitudes: their symmetries and constraints from chiral dynamics. Phys. Rev. D 84, 074014 (2011). https://doi.org/10.1103/PhysRevD.84.074014 |t Phys. Rev. D |v 84 |y 2011 |
999 | C | 5 | |a 10.1016/j.nuclphysa.2006.10.014 |9 -- missing cx lookup -- |1 JP Lansberg |p 16 - |2 Crossref |u J.P. Lansberg, B. Pire, L. Szymanowski, Backward DVCS and Proton to Photon Transition Distribution Amplitudes. Nucl. Phys. A 782, 16–23 (2007). https://doi.org/10.1016/j.nuclphysa.2006.10.014. arXiv:hep-ph/0607130 |t Nucl. Phys. A |v 782 |y 2007 |
999 | C | 5 | |a 10.1140/epjc/s10052-022-10587-4 |9 -- missing cx lookup -- |1 B Pire |p 656 - |2 Crossref |u B. Pire, K.M. Semenov-Tian-Shansky, A.A. Shaikhutdinova, L. Szymanowski, Backward timelike Compton scattering to decipher the photon content of the nucleon. Eur. Phys. J. C 82(7), 656 (2022). https://doi.org/10.1140/epjc/s10052-022-10587-4. arXiv:2201.12853 |t Eur. Phys. J. C |v 82 |y 2022 |
999 | C | 5 | |a 10.1007/s43673-023-00094-3 |9 -- missing cx lookup -- |2 Crossref |u B. Pire, K. M. Semenov-Tian-Shansky, A. A. Shaikhutdinova, L. Szymanowski, Pion and photon beam initiated backward charmonium or lepton pair production (12 2022). arXiv:2212.07688 |
999 | C | 5 | |2 Crossref |u S. Adhikari, et al., Measurement of the J/$$\psi $$ photoproduction cross section over the full near-threshold kinematic region (4 2023). arXiv:2304.03845 |
999 | C | 5 | |a 10.3390/physics4020038 |9 -- missing cx lookup -- |1 P Jain |p 578 - |2 Crossref |u P. Jain, B. Pire, J.P. Ralston, The Status and Future of Color Transparency and Nuclear Filtering. MDPI Physics 4(2), 578–589 (2022). https://doi.org/10.3390/physics4020038. arXiv:2203.02579 |t MDPI Physics |v 4 |y 2022 |
999 | C | 5 | |a 10.3390/physics4020030 |9 -- missing cx lookup -- |1 GM Huber |p 451 - |2 Crossref |u G.M. Huber, W.B. Li, W. Cosyn, B. Pire, u-Channel Color Transparency Observables. MDPI Physics 4(2), 451–461 (2022). https://doi.org/10.3390/physics4020030. arXiv:2202.04470 |t MDPI Physics |v 4 |y 2022 |
999 | C | 5 | |2 Crossref |u T. Horn, G. M. Huber, P. Markowitz, et al., Studies of the L/T Separated Kaon Electroproduction Cross Sections from 5-11 GeV, jefferson Lab 12 GeV Experiment E12-09-011. https://www.jlab.org/exp_prog/proposals/09/PR12-09-011.pdf |
999 | C | 5 | |2 Crossref |u G. M. Huber, D. Gaskell, T. Horn, et al., Measurement of the Charged Pion Form Factor to High $$Q^{2}$$ and Scaling Study of the L/T-Separated Pion Electroproduction Cross Section at 11 GeV, jefferson Lab 12 GeV Experiment E12-19-006 (2019). https://www.jlab.org/exp_prog/proposals/19/E12-19-006.pdf |
999 | C | 5 | |a 10.1103/PhysRevLett.84.1398 |9 -- missing cx lookup -- |1 MK Jones |p 1398 - |2 Crossref |u M.K. Jones et al., $$g_{Ep}/g_{Mp}$$ ratio by polarization transfer in $$\vec{e} p \rightarrow e \vec{p}$$. Phys. Rev. Lett. 84, 1398–1402 (2000). https://doi.org/10.1103/PhysRevLett.84.1398. arXiv:nucl-ex/9910005 |t Phys. Rev. Lett. |v 84 |y 2000 |
999 | C | 5 | |a 10.1103/PhysRevLett.88.092301 |1 O Gayou |9 -- missing cx lookup -- |2 Crossref |u O. Gayou et al., Measurement of $$G_{Ep}/G_{Mp}$$ in $$\vec{e} p \rightarrow e \vec{p}$$ to $$Q^2 = 5.6$$-$$\text{ GeV}^2$$. Phys. Rev. Lett. 88, 092301 (2002). https://doi.org/10.1103/PhysRevLett.88.092301. arXiv:nucl-ex/0111010 |t Phys. Rev. Lett. |v 88 |y 2002 |
999 | C | 5 | |a 10.1103/PhysRevLett.104.242301 |9 -- missing cx lookup -- |2 Crossref |u A. J. R. Puckett, et al., Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to $$Q^2$$ = 8.5 $$\text{ GeV}^2$$, Phys. Rev. Lett. 104 (2010) 242301. arXiv:1005.3419, https://doi.org/10.1103/PhysRevLett.104.242301 |
999 | C | 5 | |2 Crossref |u American Physical Society 2017 Bonner Prize in Nuclear Physics Recipient Charles F. Perdrisat (College of William and Mary), https://www.aps.org/programs/honors/prizes/prizerecipient.cfm?last_nm=F&first_nm=C &year=2017[Webpage] |
999 | C | 5 | |a 10.1016/j.ppnp.2020.103835 |1 MY Barabanov |9 -- missing cx lookup -- |2 Crossref |u M.Y. Barabanov et al., Diquark correlations in hadron physics: Origin, impact and evidence. Prog. Part. Nucl. Phys. 116, 103835 (2021). https://doi.org/10.1016/j.ppnp.2020.103835. arXiv:2008.07630 |t Prog. Part. Nucl. Phys. |v 116 |y 2021 |
999 | C | 5 | |2 Crossref |u F. Gross, et al., 50 Years of Quantum Chromodynamics (12 2022). arXiv:2212.11107 |
999 | C | 5 | |2 Crossref |u B. Schmookler, A. Pierre-Louis, A. Deshpande, D. Higinbotham, E. Long, A. J. R. Puckett, High $$Q^2$$ electron-proton elastic scattering at the future Electron-Ion Collider (7 2022). arXiv:2207.04378 |
999 | C | 5 | |a 10.1103/RevModPhys.86.843 |9 -- missing cx lookup -- |1 F Englert |p 843 - |2 Crossref |u F. Englert, Nobel Lecture: The BEH Mechanism and its Scalar Boson. Rev. Mod. Phys. 86, 843 (2014) |t Rev. Mod. Phys. |v 86 |y 2014 |
999 | C | 5 | |a 10.1103/RevModPhys.86.851 |9 -- missing cx lookup -- |1 PW Higgs |p 851 - |2 Crossref |u P.W. Higgs, Nobel Lecture: Evading the Goldstone theorem. Rev. Mod. Phys. 86, 851 (2014) |t Rev. Mod. Phys. |v 86 |y 2014 |
999 | C | 5 | |a 10.1016/j.ppnp.2021.103883 |1 CD Roberts |9 -- missing cx lookup -- |2 Crossref |u C.D. Roberts, D.G. Richards, T. Horn, L. Chang, Insights into the Emergence of Mass from Studies of Pion and Kaon Structure. Prog. Part. Nucl. Phys. 120, 103883 (2021) |t Prog. Part. Nucl. Phys. |v 120 |y 2021 |
999 | C | 5 | |a 10.1007/s00601-005-0123-1 |9 -- missing cx lookup -- |1 VV Flambaum |p 31 - |2 Crossref |u V.V. Flambaum et al., Sigma Terms of Light-Quark Hadrons. Few Body Syst. 38, 31 (2006) |t Few Body Syst. |v 38 |y 2006 |
999 | C | 5 | |a 10.1103/PhysRevD.101.054007 |1 J-H Huang |9 -- missing cx lookup -- |2 Crossref |u J.-H. Huang, T.-T. Sun, H. Chen, Evaluation of pion-nucleon sigma term in Dyson-Schwinger equation approach of QCD. Phys. Rev. D 101(5), 054007 (2020). https://doi.org/10.1103/PhysRevD.101.054007. arXiv:1910.08298 |t Phys. Rev. D |v 101 |y 2020 |
999 | C | 5 | |1 J Ruiz de Elvira |y 2018 |2 Crossref |u J. Ruiz de Elvira, M. Hoferichter, B. Kubis, U.-G. Meißner, Extracting the $$\sigma $$-Term from Low-Energy Pion-Nucleon Scattering. J. Phys. G 45(2), 024001 (2018) |
999 | C | 5 | |a 10.1140/epjc/s10052-019-7354-7 |9 -- missing cx lookup -- |1 S Aoki |p 113 - |2 Crossref |u S. Aoki et al., FLAG Review 2019. Eur. Phys. J. C 80, 113 (2020) |t Eur. Phys. J. C |v 80 |y 2020 |
999 | C | 5 | |a 10.1007/s00601-022-01740-6 |9 -- missing cx lookup -- |1 D Binosi |p 42 - |2 Crossref |u D. Binosi, Emergent Hadron Mass in Strong Dynamics. Few Body Syst. 63(2), 42 (2022) |t Few Body Syst. |v 63 |y 2022 |
999 | C | 5 | |a 10.3390/particles6010017 |9 -- missing cx lookup -- |1 MN Ferreira |p 312 - |2 Crossref |u M.N. Ferreira, J. Papavassiliou, Gauge Sector Dynamics in QCD. Particles 6(1), 312 (2023) |t Particles |v 6 |y 2023 |
999 | C | 5 | |a 10.3390/particles6010004 |9 -- missing cx lookup -- |1 M Ding |p 57 - |2 Crossref |u M. Ding, C.D. Roberts, S.M. Schmidt, Emergence of Hadron Mass and Structure. Particles 6(1), 57 (2023) |t Particles |v 6 |y 2023 |
999 | C | 5 | |a 10.3390/particles6010023 |9 -- missing cx lookup -- |1 DS Carman |p 416 - |2 Crossref |u D.S. Carman, R.W. Gothe, V.I. Mokeev, C.D. Roberts, Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass. Particles 6(1), 416 (2023) |t Particles |v 6 |y 2023 |
999 | C | 5 | |a 10.1016/j.ppnp.2020.103835 |1 MY Barabanov |9 -- missing cx lookup -- |2 Crossref |u M.Y. Barabanov et al., Diquark Correlations in Hadron Physics: Origin, Impact and Evidence. Progress in Particle and Nuclear Physics 116, 103835 (2021) |t Progress in Particle and Nuclear Physics |v 116 |y 2021 |
999 | C | 5 | |a 10.1142/S0218301320300064 |9 -- missing cx lookup -- |1 SJ Brodsky |p 2030006 - |2 Crossref |u S.J. Brodsky et al., Strong QCD from Hadron Structure Experiments: Newport News, VA, USA, November 4–8, 2019. Int. J. Mod. Phys. E 29(08), 2030006 (2020) |t Int. J. Mod. Phys. E |v 29 |y 2020 |
999 | C | 5 | |a 10.1103/RevModPhys.91.011003 |1 VD Burkert |9 -- missing cx lookup -- |2 Crossref |u V.D. Burkert, C.D. Roberts, Colloquium?: Roper Resonance: Toward a Solution to the Fifty Year Puzzle. Rev. Mod. Phys. 91(1), 011003 (2019) |t Rev. Mod. Phys. |v 91 |y 2019 |
999 | C | 5 | |a 10.1140/epja/i2019-12885-0 |9 -- missing cx lookup -- |1 AC Aguilar |p 190 - |2 Crossref |u A.C. Aguilar et al., Pion and Kaon Structure at the Electron-Ion Collider. Eur. Phys. J. A 55, 190 (2019) |t Eur. Phys. J. A |v 55 |y 2019 |
999 | C | 5 | |a 10.1007/s11467-021-1062-0 |9 -- missing cx lookup -- |1 DP Anderle |p 64701 - |2 Crossref |u D.P. Anderle et al., Electron-Ion Collider in China. Front. Phys. (Beijing) 16(6), 64701 (2021) |t Front. Phys. (Beijing) |v 16 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRev.128.2425 |9 -- missing cx lookup -- |1 JS Schwinger |p 2425 - |2 Crossref |u J.S. Schwinger, Gauge Invariance and Mass. 2. Phys. Rev. 128, 2425 (1962) |t Phys. Rev. |v 128 |y 1962 |
999 | C | 5 | |a 10.1103/PhysRevD.26.1453 |9 -- missing cx lookup -- |1 JM Cornwall |p 1453 - |2 Crossref |u J.M. Cornwall, Dynamical Mass Generation in Continuum QCD. Phys. Rev. D 26, 1453 (1982) |t Phys. Rev. D |v 26 |y 1982 |
999 | C | 5 | |a 10.1016/0370-2693(87)91541-3 |9 -- missing cx lookup -- |1 J Mandula |p 127 - |2 Crossref |u J. Mandula, M. Ogilvie, The Gluon Is Massive: A Lattice Calculation of the Gluon Propagator in the Landau Gauge. Phys. Lett. B 185, 127 (1987) |t Phys. Lett. B |v 185 |y 1987 |
999 | C | 5 | |a 10.1103/PhysRevD.99.094506 |1 O Oliveira |9 -- missing cx lookup -- |2 Crossref |u O. Oliveira, P.J. Silva, J.-I. Skullerud, A. Sternbeck, Quark Propagator with Two Flavors of $$O(a)$$-Improved Wilson Fermions. Phys. Rev. D 99(9), 094506 (2019) |t Phys. Rev. D |v 99 |y 2019 |
999 | C | 5 | |1 N Suzuki |y 2010 |2 Crossref |u N. Suzuki, B. Julia-Diaz, H. Kamano, T.S.H. Lee, A. Matsuyama, T. Sato, Disentangling the Dynamical Origin of P-11 Nucleon Resonances. Phys. Rev. Lett. 104, 042302 (2010) |
999 | C | 5 | |1 MM Giannini |y 2015 |2 Crossref |u M.M. Giannini, E. Santopinto, The Hypercentral Constituent Quark Model and its Application to Baryon Properties. Chin. J. Phys. 53, 020301 (2015) |
999 | C | 5 | |1 S-X Qin |y 2020 |2 Crossref |u S.-X. Qin, C.D. Roberts, Impressions of the Continuum Bound State Problem in QCD. Chin. Phys. Lett. 37(12), 121201 (2020) |
999 | C | 5 | |1 F Gao |y 2017 |2 Crossref |u F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, P.C. Tandy, Exposing Strangeness: Projections for Kaon Electromagnetic Form Factors. Phys. Rev. D 96(3), 034024 (2017) |
999 | C | 5 | |a 10.1140/epja/i2019-12805-4 |9 -- missing cx lookup -- |1 S-S Xu |p 113 - |2 Crossref |u S.-S. Xu, Z.-F. Cui, L. Chang, J. Papavassiliou, C.D. Roberts, H.-S. Zong, New Perspective on Hybrid Mesons. Eur. Phys. J. A (Lett.) 55, 113 (2019) |t Eur. Phys. J. A (Lett.) |v 55 |y 2019 |
999 | C | 5 | |1 Q-W Wang |y 2018 |2 Crossref |u Q.-W. Wang, S.-X. Qin, C.D. Roberts, S.M. Schmidt, Proton Tensor Charges from a Poincaré-Covariant Faddeev Equation. Phys. Rev. D 98, 054019 (2018) |
999 | C | 5 | |a 10.1103/PhysRevD.98.091505 |9 -- missing cx lookup -- |1 M Chen |p 091505(R) - |2 Crossref |u M. Chen, M. Ding, L. Chang, C.D. Roberts, Mass-Dependence of Pseudoscalar Meson Elastic Form Factors. Phys. Rev. D 98, 091505(R) (2018) |t Phys. Rev. D |v 98 |y 2018 |
999 | C | 5 | |a 10.1016/j.physletb.2019.01.033 |9 -- missing cx lookup -- |1 D Binosi |p 257 - |2 Crossref |u D. Binosi, L. Chang, M. Ding, F. Gao, J. Papavassiliou, C.D. Roberts, Distribution Amplitudes of Heavy-Light Mesons. Phys. Lett. B 790, 257 (2019) |t Phys. Lett. B |v 790 |y 2019 |
999 | C | 5 | |1 C Chen |y 2019 |2 Crossref |u C. Chen, G.I. Krein, C.D. Roberts, S.M. Schmidt, J. Segovia, Spectrum and Structure of Octet and Decuplet Baryons and Their Positive-Parity Excitations. Phys. Rev. D 100, 054009 (2019) |
999 | C | 5 | |a 10.1007/s00601-019-1488-x |9 -- missing cx lookup -- |1 S-X Qin |p 26 - |2 Crossref |u S.-X. Qin, C.D. Roberts, S.M. Schmidt, Spectrum of Light- and Heavy-Baryons. Few Body Syst. 60, 26 (2019) |t Few Body Syst. |v 60 |y 2019 |
999 | C | 5 | |1 Y Lu |y 2019 |2 Crossref |u Y. Lu, C. Chen, Z.-F. Cui, C.D. Roberts, S.M. Schmidt, J. Segovia, H.S. Zong, Transition Form Factors: $$\gamma ^* + p \rightarrow \Delta (1232)$$, $$\Delta (1600)$$. Phys. Rev. D 100(3), 034001 (2019) |
999 | C | 5 | |a 10.1140/epja/s10050-020-00041-y |9 -- missing cx lookup -- |1 EV Souza |p 25 - |2 Crossref |u E.V. Souza, M. Narciso Ferreira, A.C. Aguilar, J. Papavassiliou, C.D. Roberts, S.-S. Xu, Pseudoscalar Glueball Mass: A Window on Three-Gluon Interactions. Eur. Phys. J. A (Lett.) 56, 25 (2020) |t Eur. Phys. J. A (Lett.) |v 56 |y 2020 |
999 | C | 5 | |1 K Raya |y 2022 |2 Crossref |u K. Raya, Z.-F. Cui, L. Chang, J.-M. Morgado, C.D. Roberts, J. Rodríguez-Quintero, Revealing Pion and Kaon Structure via Generalised Parton Distributions. Chin. Phys. C 46(26), 013105 (2022) |
999 | C | 5 | |a 10.1140/epja/s10050-021-00658-7 |9 -- missing cx lookup -- |1 ZF Cui |p 10 - |2 Crossref |u Z.F. Cui, M. Ding, J.M. Morgado, K. Raya, D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, Concerning Pion Parton Distributions. Eur. Phys. J. A 58(1), 10 (2022) |t Eur. Phys. J. A |v 58 |y 2022 |
999 | C | 5 | |1 L Liu |y 2023 |2 Crossref |u L. Liu, C. Chen, C.D. Roberts, Wave functions of $$(I, J^P)=(\tfrac{1}{2},\tfrac{3}{2}^{\mp })$$ baryons. Phys. Rev. D 107(1), 014002 (2023) |
999 | C | 5 | |2 Crossref |u V. D. Burkert, Nucleon Resonances and Transition Form Factors –arXiv:2212.08980 [hep-ph] (2022) |
999 | C | 5 | |a 10.1016/j.ppnp.2011.08.001 |9 -- missing cx lookup -- |1 IG Aznauryan |p 1 - |2 Crossref |u I.G. Aznauryan, V.D. Burkert, Electroexcitation of Nucleon Resonances. Prog. Part. Nucl. Phys. 67, 1–54 (2012) |t Prog. Part. Nucl. Phys. |v 67 |y 2012 |
999 | C | 5 | |a 10.1007/s00601-022-01760-2 |9 -- missing cx lookup -- |1 VI Mokeev |p 59 - |2 Crossref |u V.I. Mokeev, D.S. Carman, Photo- and Electrocouplings of Nucleon Resonances. Few Body Syst. 63(3), 59 (2022) |t Few Body Syst. |v 63 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.115.171801 |1 J Segovia |9 -- missing cx lookup -- |2 Crossref |u J. Segovia, B. El-Bennich, E. Rojas, I.C. Cloet, C.D. Roberts, S.-S. Xu, H.-S. Zong, Completing the Picture of the Roper Resonance. Phys. Rev. Lett. 115(17), 171801 (2015) |t Phys. Rev. Lett. |v 115 |y 2015 |
999 | C | 5 | |1 DJ Wilson |y 2012 |2 Crossref |u D.J. Wilson, I.C. Cloet, L. Chang, C.D. Roberts, Nucleon and Roper Electromagnetic Elastic and Transition Form Factors. Phys. Rev. C 85, 025205 (2012) |
999 | C | 5 | |1 Z-F Cui |y 2020 |2 Crossref |u Z.-F. Cui, C. Chen, D. Binosi, F. de Soto, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, J. Segovia, Nucleon Elastic Form Factors at Accessible Large Spacelike Momenta. Phys. Rev. D 102, 014043 (2020) |
999 | C | 5 | |a 10.1140/epja/s10050-022-00848-x |9 -- missing cx lookup -- |1 C Chen |p 206 - |2 Crossref |u C. Chen, C.D. Roberts, Nucleon Axial Form Factor at Large Momentum Transfers. Eur. Phys. J. A 58(10), 206 (2022) |t Eur. Phys. J. A |v 58 |y 2022 |
999 | C | 5 | |1 M Ding |y 2019 |2 Crossref |u M. Ding, K. Raya, A. Bashir, D. Binosi, L. Chang, M. Chen, C.D. Roberts, $$\gamma ^\ast \gamma \rightarrow \eta, \eta ^\prime $$ Transition Form Factors. Phys. Rev. D 99, 014014 (2019) |
999 | C | 5 | |a 10.1103/PhysRevD.84.074508 |1 RG Edwards |9 -- missing cx lookup -- |2 Crossref |u R.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Excited state baryon spectroscopy from lattice QCD. Phys. Rev. D 84, 074508 (2011). https://doi.org/10.1103/PhysRevD.84.074508. arXiv:1104.5152 |t Phys. Rev. D |v 84 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevD.85.054016 |1 JJ Dudek |9 -- missing cx lookup -- |2 Crossref |u J.J. Dudek, R.G. Edwards, Hybrid Baryons in QCD. Phys. Rev. D 85, 054016 (2012). https://doi.org/10.1103/PhysRevD.85.054016. arXiv:1201.2349 |t Phys. Rev. D |v 85 |y 2012 |
999 | C | 5 | |a 10.1103/PhysRevD.101.054511 |1 M Sun |9 -- missing cx lookup -- |2 Crossref |u M. Sun et al., Roper State from Overlap Fermions. Phys. Rev. D 101(5), 054511 (2020). https://doi.org/10.1103/PhysRevD.101.054511. arXiv:1911.02635 |t Phys. Rev. D |v 101 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevD.108.094519 |1 CD Abell |9 -- missing cx lookup -- |2 Crossref |u C.D. Abell, D.B. Leinweber, Z.-W. Liu, A.W. Thomas, J.-J. Wu, Low-lying odd-parity nucleon resonances as quark-model-like states. Phys. Rev. D 108(9), 094519 (2023). https://doi.org/10.1103/PhysRevD.108.094519. arXiv:2306.00337 |t Phys. Rev. D |v 108 |y 2023 |
999 | C | 5 | |a 10.1103/PhysRevD.78.114508 |1 H-W Lin |9 -- missing cx lookup -- |2 Crossref |u H.-W. Lin, S.D. Cohen, R.G. Edwards, D.G. Richards, First Lattice Study of the N - P(11)(1440) Transition Form Factors. Phys. Rev. D 78, 114508 (2008). https://doi.org/10.1103/PhysRevD.78.114508. arXiv:0803.3020 |t Phys. Rev. D |v 78 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevC.68.014313 |1 KS Egiyan |9 -- missing cx lookup -- |2 Crossref |u K.S. Egiyan et al., Observation of nuclear scaling in the $$a(e, e^{^{\prime }})$$ reaction at $${x}_{B}{>}1$$. Phys. Rev. C 68, 014313 (2003). https://doi.org/10.1103/PhysRevC.68.014313 |t Phys. Rev. C |v 68 |y 2003 |
999 | C | 5 | |a 10.1103/PhysRevLett.96.082501 |1 KS Egiyan |9 -- missing cx lookup -- |2 Crossref |u K.S. Egiyan et al., Measurement of two- and three-nucleon short-range correlation probabilities in nuclei. Phys. Rev. Lett. 96, 082501 (2006). https://doi.org/10.1103/PhysRevLett.96.082501 |t Phys. Rev. Lett. |v 96 |y 2006 |
999 | C | 5 | |a 10.1103/PhysRevLett.108.092502 |1 N Fomin |9 -- missing cx lookup -- |2 Crossref |u N. Fomin et al., New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei. Phys. Rev. Lett. 108, 092502 (2012). https://doi.org/10.1103/PhysRevLett.108.092502 |t Phys. Rev. Lett. |v 108 |y 2012 |
999 | C | 5 | |a 10.1103/PhysRevC.48.2451 |9 -- missing cx lookup -- |1 LL Frankfurt |p 2451 - |2 Crossref |u L.L. Frankfurt, M.I. Strikman, D.B. Day, M. Sargsian, Evidence for short range correlations from high Q**2 (e, e-prime) reactions. Phys. Rev. C 48, 2451–2461 (1993). https://doi.org/10.1103/PhysRevC.48.2451 |t Phys. Rev. C |v 48 |y 1993 |
999 | C | 5 | |a 10.1142/s0217751x08041207 |9 -- missing cx lookup -- |1 L Frankfurt |p 2991 - |2 Crossref |u L. Frankfurt, M. Sargsian, M. Strikman, Recent observation of short range nucleon correlations in nuclei and their implications for the structure of nuclei and neutron stars. Int. J. Mod. Phys. A 23(20), 2991–3055 (2008). https://doi.org/10.1142/s0217751x08041207 |t Int. J. Mod. Phys. A |v 23 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevLett.97.162504 |1 E Piasetzky |9 -- missing cx lookup -- |2 Crossref |u E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, J.W. Watson, Evidence for strong dominance of proton-neutron correlations in nuclei. Phys. Rev. Lett. 97, 162504 (2006). https://doi.org/10.1103/PhysRevLett.97.162504 |t Phys. Rev. Lett. |v 97 |y 2006 |
999 | C | 5 | |a 10.1126/science.1156675 |9 -- missing cx lookup -- |2 Crossref |u R. Subedi et al., Probing cold dense nuclear matter. Science 320(5882), 1476–1478 (2008). https://doi.org/10.1126/science.1156675https://science.sciencemag.org/content/320/5882/1476.full.pdf |
999 | C | 5 | |a 10.1103/PhysRevLett.122.172502 |1 M Duer |9 -- missing cx lookup -- |2 Crossref |u M. Duer et al., Direct Observation of Proton-Neutron Short-Range Correlation Dominance in Heavy Nuclei. Phys. Rev. Lett. 122, 172502 (2019). https://doi.org/10.1103/PhysRevLett.122.172502 |t Phys. Rev. Lett. |v 122 |y 2019 |
999 | C | 5 | |a 10.1103/physrevc.71.044615 |9 -- missing cx lookup -- |2 Crossref |u M. Sargsian, T. Abrahamyan, M. Strikman, L. Frankfurt, Exclusive electrodisintegration of $$^{3}{\rm He}$$ at high $${Q}^{2}$$. ii. decay function formalism, Phys. Rev. C 71 (4) (2005). https://doi.org/10.1103/physrevc.71.044615 |
999 | C | 5 | |a 10.1103/PhysRevLett.98.132501 |1 R Schiavilla |9 -- missing cx lookup -- |2 Crossref |u R. Schiavilla, R.B. Wiringa, S.C. Pieper, J. Carlson, Tensor Forces and the Ground-State Structure of Nuclei. Phys. Rev. Lett. 98, 132501 (2007). https://doi.org/10.1103/PhysRevLett.98.132501. arXiv:nucl-th/0611037 |t Phys. Rev. Lett. |v 98 |y 2007 |
999 | C | 5 | |a 10.1103/PhysRevC.89.034305 |1 MM Sargsian |9 -- missing cx lookup -- |2 Crossref |u M.M. Sargsian, New properties of the high-momentum distribution of nucleons in asymmetric nuclei. Phys. Rev. C 89(3), 034305 (2014). https://doi.org/10.1103/PhysRevC.89.034305. arXiv:1210.3280 |t Phys. Rev. C |v 89 |y 2014 |
999 | C | 5 | |a 10.1126/science.1256785 |9 -- missing cx lookup -- |2 Crossref |u O. Hen, et al., Momentum sharing in imbalanced fermi systems, Science 346 (6209) (2014) 614–617. https://doi.org/10.1126/science.1256785arXiv:https://science.sciencemag.org/content/346/6209/614.full.pdf |
999 | C | 5 | |a 10.1038/s41586-018-0400-z |9 -- missing cx lookup -- |1 M Duer |p 617 - |2 Crossref |u M. Duer et al., Probing the high-momentum protons and neutrons in neutron-rich nuclei. Nature 560, 617–621 (2018). https://doi.org/10.1038/s41586-018-0400-z |t Nature |v 560 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRev.81.165 |9 -- missing cx lookup -- |1 R Jastrow |p 165 - |2 Crossref |u R. Jastrow, On the nucleon-nucleon interaction. Phys. Rev. 81, 165–170 (1951). https://doi.org/10.1103/PhysRev.81.165 |t Phys. Rev. |v 81 |y 1951 |
999 | C | 5 | |a 10.1103/PhysRevC.51.38 |9 -- missing cx lookup -- |1 RB Wiringa |p 38 - |2 Crossref |u R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, An Accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 51, 38–51 (1995). https://doi.org/10.1103/PhysRevC.51.38. arXiv:nucl-th/9408016 |t Phys. Rev. C |v 51 |y 1995 |
999 | C | 5 | |a 10.1103/RevModPhys.81.1773 |9 -- missing cx lookup -- |1 E Epelbaum |p 1773 - |2 Crossref |u E. Epelbaum, H.-W. Hammer, U.-G. Meissner, Modern Theory of Nuclear Forces. Rev. Mod. Phys. 81, 1773–1825 (2009). https://doi.org/10.1103/RevModPhys.81.1773. arXiv:0811.1338 |t Rev. Mod. Phys. |v 81 |y 2009 |
999 | C | 5 | |a 10.1016/0375-9474(81)90413-9 |9 -- missing cx lookup -- |1 M Harvey |p 326 - |2 Crossref |u M. Harvey, Effective nuclear forces in the quark model with delta and hidden-color channel coupling. Nucl. Phys. A 352(3), 326–342 (1981). https://doi.org/10.1016/0375-9474(81)90413-9 |t Nucl. Phys. A |v 352 |y 1981 |
999 | C | 5 | |a 10.1103/PhysRevD.34.1460 |9 -- missing cx lookup -- |1 C Ji |p 1460 - |2 Crossref |u C. Ji, S. Brodsky, Quantum-chromodynamic evolution of six-quark states. Phys. Rev. D 34, 1460–1473 (1986). https://doi.org/10.1103/PhysRevD.34.1460 |t Phys. Rev. D |v 34 |y 1986 |
999 | C | 5 | |a 10.1016/0370-1573(81)90129-0 |9 -- missing cx lookup -- |1 L Frankfurt |p 215 - |2 Crossref |u L. Frankfurt, M. Strikman, High-energy phenomena, short-range nuclear structure and QCD. Phys. Rept. 76(4), 215–347 (1981). https://doi.org/10.1016/0370-1573(81)90129-0 |t Phys. Rept. |v 76 |y 1981 |
999 | C | 5 | |a 10.1103/PhysRevC.89.045203 |1 G Miller |9 -- missing cx lookup -- |2 Crossref |u G. Miller, Pionic and hidden-color, six-quark contributions to the deuteron $${b}_{1}$$ structure function. Phys. Rev. C 89, 045203 (2014). https://doi.org/10.1103/PhysRevC.89.045203 |t Phys. Rev. C |v 89 |y 2014 |
999 | C | 5 | |a 10.1016/j.nuclphysa.2022.122563 |1 J Rittenhouse |9 -- missing cx lookup -- |2 Crossref |u J. Rittenhouse, West, Diquark induced short-range nucleon-nucleon correlations & the EMC effect. Nucl. Phys. A 1029, 122563 (2023). https://doi.org/10.1016/j.nuclphysa.2022.122563. arXiv:2009.06968 |t Nucl. Phys. A |v 1029 |y 2023 |
999 | C | 5 | |a 10.1016/j.nuclphysa.2020.122134 |1 J Rittenhouse West |9 -- missing cx lookup -- |2 Crossref |u J. Rittenhouse West, S.J. Brodsky, G.F. de Teramond, A.S. Goldhaber, I. Schmidt, QCD hidden-color hexadiquark in the core of nuclei. Nucl. Phys. A 1007, 122134 (2021). https://doi.org/10.1016/j.nuclphysa.2020.122134. arXiv:2004.14659 |t Nucl. Phys. A |v 1007 |y 2021 |
999 | C | 5 | |a 10.1016/0370-1573(88)90179-2 |9 -- missing cx lookup -- |1 L Frankfurt |p 235 - |2 Crossref |u L. Frankfurt, M. Strikman, Hard nuclear processes and microscopic nuclear structure. Phys. Rept. 160(5), 235–427 (1988). https://doi.org/10.1016/0370-1573(88)90179-2 |t Phys. Rept. |v 160 |y 1988 |
999 | C | 5 | |a 10.1016/j.nuclphysa.2006.10.057 |9 -- missing cx lookup -- |1 MM Sargsian |p 199 - |2 Crossref |u M.M. Sargsian, Superfast quarks in the nuclear medium. Nucl. Phys. A 782, 199–206 (2007). https://doi.org/10.1016/j.nuclphysa.2006.10.057 |t Nucl. Phys. A |v 782 |y 2007 |
999 | C | 5 | |a 10.1140/epjc/s10052-015-3755-4 |9 -- missing cx lookup -- |2 Crossref |u A. Freese, M. Sargsian, M. Strikman, Probing superfast quarks in nuclei through dijet production at the LHC, Eur. Phys. J. C 75 (11) (nov 2015). https://doi.org/10.1140/epjc/s10052-015-3755-4 |
999 | C | 5 | |a 10.1103/PhysRevD.99.114019 |1 A Freese |9 -- missing cx lookup -- |2 Crossref |u A. Freese, W. Cosyn, M. Sargsian, QCD evolution of superfast quarks. Phys. Rev. D 99, 114019 (2019). https://doi.org/10.1103/PhysRevD.99.114019 |t Phys. Rev. D |v 99 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevLett.105.212502 |1 N Fomin |9 -- missing cx lookup -- |2 Crossref |u N. Fomin et al., Scaling of the $${F}_{2}$$ structure function in nuclei and quark distributions at $$x {>} 1$$. Phys. Rev. Lett. 105, 212502 (2010). https://doi.org/10.1103/PhysRevLett.105.212502 |t Phys. Rev. Lett. |v 105 |y 2010 |
999 | C | 5 | |2 Crossref |u J. Arrington, D. Day, N. Fomin, P. Solvignon, E12-06-105: Inclusive Scattering from Nuclei at $$x {>} 1$$ in the quasielastic and deeply inelastic regimes (2006). https://www.jlab.org/exp_prog/proposals/06/PR12-06-105.pdf |
999 | C | 5 | |a 10.1103/PhysRevLett.125.262501 |1 C Yero |9 -- missing cx lookup -- |2 Crossref |u C. Yero et al., Probing the deuteron at very large internal momenta. Phys. Rev. Lett. 125, 262501 (2020). https://doi.org/10.1103/PhysRevLett.125.262501 |t Phys. Rev. Lett. |v 125 |y 2020 |
999 | C | 5 | |a 10.1103/physrevc.100.044320 |9 -- missing cx lookup -- |2 Crossref |u M. Sargsian, D. Day, L. Frankfurt, M. Strikman, Searching for three-nucleon short-range correlations, Phys. Rev. C 100 (4) (2019). https://doi.org/10.1103/physrevc.100.044320 |
999 | C | 5 | |a 10.1103/PhysRevC.107.014319 |1 D Day |9 -- missing cx lookup -- |2 Crossref |u D. Day, L. Frankfurt, M. Sargsian, M. Strikman, Toward observation of three-nucleon short-range correlations in high-$${Q}^{2} a(e,{e}^{^{\prime }})x$$ reactions. Phys. Rev. C 107, 014319 (2023). https://doi.org/10.1103/PhysRevC.107.014319 |t Phys. Rev. C |v 107 |y 2023 |
999 | C | 5 | |a 10.1016/j.physrep.2015.06.002 |9 -- missing cx lookup -- |1 C. Ciofi degli Atti |p 1 - |2 Crossref |u C. Ciofi degli. Atti, In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances. Phys. Rept. 590, 1–85 (2015). https://doi.org/10.1016/j.physrep.2015.06.002 |t Phys. Rept. |v 590 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevC.92.024003 |1 T Neff |9 -- missing cx lookup -- |2 Crossref |u T. Neff, H. Feldmeier, W. Horiuchi, Short-range correlations in nuclei with similarity renormalization group transformations. Phys. Rev. C 92(2), 024003 (2015). https://doi.org/10.1103/PhysRevC.92.024003. arXiv:1506.02237 |t Phys. Rev. C |v 92 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevC.104.034311 |1 AJ Tropiano |9 -- missing cx lookup -- |2 Crossref |u A.J. Tropiano, S.K. Bogner, R.J. Furnstahl, Short-range correlation physics at low renormalization group resolution. Phys. Rev. C 104(3), 034311 (2021). https://doi.org/10.1103/PhysRevC.104.034311. arXiv:2105.13936 |t Phys. Rev. C |v 104 |y 2021 |
999 | C | 5 | |a 10.1007/s00601-021-01658-5 |9 -- missing cx lookup -- |1 RJ Furnstahl |p 72 - |2 Crossref |u R.J. Furnstahl, H.W. Hammer, A. Schwenk, Nuclear Structure at the Crossroads. Few Body Syst. 62(3), 72 (2021). https://doi.org/10.1007/s00601-021-01658-5. arXiv:2107.00413 |t Few Body Syst. |v 62 |y 2021 |
999 | C | 5 | |a 10.1016/0370-2693(83)90437-9 |9 -- missing cx lookup -- |1 JJ Aubert |p 275 - |2 Crossref |u J.J. Aubert et al., The ratio of the nucleon structure functions $$F2_n$$ for iron and deuterium. Phys. Lett. B 123, 275–278 (1983). https://doi.org/10.1016/0370-2693(83)90437-9 |t Phys. Lett. B |v 123 |y 1983 |
999 | C | 5 | |a 10.1103/PhysRevLett.103.202301 |1 J Seely |9 -- missing cx lookup -- |2 Crossref |u J. Seely et al., New measurements of the EMC effect in very light nuclei. Phys. Rev. Lett. 103, 202301 (2009). https://doi.org/10.1103/PhysRevLett.103.202301. arXiv:0904.4448 |t Phys. Rev. Lett. |v 103 |y 2009 |
999 | C | 5 | |a 10.1103/PhysRevLett.106.052301 |1 LB Weinstein |9 -- missing cx lookup -- |2 Crossref |u L.B. Weinstein, E. Piasetzky, D.W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Short Range Correlations and the EMC Effect. Phys. Rev. Lett. 106, 052301 (2011). https://doi.org/10.1103/PhysRevLett.106.052301. arXiv:1009.5666 |t Phys. Rev. Lett. |v 106 |y 2011 |
999 | C | 5 | |a 10.1038/s41586-019-0925-9 |9 -- missing cx lookup -- |1 B Schmookler |p 354 - |2 Crossref |u B. Schmookler et al., Modified structure of protons and neutrons in correlated pairs. Nature 566(7744), 354–358 (2019). https://doi.org/10.1038/s41586-019-0925-9. arXiv:2004.12065 |t Nature |v 566 |y 2019 |
999 | C | 5 | |a 10.1016/j.physrep.2015.05.001 |9 -- missing cx lookup -- |1 SJ Brodsky |p 1 - |2 Crossref |u S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-Front Holographic QCD and Emerging Confinement. Phys. Rept. 584, 1–105 (2015). https://doi.org/10.1016/j.physrep.2015.05.001. arXiv:1407.8131 |t Phys. Rept. |v 584 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevC.106.055202 |1 DN Kim |9 -- missing cx lookup -- |2 Crossref |u D.N. Kim, G.A. Miller, Light-front holography model of the EMC effect. Phys. Rev. C 106(5), 055202 (2022). https://doi.org/10.1103/PhysRevC.106.055202. arXiv:2209.13753 |t Phys. Rev. C |v 106 |y 2022 |
999 | C | 5 | |a 10.1016/j.physrep.2011.12.002 |9 -- missing cx lookup -- |1 L Frankfurt |p 255 - |2 Crossref |u L. Frankfurt, V. Guzey, M. Strikman, Leading Twist Nuclear Shadowing Phenomena in Hard Processes with Nuclei. Phys. Rept. 512, 255–393 (2012). https://doi.org/10.1016/j.physrep.2011.12.002. arXiv:1106.2091 |t Phys. Rept. |v 512 |y 2012 |
999 | C | 5 | |a 10.1103/PhysRevC.64.022201 |1 GA Miller |9 -- missing cx lookup -- |2 Crossref |u G.A. Miller, Revealing nuclear pions using electron scattering. Phys. Rev. C 64, 022201 (2001). https://doi.org/10.1103/PhysRevC.64.022201. arXiv:nucl-th/0104025 |t Phys. Rev. C |v 64 |y 2001 |
999 | C | 5 | |a 10.1103/PhysRevLett.64.2479 |9 -- missing cx lookup -- |1 DM Alde |p 2479 - |2 Crossref |u D.M. Alde et al., Nuclear dependence of dimuon production at 800-GeV. FNAL-772 experiment. Phys. Rev. Lett. 64, 2479–2482 (1990). https://doi.org/10.1103/PhysRevLett.64.2479 |t Phys. Rev. Lett. |v 64 |y 1990 |
999 | C | 5 | |a 10.1016/j.physletb.2023.137935 |9 -- missing cx lookup -- |2 Crossref |u M. Alvioli, M. Strikman, Hunting for an EMC-like effect for antiquarks (10 2022). arXiv:2210.12597 |
999 | C | 5 | |a 10.1140/epjc/s10052-017-4906-6 |9 -- missing cx lookup -- |1 P Kotko |p 353 - |2 Crossref |u P. Kotko, K. Kutak, S. Sapeta, A.M. Stasto, M. Strikman, Estimating nonlinear effects in forward dijet production in ultra-peripheral heavy ion collisions at the LHC. Eur. Phys. J. C 77(5), 353 (2017). https://doi.org/10.1140/epjc/s10052-017-4906-6. arXiv:1702.03063 |t Eur. Phys. J. C |v 77 |y 2017 |
999 | C | 5 | |a 10.1146/annurev.ns.44.120194.002441 |9 -- missing cx lookup -- |1 LL Frankfurt |p 501 - |2 Crossref |u L.L. Frankfurt, G.A. Miller, M. Strikman, The Geometrical color optics of coherent high-energy processes. Ann. Rev. Nucl. Part. Sci. 44, 501–560 (1994). https://doi.org/10.1146/annurev.ns.44.120194.002441. arXiv:hep-ph/9407274 |t Ann. Rev. Nucl. Part. Sci. |v 44 |y 1994 |
999 | C | 5 | |a 10.1103/PhysRevLett.86.4773 |9 -- missing cx lookup -- |1 EM Aitala |p 4773 - |2 Crossref |u E.M. Aitala et al., Observation of color transparency in diffractive dissociation of pions. Phys. Rev. Lett. 86, 4773–4777 (2001). https://doi.org/10.1103/PhysRevLett.86.4773. arXiv:hep-ex/0010044 |t Phys. Rev. Lett. |v 86 |y 2001 |
999 | C | 5 | |a 10.1103/PhysRevLett.99.242502 |1 B Clasie |9 -- missing cx lookup -- |2 Crossref |u B. Clasie et al., Measurement of nuclear transparency for the A(e, e-prime’ pi+) reaction. Phys. Rev. Lett. 99, 242502 (2007). https://doi.org/10.1103/PhysRevLett.99.242502. arXiv:0707.1481 |t Phys. Rev. Lett. |v 99 |y 2007 |
999 | C | 5 | |a 10.1016/j.physletb.2012.05.019 |9 -- missing cx lookup -- |1 L El Fassi |p 326 - |2 Crossref |u L. El Fassi et al., Evidence for the onset of color transparency in $$\rho ^0$$ electroproduction off nuclei. Phys. Lett. B 712, 326–330 (2012). https://doi.org/10.1016/j.physletb.2012.05.019. arXiv:1201.2735 |t Phys. Lett. B |v 712 |y 2012 |
999 | C | 5 | |a 10.3390/physics4030064 |9 -- missing cx lookup -- |1 L El Fassi |p 970 - |2 Crossref |u L. El Fassi, Chasing QCD Signatures in Nuclei Using Color Coherence Phenomena. Physics 4(3), 970–980 (2022). https://doi.org/10.3390/physics4030064 |t Physics |v 4 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.126.082301 |1 D Bhetuwal |9 -- missing cx lookup -- |2 Crossref |u D. Bhetuwal et al., Ruling out Color Transparency in Quasielastic $$^{12}$$C(e, e’p) up to $$Q^2$$ of 14.2 (GeV/c)$$^2$$. Phys. Rev. Lett. 126(8), 082301 (2021). https://doi.org/10.1103/PhysRevLett.126.082301. arXiv:2011.00703 |t Phys. Rev. Lett. |v 126 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevC.104.L012201 |9 -- missing cx lookup -- |1 O Caplow-Munro |p L012201 - |2 Crossref |u O. Caplow-Munro, G.A. Miller, Color transparency and the proton form factor: Evidence for the Feynman mechanism. Phys. Rev. C 104(1), L012201 (2021). https://doi.org/10.1103/PhysRevC.104.L012201. arXiv:2104.11168 |t Phys. Rev. C |v 104 |y 2021 |
999 | C | 5 | |a 10.1016/0375-9474(94)90903-2 |9 -- missing cx lookup -- |1 K Egiian |p 365 - |2 Crossref |u K. Egiian, L. Frankfurt, W.R. Greenberg, G.A. Miller, M. Sargsian, M. Strikman, Searching for color coherent effects at intermediate Q**2 via double scattering processes. Nucl. Phys. A 580, 365–382 (1994). https://doi.org/10.1016/0375-9474(94)90903-2. arXiv:nucl-th/9401002 |t Nucl. Phys. A |v 580 |y 1994 |
999 | C | 5 | |a 10.1007/BF01292764 |9 -- missing cx lookup -- |1 LL Frankfurt |p 97 - |2 Crossref |u L.L. Frankfurt, W.R. Greenberg, G.A. Miller, M.M. Sargsian, M.I. Strikman, Color transparency effects in electron deuteron interactions at intermediate Q**2. Z. Phys. A 352, 97–113 (1995). https://doi.org/10.1007/BF01292764. arXiv:nucl-th/9501009 |t Z. Phys. A |v 352 |y 1995 |
999 | C | 5 | |a 10.1016/0370-2693(95)01558-2 |9 -- missing cx lookup -- |1 LL Frankfurt |p 201 - |2 Crossref |u L.L. Frankfurt, W.R. Greenberg, G.A. Miller, M.M. Sargsian, M.I. Strikman, Color transparency and the vanishing deuterium shadow. Phys. Lett. B 369, 201–206 (1996). https://doi.org/10.1016/0370-2693(95)01558-2. arXiv:nucl-th/9412033 |t Phys. Lett. B |v 369 |y 1996 |
999 | C | 5 | |a 10.1103/PhysRevLett.30.1343 |9 -- missing cx lookup -- |1 DJ Gross |p 1343 - |2 Crossref |u D.J. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973). https://doi.org/10.1103/PhysRevLett.30.1343 |t Phys. Rev. Lett. |v 30 |y 1973 |
999 | C | 5 | |a 10.1007/978-94-010-0267-7_1 |9 -- missing cx lookup -- |2 Crossref |u Y. L. Dokshitzer, QCD phenomenology, 2003, pp. 1–33. arXiv:hep-ph/0306287 |
999 | C | 5 | |a 10.1088/0031-8949/19/2/015 |9 -- missing cx lookup -- |1 B Andersson |p 184 - |2 Crossref |u B. Andersson, G. Gustafson, C. Peterson, Quark Jet Fragmentation. Phys. Scripta 19, 184–190 (1979). https://doi.org/10.1088/0031-8949/19/2/015 |t Phys. Scripta |v 19 |y 1979 |
999 | C | 5 | |a 10.1016/0370-1573(83)90080-7 |9 -- missing cx lookup -- |1 B Andersson |p 31 - |2 Crossref |u B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Parton Fragmentation and String Dynamics. Phys. Rept. 97, 31–145 (1983). https://doi.org/10.1016/0370-1573(83)90080-7 |t Phys. Rept. |v 97 |y 1983 |
999 | C | 5 | |a 10.1103/PhysRevLett.40.1624 |9 -- missing cx lookup -- |1 LS Osborne |p 1624 - |2 Crossref |u L.S. Osborne, C. Bolon, R.L. Lanza, D. Luckey, D.G. Roth, J.F. Martin, G.J. Feldman, M.E.B. Franklin, G. Hanson, M.L. Perl, Electroproduction of Hadrons From Nuclei. Phys. Rev. Lett. 40, 1624 (1978). https://doi.org/10.1103/PhysRevLett.40.1624 |t Phys. Rev. Lett. |v 40 |y 1978 |
999 | C | 5 | |a 10.1007/BF01412322 |9 -- missing cx lookup -- |1 J Ashman |p 1 - |2 Crossref |u J. Ashman et al., Comparison of forward hadrons produced in muon interactions on nuclear targets and deuterium. Z. Phys. C 52, 1–12 (1991). https://doi.org/10.1007/BF01412322 |t Z. Phys. C |v 52 |y 1991 |
999 | C | 5 | |a 10.1016/0550-3213(84)90045-2 |9 -- missing cx lookup -- |1 A Arvidson |p 381 - |2 Crossref |u A. Arvidson et al., Hadron production in 200-GeV $$\mu $$ - copper and $$\mu $$ - carbon deep inelastic interactions. Nucl. Phys. B 246, 381–407 (1984). https://doi.org/10.1016/0550-3213(84)90045-2 |t Nucl. Phys. B |v 246 |y 1984 |
999 | C | 5 | |a 10.1016/0550-3213(74)90360-5 |9 -- missing cx lookup -- |1 X Artru |p 93 - |2 Crossref |u X. Artru, G. Mennessier, String model and multiproduction. Nucl. Phys. B 70, 93–115 (1974). https://doi.org/10.1016/0550-3213(74)90360-5 |t Nucl. Phys. B |v 70 |y 1974 |
999 | C | 5 | |a 10.1016/0370-2693(78)90370-2 |9 -- missing cx lookup -- |1 EV Shuryak |p 150 - |2 Crossref |u E.V. Shuryak, Quark-Gluon Plasma and Hadronic Production of Leptons. Photons and Psions. Phys. Lett. B 78, 150 (1978). https://doi.org/10.1016/0370-2693(78)90370-2 |t Photons and Psions. Phys. Lett. B |v 78 |y 1978 |
999 | C | 5 | |a 10.1016/j.physletb.2003.11.011 |9 -- missing cx lookup -- |1 X-N Wang |p 299 - |2 Crossref |u X.-N. Wang, Why the observed jet quenching at RHIC is due to parton energy loss. Phys. Lett. B 579, 299–308 (2004). https://doi.org/10.1016/j.physletb.2003.11.011 |t Phys. Lett. B |v 579 |y 2004 |
999 | C | 5 | |a 10.1016/j.nuclphysa.2004.04.110 |9 -- missing cx lookup -- |1 BZ Kopeliovich |p 211 - |2 Crossref |u B.Z. Kopeliovich, J. Nemchik, E. Predazzi, A. Hayashigaki, Nuclear hadronization: Within or without? Nucl. Phys. A 740, 211–245 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.110 |t Nucl. Phys. A |v 740 |y 2004 |
999 | C | 5 | |a 10.1016/j.physletb.2021.136171 |1 WK Brooks |9 -- missing cx lookup -- |2 Crossref |u W.K. Brooks, J.A. López, Estimating the color lifetime of energetic quarks. Phys. Lett. B 816, 136171 (2021). https://doi.org/10.1016/j.physletb.2021.136171 |t Phys. Lett. B |v 816 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevLett.60.1924 |9 -- missing cx lookup -- |1 SJ Brodsky |p 1924 - |2 Crossref |u S.J. Brodsky, G.F. de Teramond, Spin Correlations, QCD Color Transparency and Heavy Quark Thresholds in Proton Proton Scattering. Phys. Rev. Lett. 60, 1924 (1988). https://doi.org/10.1103/PhysRevLett.60.1924 |t Phys. Rev. Lett. |v 60 |y 1988 |
999 | C | 5 | |a 10.1088/0954-3899/29/3/201 |9 -- missing cx lookup -- |1 M Sargsian |p R1 - |2 Crossref |u M. Sargsian et al., Hadrons in the nuclear medium. J. Phys. G: Nucl. Part. Phys. 29(3), R1–R45 (2003). https://doi.org/10.1088/0954-3899/29/3/201 |t J. Phys. G: Nucl. Part. Phys. |v 29 |y 2003 |
999 | C | 5 | |a 10.1016/0375-9474(93)90504-Q |9 -- missing cx lookup -- |1 L Frankfurt |p 752 - |2 Crossref |u L. Frankfurt, G.A. Miller, M. Strikman, Precocious dominance of point - like configurations in hadronic form-factors. Nucl. Phys. A 555, 752–764 (1993). https://doi.org/10.1016/0375-9474(93)90504-Q |t Nucl. Phys. A |v 555 |y 1993 |
999 | C | 5 | |a 10.1016/j.ppnp.2012.04.002 |9 -- missing cx lookup -- |1 J Arrington |p 898 - |2 Crossref |u J. Arrington, D. Higinbotham, G. Rosner, M. Sargsian, Hard probes of short-range nucleon-nucleon correlations. Prog. Part. Nucl. Phys. 67(4), 898–938 (2012). https://doi.org/10.1016/j.ppnp.2012.04.002 |t Prog. Part. Nucl. Phys. |v 67 |y 2012 |
999 | C | 5 | |a 10.1146/annurev-nucl-102020-022253 |9 -- missing cx lookup -- |2 Crossref |u J. Arrington, N. Fomin, A. Schmidt, Progress in understanding short-range structure in nuclei: an experimental perspective, Ann. Rev. Nucl. Part. Sci. (2022) 307 arXiv:2203.02608 |
999 | C | 5 | |a 10.1556/APH.21.2004.2-4.30 |9 -- missing cx lookup -- |1 J Arrington |p 295 - |2 Crossref |u J. Arrington, Do ordinary nuclei contain exotic states of matter? Acta Phys. Hung. A 21, 295 (2004). https://doi.org/10.1556/APH.21.2004.2-4.30. arXiv:hep-ph/0304213 |t Acta Phys. Hung. A |v 21 |y 2004 |
999 | C | 5 | |a 10.1103/PhysRevLett.52.1199 |9 -- missing cx lookup -- |1 PJ Mulders |p 1199 - |2 Crossref |u P.J. Mulders, A.W. Thomas, The ‘Six Quark’ Component in the Deuteron From a Comparison of Electron and Neutrino / Anti-neutrinos Structure Functions. Phys. Rev. Lett. 52, 1199 (1984). https://doi.org/10.1103/PhysRevLett.52.1199 |t Phys. Rev. Lett. |v 52 |y 1984 |
999 | C | 5 | |a 10.1103/RevModPhys.89.045002 |1 O Hen |9 -- missing cx lookup -- |2 Crossref |u O. Hen, G. Miller, E. Piasetzky, L. Weinstein, Nucleon-Nucleon Correlations, Short-lived Excitations, and the Quarks Within. Rev. Mod. Phys. 89(4), 045002 (2017). https://doi.org/10.1103/RevModPhys.89.045002 |t Rev. Mod. Phys. |v 89 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevLett.85.1186 |9 -- missing cx lookup -- |1 I Niculescu |p 1186 - |2 Crossref |u I. Niculescu et al., Experimental verification of quark hadron duality. Phys. Rev. Lett. 85, 1186–1189 (2000). https://doi.org/10.1103/PhysRevLett.85.1186 |t Phys. Rev. Lett. |v 85 |y 2000 |
999 | C | 5 | |a 10.1103/PhysRevC.91.055206 |1 I Niculescu |9 -- missing cx lookup -- |2 Crossref |u I. Niculescu et al., Direct observation of quark-hadron duality in the free neutron $$F_2$$ structure function. Phys. Rev. C 91(5), 055206 (2015). https://doi.org/10.1103/PhysRevC.91.055206. arXiv:1501.02203 |t Phys. Rev. C |v 91 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevC.73.035205 |1 J Arrington |9 -- missing cx lookup -- |2 Crossref |u J. Arrington, R. Ent, C.E. Keppel, J. Mammei, I. Niculescu, Low Q scaling, duality, and the EMC effect. Phys. Rev. C 73, 035205 (2006). https://doi.org/10.1103/PhysRevC.73.035205. arXiv:nucl-ex/0307012 |t Phys. Rev. C |v 73 |y 2006 |
999 | C | 5 | |a 10.1142/S0218301315300039 |9 -- missing cx lookup -- |1 W Boeglin |p 1530003 - |2 Crossref |u W. Boeglin, M. Sargsian, Modern Studies of the Deuteron: from the Lab Frame to the Light Front. Int. J. Mod. Phys. E 24(03), 1530003 (2015). https://doi.org/10.1142/S0218301315300039. arXiv:1501.05377 |t Int. J. Mod. Phys. E |v 24 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevLett.107.262501 |1 WU Boeglin |9 -- missing cx lookup -- |2 Crossref |u W.U. Boeglin et al., Probing the high momentum component of the deuteron at high $${Q}^{2}$$. Phys. Rev. Lett. 107, 262501 (2011). https://doi.org/10.1103/PhysRevLett.107.262501 |t Phys. Rev. Lett. |v 107 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevC.82.014612 |1 MM Sargsian |9 -- missing cx lookup -- |2 Crossref |u M.M. Sargsian, Large $${Q}^{2}$$ electrodisintegration of the deuteron in the virtual nucleon approximation. Phys. Rev. C 82, 014612 (2010). https://doi.org/10.1103/PhysRevC.82.014612 |t Phys. Rev. C |v 82 |y 2010 |
999 | C | 5 | |a 10.1016/j.physletb.2005.01.046 |9 -- missing cx lookup -- |1 J Laget |p 49 - |2 Crossref |u J. Laget, The electro-disintegration of few body systems revisited. Physics Letters B 609(1), 49–56 (2005). https://doi.org/10.1016/j.physletb.2005.01.046 |t Physics Letters B |v 609 |y 2005 |
999 | C | 5 | |a 10.1103/PhysRevC.90.064006 |1 WP Ford |9 -- missing cx lookup -- |2 Crossref |u W.P. Ford, S. Jeschonnek, J.W. Van Orden, Momentum distributions for $$^{2}{\rm H} (e,{e}^{^{\prime }}p)$$. Phys. Rev. C 90, 064006 (2014). https://doi.org/10.1103/PhysRevC.90.064006 |t Phys. Rev. C |v 90 |y 2014 |
999 | C | 5 | |a 10.48550/ARXIV.2108.11502 |9 -- missing cx lookup -- |2 Crossref |u F. Vera, Probing the structure of deuteron at very short distances (2021). https://doi.org/10.48550/ARXIV.2108.11502. arxiv:2108.11502 |
999 | C | 5 | |a 10.1103/PhysRevLett.130.112502 |1 MM Sargsian |9 -- missing cx lookup -- |2 Crossref |u M.M. Sargsian, F. Vera, New Structure in the Deuteron. Phys. Rev. Lett. 130(11), 112502 (2023). https://doi.org/10.1103/PhysRevLett.130.112502. arXiv:2208.00501 |t Phys. Rev. Lett. |v 130 |y 2023 |
999 | C | 5 | |2 Crossref |u C. Yero, Deuteron disintegration at large missing momenta (January 2023) |
999 | C | 5 | |a 10.1146/annurev.nucl.50.1.481 |9 -- missing cx lookup -- |1 H Heiselberg |p 481 - |2 Crossref |u H. Heiselberg, V. Pandharipande, Recent progress in neutron star theory. Ann. Rev. Nucl. Part. Sci. 50, 481–524 (2000). https://doi.org/10.1146/annurev.nucl.50.1.481. arXiv:astro-ph/0003276 |t Ann. Rev. Nucl. Part. Sci. |v 50 |y 2000 |
999 | C | 5 | |a 10.1103/PhysRevC.71.044614 |1 M Sargsian |9 -- missing cx lookup -- |2 Crossref |u M. Sargsian, T. Abrahamyan, M. Strikman, L. Frankfurt, Exclusive electrodisintegration of $$^{3}{\rm He}$$ at high $${Q}^{2}$$. i. generalized eikonal approximation. Phys. Rev. C 71, 044614 (2005). https://doi.org/10.1103/PhysRevC.71.044614 |t Phys. Rev. C |v 71 |y 2005 |
999 | C | 5 | |a 10.1146/annurev-nucl-102115-044939 |9 -- missing cx lookup -- |1 N Fomin |p 129 - |2 Crossref |u N. Fomin, D. Higinbotham, M. Sargsian, P. Solvignon, New results on short-range correlations in nuclei. Ann. Rev. Nucl. Part. Sci. 67(1), 129–159 (2017). https://doi.org/10.1146/annurev-nucl-102115-044939 |t Ann. Rev. Nucl. Part. Sci. |v 67 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevLett.43.1143 |9 -- missing cx lookup -- |1 D Day |p 1143 - |2 Crossref |u D. Day, J.S. Mccarthy, I. Sick, R.G. Arnold, B.T. Chertok, S. Rock, Z.M. Szalata, F. Martin, B.A. Mecking, G. Tamas, INCLUSIVE ELECTRON SCATTERING FROM HE-3. Phys. Rev. Lett. 43, 1143 (1979). https://doi.org/10.1103/PhysRevLett.43.1143 |t Phys. Rev. Lett. |v 43 |y 1979 |
999 | C | 5 | |a 10.1103/PhysRevC.26.1592 |9 -- missing cx lookup -- |1 S Rock |p 1592 - |2 Crossref |u S. Rock, R.G. Arnold, B.T. Chertok, Z.M. Szalata, D. Day, J.S. McCarthy, F. Martin, B.A. Mecking, I. Sick, G. Tamas, Inelastic Electron Scattering From $$^{3}$$He and $$^{4}$$He in the Threshold Region at High Momentum Transfer. Phys. Rev. C 26, 1592 (1982). https://doi.org/10.1103/PhysRevC.26.1592 |t Phys. Rev. C |v 26 |y 1982 |
999 | C | 5 | |a 10.1146/annurev.ns.45.120195.002005 |9 -- missing cx lookup -- |1 DF Geesaman |p 337 - |2 Crossref |u D.F. Geesaman, K. Saito, A.W. Thomas, The nuclear EMC effect. Ann. Rev. Nucl. Part. Sci. 45, 337–390 (1995). https://doi.org/10.1146/annurev.ns.45.120195.002005 |t Ann. Rev. Nucl. Part. Sci. |v 45 |y 1995 |
999 | C | 5 | |a 10.1088/0034-4885/66/8/201 |9 -- missing cx lookup -- |1 PR Norton |p 1253 - |2 Crossref |u P.R. Norton, The EMC effect. Rept. Prog. Phys. 66, 1253–1297 (2003). https://doi.org/10.1088/0034-4885/66/8/201 |t Prog. Phys. |v 66 |y 2003 |
999 | C | 5 | |a 10.1142/S0218301314300136 |9 -- missing cx lookup -- |1 S Malace |p 1430013 - |2 Crossref |u S. Malace, D. Gaskell, D.W. Higinbotham, I. Cloet, The Challenge of the EMC Effect: existing data and future directions. Int. J. Mod. Phys. E 23(08), 1430013 (2014). https://doi.org/10.1142/S0218301314300136. arXiv:1405.1270 |t Int. J. Mod. Phys. E |v 23 |y 2014 |
999 | C | 5 | |a 10.1103/PhysRevLett.108.142001 |9 -- missing cx lookup -- |2 Crossref |u N. Baillie, et al., Measurement of the neutron F2 structure function via spectator tagging with CLAS, Phys. Rev. Lett. 108 (2012) 142001, [Erratum: Phys.Rev.Lett. 108, 199902 (2012)]. arXiv:1110.2770, https://doi.org/10.1103/PhysRevLett.108.142001 |
999 | C | 5 | |a 10.1103/PhysRevC.89.045206 |9 -- missing cx lookup -- |2 Crossref |u S. Tkachenko, et al., Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic $$^2$$H(e, e’p)X scattering with CLAS, Phys. Rev. C 89 (2014) 045206, [Addendum: Phys.Rev.C 90, 059901 (2014)]. arXiv:1402.2477, https://doi.org/10.1103/PhysRevC.89.045206 |
999 | C | 5 | |a 10.1103/PhysRevC.92.015211 |1 KA Griffioen |9 -- missing cx lookup -- |2 Crossref |u K.A. Griffioen et al., Measurement of the EMC Effect in the Deuteron. Phys. Rev. C 92(1), 015211 (2015). https://doi.org/10.1103/PhysRevC.92.015211. arXiv:1506.00871 |t Phys. Rev. C |v 92 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevC.73.035212 |1 AV Klimenko |9 -- missing cx lookup -- |2 Crossref |u A.V. Klimenko et al., Electron scattering from high-momentum neutrons in deuterium. Phys. Rev. C 73, 035212 (2006). https://doi.org/10.1103/PhysRevC.73.035212. arXiv:nucl-ex/0510032 |t Phys. Rev. C |v 73 |y 2006 |
999 | C | 5 | |a 10.1103/PhysRevLett.117.082501 |1 A Lovato |9 -- missing cx lookup -- |2 Crossref |u A. Lovato, S. Gandolfi, J. Carlson, S.C. Pieper, R. Schiavilla, Electromagnetic response of $$^{12}$$C: A first-principles calculation. Phys. Rev. Lett. 117(8), 082501 (2016). https://doi.org/10.1103/PhysRevLett.117.082501. arXiv:1605.00248 |t Phys. Rev. Lett. |v 117 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevLett.116.032701 |1 IC Cloët |9 -- missing cx lookup -- |2 Crossref |u I.C. Cloët, W. Bentz, A.W. Thomas, Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule. Phys. Rev. Lett. 116(3), 032701 (2016). https://doi.org/10.1103/PhysRevLett.116.032701. arXiv:1506.05875 |t Phys. Rev. Lett. |v 116 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevLett.94.192302 |1 MM Rvachev |9 -- missing cx lookup -- |2 Crossref |u M.M. Rvachev et al., Quasielastic $$^{3}{\rm He}{(e,{e}^{^{\prime }}p)^{2}}{\rm H}$$ reaction at $${Q}^{2}=1.5 {\rm gev}^{2}$$ for recoil momenta up to $$1 {\rm GeV/c}$$. Phys. Rev. Lett. 94, 192302 (2005). https://doi.org/10.1103/PhysRevLett.94.192302 |t Phys. Rev. Lett. |v 94 |y 2005 |
999 | C | 5 | |a 10.1103/PhysRevC.73.064004 |1 B Hu |9 -- missing cx lookup -- |2 Crossref |u B. Hu et al., Polarization transfer in the H-2(polarized-e, e-prime polarized-p) n reaction up to Q**2 = 1.61-(GeV/c)**2. Phys. Rev. C 73, 064004 (2006). https://doi.org/10.1103/PhysRevC.73.064004. arXiv:nucl-ex/0601025 |t Phys. Rev. C |v 73 |y 2006 |
999 | C | 5 | |a 10.1103/PhysRevLett.106.052501 |1 SP Malace |9 -- missing cx lookup -- |2 Crossref |u S.P. Malace et al., A precise extraction of the induced polarization in the 4He(e, e’p)3H reaction. Phys. Rev. Lett. 106, 052501 (2011). https://doi.org/10.1103/PhysRevLett.106.052501. arXiv:1011.4483 |t Phys. Rev. Lett. |v 106 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevC.89.034004 |1 WP Ford |9 -- missing cx lookup -- |2 Crossref |u W.P. Ford, R. Schiavilla, J.W. Van Orden, The $$^3$$He$$(e, e^\prime p)^2$$H and $$^4$$He$$(e, e^\prime p)^3$$H reactions at high momentum transfer. Phys. Rev. C 89(3), 034004 (2014). https://doi.org/10.1103/PhysRevC.89.034004. arXiv:1401.4399 |t Phys. Rev. C |v 89 |y 2014 |
999 | C | 5 | |a 10.1103/PhysRevC.104.025203 |1 R Dupré |9 -- missing cx lookup -- |2 Crossref |u R. Dupré et al., Measurement of deeply virtual Compton scattering off $$^{4}{\rm He}$$ with the CEBAF Large Acceptance Spectrometer at Jefferson Lab. Phys. Rev. C 104(2), 025203 (2021). https://doi.org/10.1103/PhysRevC.104.025203. arXiv:2102.07419 |t Phys. Rev. C |v 104 |y 2021 |
999 | C | 5 | |a 10.1016/j.physletb.2009.01.064 |9 -- missing cx lookup -- |1 V Guzey |p 9 - |2 Crossref |u V. Guzey, A.W. Thomas, K. Tsushima, Medium modifications of the bound nucleon GPDs and incoherent DVCS on nuclear targets. Phys. Lett. B 673, 9–14 (2009). https://doi.org/10.1016/j.physletb.2009.01.064. arXiv:0806.3288 |t Phys. Lett. B |v 673 |y 2009 |
999 | C | 5 | |a 10.1103/PhysRevC.72.034902 |1 S Liuti |9 -- missing cx lookup -- |2 Crossref |u S. Liuti, S.K. Taneja, Nuclear medium modifications of hadrons from generalized parton distributions. Phys. Rev. C 72, 034902 (2005). https://doi.org/10.1103/PhysRevC.72.034902. arXiv:hep-ph/0504027 |t Phys. Rev. C |v 72 |y 2005 |
999 | C | 5 | |a 10.1088/0034-4885/76/6/066202 |1 M Guidal |9 -- missing cx lookup -- |2 Crossref |u M. Guidal, H. Moutarde, M. Vanderhaeghen, Generalized Parton Distributions in the valence region from Deeply Virtual Compton Scattering. Rept. Prog. Phys. 76, 066202 (2013). https://doi.org/10.1088/0034-4885/76/6/066202. arXiv:1303.6600 |t Rept. Prog. Phys. |v 76 |y 2013 |
999 | C | 5 | |a 10.48550/ARXIV.1708.00835 |9 -- missing cx lookup -- |2 Crossref |u W. Armstrong, et al., Spectator-tagged deeply virtual compton scattering on light nuclei, (2017). https://doi.org/10.48550/ARXIV.1708.00835arXiv:1708.00835 |
999 | C | 5 | |a 10.1103/PhysRevC.98.015203 |1 S Fucini |9 -- missing cx lookup -- |2 Crossref |u S. Fucini, S. Scopetta, M. Viviani, Coherent deeply virtual compton scattering off $$^{4}{\rm He}$$. Phys. Rev. C 98, 015203 (2018). https://doi.org/10.1103/PhysRevC.98.015203 |t Phys. Rev. C |v 98 |y 2018 |
999 | C | 5 | |2 Crossref |u P. Zurita, Medium modified Fragmentation Functions with open source xFitter (1 2021). arXiv:2101.01088 |
999 | C | 5 | |a 10.1140/epjc/s10052-022-10359-0 |9 -- missing cx lookup -- |1 K Eskola |p 413 - |2 Crossref |u K. Eskola, P. Paakkinen, H. Paukkunen, C. Salgado, EPPS21: a global QCD analysis of nuclear PDFs. Eur. Phys. J. C 82(5), 413 (2022). https://doi.org/10.1140/epjc/s10052-022-10359-0. arXiv:2112.12462 |t Eur. Phys. J. C |v 82 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.100.096015 |1 M Walt |9 -- missing cx lookup -- |2 Crossref |u M. Walt, I. Helenius, W. Vogelsang, Open-source qcd analysis of nuclear parton distribution functions at nlo and nnlo. Phys. Rev. D 100, 096015 (2019). https://doi.org/10.1103/PhysRevD.100.096015 |t Phys. Rev. D |v 100 |y 2019 |
999 | C | 5 | |2 Crossref |u W. Brooks, S. Kuhn, et al., The EMC Effect in Spin Structure Functions, CLAS12 E12-14-00 Experiment (Run Group G) (2014) |
999 | C | 5 | |2 Crossref |u W. Brooks, S. Kuhn, et al., The EMC Effect in Spin Structure Functions, CLAS12 Run Group G Jeopardy Update (2020). https://www.jlab.org/exp_prog/proposals/20/Jeopardy/Run%20Group%20G_Update.pdf |
999 | C | 5 | |a 10.1103/PhysRevD.70.116003 |1 SJ Brodsky |9 -- missing cx lookup -- |2 Crossref |u S.J. Brodsky, I. Schmidt, J.-J. Yang, Nuclear antishadowing in neutrino deep inelastic scattering. Phys. Rev. D 70, 116003 (2004). https://doi.org/10.1103/PhysRevD.70.116003 |t Phys. Rev. D |v 70 |y 2004 |
999 | C | 5 | |a 10.1103/PhysRevC.61.014002 |1 V Guzey |9 -- missing cx lookup -- |2 Crossref |u V. Guzey, M. Strikman, Nuclear effects in $${g}_{1A}{(x, Q}^{2})$$ at small x in deep inelastic scattering on $$ ^{7}{\rm Li}$$ and $$ ^{3}{\rm He}$$. Phys. Rev. C 61, 014002 (1999). https://doi.org/10.1103/PhysRevC.61.014002 |t Phys. Rev. C |v 61 |y 1999 |
999 | C | 5 | |a 10.1103/PhysRevC.95.055208 |1 L Frankfurt |9 -- missing cx lookup -- |2 Crossref |u L. Frankfurt, V. Guzey, M. Strikman, Dynamical model of antishadowing of the nuclear gluon distribution. Phys. Rev. C 95, 055208 (2017). https://doi.org/10.1103/PhysRevC.95.055208 |t Phys. Rev. C |v 95 |y 2017 |
999 | C | 5 | |a 10.1016/j.physletb.2006.08.076 |9 -- missing cx lookup -- |1 I Cloët |p 210 - |2 Crossref |u I. Cloët, W. Bentz, A. Thomas, EMC and polarized EMC effects in nuclei. Phy. Lett. B 642(3), 210–217 (2006). https://doi.org/10.1016/j.physletb.2006.08.076 |t Phy. Lett. B |v 642 |y 2006 |
999 | C | 5 | |a 10.1103/PhysRevC.72.022203 |1 J Smith |9 -- missing cx lookup -- |2 Crossref |u J. Smith, G. Miller, Polarized quark distributions in nuclear matter. Phys. Rev. C 72, 022203 (2005). https://doi.org/10.1103/PhysRevC.72.022203 |t Phys. Rev. C |v 72 |y 2005 |
999 | C | 5 | |a 10.1140/epja/i2014-14116-8 |9 -- missing cx lookup -- |1 H Fanchiotti |p 116 - |2 Crossref |u H. Fanchiotti, C.A. García-Canal, T. Tarutina, V. Vento, Medium Effects in DIS from Polarized Nuclear Targets. Eur. Phys. J. A 50, 116 (2014). https://doi.org/10.1140/epja/i2014-14116-8. arXiv:1404.3047 |t Eur. Phys. J. A |v 50 |y 2014 |
999 | C | 5 | |a 10.1103/PhysRevLett.95.052302 |1 I Cloët |9 -- missing cx lookup -- |2 Crossref |u I. Cloët, W. Bentz, A. Thomas, Spin-dependent structure functions in nuclear matter and the polarized emc effect. Phys. Rev. Lett. 95, 052302 (2005). https://doi.org/10.1103/PhysRevLett.95.052302 |t Phys. Rev. Lett. |v 95 |y 2005 |
999 | C | 5 | |a 10.1016/0370-2693(88)90719-8 |9 -- missing cx lookup -- |1 SJ Brodsky |p 685 - |2 Crossref |u S.J. Brodsky, A.H. Mueller, Using Nuclei to Probe Hadronization in QCD. Phys. Lett. B 206, 685–690 (1988). https://doi.org/10.1016/0370-2693(88)90719-8 |t Phys. Lett. B |v 206 |y 1988 |
999 | C | 5 | |a 10.1103/PhysRevD.50.3134 |9 -- missing cx lookup -- |1 SJ Brodsky |p 3134 - |2 Crossref |u S.J. Brodsky, L. Frankfurt, J.F. Gunion, A.H. Mueller, M. Strikman, Diffractive leptoproduction of vector mesons in QCD. Phys. Rev. D 50, 3134–3144 (1994). https://doi.org/10.1103/PhysRevD.50.3134. arXiv:hep-ph/9402283 |t Phys. Rev. D |v 50 |y 1994 |
999 | C | 5 | |a 10.1016/j.ppnp.2012.11.001 |9 -- missing cx lookup -- |1 D Dutta |p 1 - |2 Crossref |u D. Dutta, K. Hafidi, M. Strikman, Color Transparency: past, present and future. Prog. Part. Nucl. Phys. 69, 1–27 (2013). https://doi.org/10.1016/j.ppnp.2012.11.001. arXiv:1211.2826 |t Prog. Part. Nucl. Phys. |v 69 |y 2013 |
999 | C | 5 | |a 10.3390/physics4020042 |9 -- missing cx lookup -- |1 SJ Brodsky |p 633 - |2 Crossref |u S.J. Brodsky, G.F. de Teramond, Onset of Color Transparency in Holographic Light-Front QCD. MDPI Physics 4(2), 633–646 (2022). https://doi.org/10.3390/physics4020042. arXiv:2202.13283 |t MDPI Physics |v 4 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.99.242502 |1 B Clasie |9 -- missing cx lookup -- |2 Crossref |u B. Clasie et al., Measurement of Nuclear Transparency for the $$A(e,{e}^{\prime }{\pi }^{+})$$ Reaction. Phys. Rev. Lett. 99, 242502 (2007). https://doi.org/10.1103/PhysRevLett.99.242502. arXiv:0707.1481 |t Phys. Rev. Lett. |v 99 |y 2007 |
999 | C | 5 | |a 10.1016/j.physletb.2012.05.019 |9 -- missing cx lookup -- |1 L El Fassi |p 326 - |2 Crossref |u L. El Fassi et al., Evidence for the onset of color transparency in $$\rho ^0$$ electroproduction off nuclei. Phys. Lett. B 712, 326–330 (2012). https://doi.org/10.1016/j.physletb.2012.05.019. arXiv:1201.2735 |t Phys. Lett. B |v 712 |y 2012 |
999 | C | 5 | |a 10.1103/PhysRevC.78.015208 |1 L Frankfurt |9 -- missing cx lookup -- |2 Crossref |u L. Frankfurt, G.A. Miller, M. Strikman, Color Transparency in Semi-Inclusive Electroproduction of rho Mesons. Phys. Rev. C 78, 015208 (2008). https://doi.org/10.1103/PhysRevC.78.015208. arXiv:0803.4012 |t Phys. Rev. C |v 78 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevC.83.015201 |1 K Gallmeister |9 -- missing cx lookup -- |2 Crossref |u K. Gallmeister, M. Kaskulov, U. Mosel, Color transparency in hadronic attenuation of $$\rho ^0$$ mesons. Phys. Rev. C 83, 015201 (2011). https://doi.org/10.1103/PhysRevC.83.015201. arXiv:1007.1141 |t Phys. Rev. C |v 83 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevC.87.064608 |1 W Cosyn |9 -- missing cx lookup -- |2 Crossref |u W. Cosyn, J. Ryckebusch, Nuclear $$\rho $$ meson transparency in a relativistic Glauber model. Phys. Rev. C 87(6), 064608 (2013). https://doi.org/10.1103/PhysRevC.87.064608. arXiv:1301.1904 |t Phys. Rev. C |v 87 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevLett.61.1698 |9 -- missing cx lookup -- |1 AS Carroll |p 1698 - |2 Crossref |u A.S. Carroll et al., Nuclear Transparency to Large Angle $$p p$$ Elastic Scattering. Phys. Rev. Lett. 61, 1698–1701 (1988). https://doi.org/10.1103/PhysRevLett.61.1698 |t Phys. Rev. Lett. |v 61 |y 1988 |
999 | C | 5 | |a 10.1103/PhysRevLett.81.5085 |9 -- missing cx lookup -- |1 I Mardor |p 5085 - |2 Crossref |u I. Mardor et al., Nuclear transparency in large momentum transfer quasielastic scattering. Phys. Rev. Lett. 81, 5085–5088 (1998). https://doi.org/10.1103/PhysRevLett.81.5085 |t Phys. Rev. Lett. |v 81 |y 1998 |
999 | C | 5 | |a 10.1103/PhysRevLett.87.212301 |1 A Leksanov |9 -- missing cx lookup -- |2 Crossref |u A. Leksanov et al., Energy dependence of nuclear transparency in C$$(p, 2p)$$ scattering. Phys. Rev. Lett. 87, 212301 (2001). https://doi.org/10.1103/PhysRevLett.87.212301. arXiv:hep-ex/0104039 |t Phys. Rev. Lett. |v 87 |y 2001 |
999 | C | 5 | |a 10.1103/PhysRevC.70.015208 |9 -- missing cx lookup -- |2 Crossref |u J. Aclander et al., Nuclear transparency. Phys. Rev. C in $${90}_{{\rm c.m.}}^{\circ }$$ quasielastic $$A(p,2p)$$ reactions 70, 015208 (2004). https://doi.org/10.1103/PhysRevC.70.015208. arXiv:nucl-ex/0405025 |
999 | C | 5 | |a 10.1103/PhysRevLett.72.1986 |9 -- missing cx lookup -- |1 N Makins |p 1986 - |2 Crossref |u N. Makins et al., Momentum transfer dependence of nuclear transparency from the quasielastic $$^{12}{\rm C}$$(e, e’p) reaction. Phys. Rev. Lett. 72, 1986–1989 (1994). https://doi.org/10.1103/PhysRevLett.72.1986 |t Phys. Rev. Lett. |v 72 |y 1994 |
999 | C | 5 | |a 10.1016/0370-2693(95)00362-O |9 -- missing cx lookup -- |1 TG O’Neill |p 87 - |2 Crossref |u T.G. O’Neill et al., $$A$$-dependence of nuclear transparency in quasielastic $$A(e, e^{\prime } p)$$ at high $$Q^2$$. Phys. Lett. B 351, 87–92 (1995). https://doi.org/10.1016/0370-2693(95)00362-O. arXiv:hep-ph/9408260 |t Phys. Lett. B |v 351 |y 1995 |
999 | C | 5 | |a 10.1103/PhysRevLett.80.5072 |9 -- missing cx lookup -- |1 D Abbott |p 5072 - |2 Crossref |u D. Abbott et al., Quasifree $$(e, e^{\prime }p)$$ reactions and proton propagation in nuclei. Phys. Rev. Lett. 80, 5072–5076 (1998). https://doi.org/10.1103/PhysRevLett.80.5072 |t Phys. Rev. Lett. |v 80 |y 1998 |
999 | C | 5 | |a 10.1103/PhysRevC.66.044613 |1 K Garrow |9 -- missing cx lookup -- |2 Crossref |u K. Garrow et al., Nuclear transparency from quasielastic $${A(e, e}^{^{\prime }}p)$$ reactions up to $${Q}^{2}=8.1({\rm GeV}/c)^{2}$$. Phys. Rev. C 66, 044613 (2002). https://doi.org/10.1103/PhysRevC.66.044613. arXiv:hep-ex/0109027 |t Phys. Rev. C |v 66 |y 2002 |
999 | C | 5 | |a 10.1103/PhysRevLett.126.082301 |9 -- missing cx lookup -- |2 Crossref |u D. Bhetuwal, J. Matter, H. Szumila-Vance, M. L. Kabir, D. Dutta, R. Ent, et al., Ruling out color transparency in quasielastic $$^{12}{\rm C}({\rm e},{e}^{^{\prime }}{\rm p})$$ up to $${Q}^{2}$$ of $$14.2 ({\rm GeV}/{\rm c})^{2}$$, Phys. Rev. Lett. 126 (2021) 082301. https://doi.org/10.1103/PhysRevLett.126.082301 |
999 | C | 5 | |a 10.3390/physics4040092 |9 -- missing cx lookup -- |1 S Li |p 1426 - |2 Crossref |u S. Li, C. Yero, J.R. West, C. Bennett, W. Cosyn, D. Higinbotham, M. Sargsian, H. Szumila-Vance, Searching for an enhanced signal of the onset of color transparency in baryons with d(e, e’p)n scattering. Physics 4(4), 1426–1439 (2022). https://doi.org/10.3390/physics4040092 |t Physics |v 4 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.15.2590 |9 -- missing cx lookup -- |1 RD Field |p 2590 - |2 Crossref |u R.D. Field, R.P. Feynman, Quark Elastic Scattering as a Source of High Transverse Momentum Mesons. Phys. Rev. D 15, 2590–2616 (1977). https://doi.org/10.1103/PhysRevD.15.2590 |t Phys. Rev. D |v 15 |y 1977 |
999 | C | 5 | |a 10.1016/0370-2693(83)90437-9 |9 -- missing cx lookup -- |1 J-J Aubert |p 275 - |2 Crossref |u J.-J. Aubert, G. Bassompierre, K. Becks, C. Best, E. Böhm, X. de Bouard, F. Brasse, C. Broll, S. Brown, J. Carr et al., The ratio of the nucleon structure functions $$F_2^N$$ for iron and deuterium. Physics Letters B 123(3–4), 275–278 (1983) |t Physics Letters B |v 123 |y 1983 |
999 | C | 5 | |a 10.1016/j.nuclphysa.2005.03.086 |9 -- missing cx lookup -- |1 K Adcox |p 184 - |2 Crossref |u K. Adcox, S. Adler, S. Afanasiev, C. Aidala, N. Ajitanand, Y. Akiba, A. Al-Jamel, J. Alexander, R. Amirikas, K. Aoki et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at rhic: experimental evaluation by the phenix collaboration. Nuclear Physics A 757(1–2), 184–283 (2005) |t Nuclear Physics A |v 757 |y 2005 |
999 | C | 5 | |a 10.1016/j.nuclphysa.2005.03.085 |9 -- missing cx lookup -- |1 J Adams |p 102 - |2 Crossref |u J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085. arXiv:nucl-ex/0501009 |t Nucl. Phys. A |v 757 |y 2005 |
999 | C | 5 | |a 10.1016/j.physletb.2010.01.020 |9 -- missing cx lookup -- |1 A Airapetian |p 114 - |2 Crossref |u A. Airapetian et al., Transverse momentum broadening of hadrons produced in semi-inclusive deep-inelastic scattering on nuclei. Phys. Lett. B 684, 114–118 (2010). https://doi.org/10.1016/j.physletb.2010.01.020 |t Phys. Lett. B |v 684 |y 2010 |
999 | C | 5 | |a 10.1140/epja/i2011-11113-5 |9 -- missing cx lookup -- |1 A Airapetian |p 113 - |2 Crossref |u A. Airapetian et al., Multidimensional Study of Hadronization in Nuclei. Eur. Phys. J. A 47, 113 (2011). https://doi.org/10.1140/epja/i2011-11113-5. arXiv:1107.3496 |t Eur. Phys. J. A |v 47 |y 2011 |
999 | C | 5 | |a 10.1016/j.nuclphysb.2007.06.004 |9 -- missing cx lookup -- |1 A Airapetian |p 1 - |2 Crossref |u A. Airapetian et al., Hadronization in semi-inclusive deep-inelastic scattering on nuclei. Nucl. Phys. B 780, 1–27 (2007). https://doi.org/10.1016/j.nuclphysb.2007.06.004. arXiv:0704.3270 |t Nucl. Phys. B |v 780 |y 2007 |
999 | C | 5 | |a 10.1103/PhysRevLett.96.162301 |1 A Airapetian |9 -- missing cx lookup -- |2 Crossref |u A. Airapetian et al., Double-hadron leptoproduction in the nuclear medium. Phys. Rev. Lett. 96, 162301 (2006). https://doi.org/10.1103/PhysRevLett.96.162301 |t Phys. Rev. Lett. |v 96 |y 2006 |
999 | C | 5 | |a 10.1103/PhysRevLett.129.182501 |1 SJ Paul |9 -- missing cx lookup -- |2 Crossref |u S.J. Paul, S. Morán, M. Arratia, A. El Alaoui, H. Hakobyan, W. Brooks et al., Observation of azimuth-dependent suppression of hadron pairs in electron scattering off nuclei. Phys. Rev. Lett. 129, 182501 (2022). https://doi.org/10.1103/PhysRevLett.129.182501 |t Phys. Rev. Lett. |v 129 |y 2022 |
999 | C | 5 | |a 10.1007/s100520100697 |9 -- missing cx lookup -- |1 A Airapetian |p 479 - |2 Crossref |u A. Airapetian et al., Hadron formation in deep inelastic positron scattering in a nuclear environment. Eur. Phys. J. C 20, 479–486 (2001). https://doi.org/10.1007/s100520100697 |t Eur. Phys. J. C |v 20 |y 2001 |
999 | C | 5 | |a 10.1103/PhysRevC.105.015201 |1 S Morán |9 -- missing cx lookup -- |2 Crossref |u S. Morán, R. Dupré, H. Hakobyan, M. Arratia, W.K. Brooks, A. Bórquez, A. El Alaoui, L. El Fassi, K. Hafidi, R. Mendez, T. Mineeva, S.J. Paul et al., Measurement of charged-pion production in deep-inelastic scattering off nuclei with the CLAS detector. Phys. Rev. C 105, 015201 (2022). https://doi.org/10.1103/PhysRevC.105.015201 |t Phys. Rev. C |v 105 |y 2022 |
999 | C | 5 | |a 10.1016/j.physletb.2003.10.026 |9 -- missing cx lookup -- |1 A Airapetian |p 37 - |2 Crossref |u A. Airapetian et al., Quark fragmentation to $$\pi ^\pm $$, $$\pi ^0$$, $$K^\pm $$, $$p$$ and $${\bar{p}}$$ in the nuclear environment. Phys. Lett. B 577, 37–46 (2003). https://doi.org/10.1016/j.physletb.2003.10.026 |t Phys. Lett. B |v 577 |y 2003 |
999 | C | 5 | |a 10.1016/j.nuclphysb.2007.06.004 |9 -- missing cx lookup -- |1 A Airapetian |p 1 - |2 Crossref |u A. Airapetian et al., Hadronization in semi-inclusive deep-inelastic scattering on nuclei. Nucl. Phys. B 780, 1–27 (2007). https://doi.org/10.1016/j.nuclphysb.2007.06.004 |t Nucl. Phys. B |v 780 |y 2007 |
999 | C | 5 | |a 10.1103/PhysRevLett.130.142301 |1 T Chetry |9 -- missing cx lookup -- |2 Crossref |u T. Chetry, L. El Fassi et al., First measurement of $$\Lambda $$ electroproduction off nuclei in the current and target fragmentation regions. Phys. Rev. Lett. 130, 142301 (2023). https://doi.org/10.1103/PhysRevLett.130.142301 |t Phys. Rev. Lett. |v 130 |y 2023 |
999 | C | 5 | |a 10.1140/epja/i2016-16268-9 |9 -- missing cx lookup -- |1 A Accardi |p 268 - |2 Crossref |u A. Accardi et al., Electron-Ion Collider: The next QCD frontier. The European Physical Journal A 52(9), 268 (2016). https://doi.org/10.1140/epja/i2016-16268-9 |t The European Physical Journal A |v 52 |y 2016 |
999 | C | 5 | |a 10.1016/j.physletb.2017.07.001 |9 -- missing cx lookup -- |1 V Khachatryan |p 489 - |2 Crossref |u V. Khachatryan et al., Coherent $$J/\psi $$ photoproduction in ultra-peripheral PbPb collisions at $$\sqrt{s_{NN}}=2.76$$ TeV with the CMS experiment. Physics Letters B 772, 489–511 (2017) |t Physics Letters B |v 772 |y 2017 |
999 | C | 5 | |a 10.1016/j.physletb.2012.11.059 |9 -- missing cx lookup -- |1 B Abelev |p 1273 - |2 Crossref |u B. Abelev et al., Coherent $$J/\psi $$ photoproduction in ultra-peripheral Pb-Pb collisions at $$\sqrt{s_{NN}}=2.76 TeV$$. Physics Letters B 718(4), 1273–1283 (2013). https://doi.org/10.1016/j.physletb.2012.11.059 |t Physics Letters B |v 718 |y 2013 |
999 | C | 5 | |a 10.1016/j.physletb.2021.136280 |1 S Acharya |9 -- missing cx lookup -- |2 Crossref |u S. Acharya et al., First measurement of the $$|t|$$-dependence of coherent $$J/\psi $$ photonuclear production. Physics Letters B 817, 136280 (2021). https://doi.org/10.1016/j.physletb.2021.136280 |t Physics Letters B |v 817 |y 2021 |
999 | C | 5 | |a 10.1140/epjc/s10052-021-09437-6 |9 -- missing cx lookup -- |1 S Acharya |p 712 - |2 Crossref |u S. Acharya et al., Coherent $$J/\psi $$ and $$\psi ^{\prime }$$ photoproduction at midrapidity in ultra-peripheral Pb-Pb collisions at $$\sqrt{s_{NN}}=5.02$$ TeV. The European Physical Journal C 81(8), 712 (2021). https://doi.org/10.1140/epjc/s10052-021-09437-6 |t The European Physical Journal C |v 81 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevC.105.L032201 |9 -- missing cx lookup -- |1 R Aaij |p L032201 - |2 Crossref |u R. Aaij et al., $$J/\psi $$ photoproduction in Pb-Pb peripheral collisions at $$\sqrt{{s}_{NN}}=5$$ TeV. Phys. Rev. C 105, L032201 (2022). https://doi.org/10.1103/PhysRevC.105.L032201 |t Phys. Rev. C |v 105 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.128.122303 |1 MS Abdallah |9 -- missing cx lookup -- |2 Crossref |u M.S. Abdallah et al., Probing the gluonic structure of the deuteron with $$J/\psi $$ photoproduction in $${{d}}+{\rm Au}$$ ultraperipheral collisions. Phys. Rev. Lett. 128, 122303 (2022). https://doi.org/10.1103/PhysRevLett.128.122303 |t Phys. Rev. Lett. |v 128 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.123.072001 |1 A Ali |9 -- missing cx lookup -- |2 Crossref |u A. Ali et al., First Measurement of Near-Threshold $$J/\psi $$ Exclusive Photoproduction off the Proton. Phys. Rev. Lett. 123, 072001 (2019). https://doi.org/10.1103/PhysRevLett.123.072001 |t Phys. Rev. Lett. |v 123 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevC.87.024913 |1 T Toll |9 -- missing cx lookup -- |2 Crossref |u T. Toll, T. Ullrich, Exclusive diffractive processes in electron-ion collisions. Phys. Rev. C 87, 024913 (2013). https://doi.org/10.1103/PhysRevC.87.024913 |t Phys. Rev. C |v 87 |y 2013 |
999 | C | 5 | |2 Crossref |u O. Hen, et al., Studying Short-Range Correlations with Real Photon Beams at GlueX (9 2020). arXiv:2009.09617 |
999 | C | 5 | |a 10.1103/PhysRevLett.35.483 |9 -- missing cx lookup -- |1 U Camerini |p 483 - |2 Crossref |u U. Camerini, J.G. Learned, R. Prepost, C.M. Spencer, D.E. Wiser, W.W. Ash, R.L. Anderson, D.M. Ritson, D.J. Sherden, C.K. Sinclair, Photoproduction of the $$\psi $$ Particles. Phys. Rev. Lett. 35, 483–486 (1975). https://doi.org/10.1103/PhysRevLett.35.483 |t Phys. Rev. Lett. |v 35 |y 1975 |
999 | C | 5 | |a 10.1103/PhysRevC.89.024305 |1 RB Wiringa |9 -- missing cx lookup -- |2 Crossref |u R.B. Wiringa, R. Schiavilla, S.C. Pieper, J. Carlson, Nucleon and nucleon-pair momentum distributions in $$A\le 12$$ nuclei. Phys. Rev. C 89, 024305 (2014). https://doi.org/10.1103/PhysRevC.89.024305 |t Phys. Rev. C |v 89 |y 2014 |
999 | C | 5 | |a 10.1016/j.physrep.2021.11.001 |9 -- missing cx lookup -- |1 L Gan |p 1 - |2 Crossref |u L. Gan, B. Kubis, E. Passemar, S. Tulin, Precision tests of fundamental physics with $$\eta $$ and $$\eta $$’ mesons. Phys. Rept. 945, 1–105 (2022). https://doi.org/10.1016/j.physrep.2021.11.001 |t Phys. Rept. |v 945 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRev.177.2426 |9 -- missing cx lookup -- |1 SL Adler |p 2426 - |2 Crossref |u S.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969). https://doi.org/10.1103/PhysRev.177.2426 |t Phys. Rev. |v 177 |y 1969 |
999 | C | 5 | |a 10.1007/BF02823296 |9 -- missing cx lookup -- |1 JS Bell |p 47 - |2 Crossref |u J.S. Bell, R. Jackiw, A PCAC puzzle: $$\pi ^0 \rightarrow \gamma \gamma $$ in the $$\sigma $$ model. Nuovo Cim. A 60, 47–61 (1969). https://doi.org/10.1007/BF02823296 |t Nuovo Cim. A |v 60 |y 1969 |
999 | C | 5 | |a 10.1103/PhysRevLett.37.8 |9 -- missing cx lookup -- |1 G ’t Hooft |p 8 - |2 Crossref |u G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies. Phys. Rev. Lett. 37, 8–11 (1976). https://doi.org/10.1103/PhysRevLett.37.8 |t Phys. Rev. Lett. |v 37 |y 1976 |
999 | C | 5 | |a 10.1016/0550-3213(79)90031-2 |9 -- missing cx lookup -- |1 E Witten |p 269 - |2 Crossref |u E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson. Nucl. Phys. B 156, 269–283 (1979). https://doi.org/10.1016/0550-3213(79)90031-2 |t Nucl. Phys. B |v 156 |y 1979 |
999 | C | 5 | |a 10.1103/PhysRev.175.2195 |9 -- missing cx lookup -- |1 M Gell-Mann |p 2195 - |2 Crossref |u M. Gell-Mann, R.J. Oakes, B. Renner, Behavior of current divergences under SU(3) x SU(3). Phys. Rev. 175, 2195–2199 (1968). https://doi.org/10.1103/PhysRev.175.2195 |t Phys. Rev. |v 175 |y 1968 |
999 | C | 5 | |a 10.1016/0550-3213(68)90316-7 |9 -- missing cx lookup -- |1 JS Bell |p 315 - |2 Crossref |u J.S. Bell, D.G. Sutherland, Current algebra and eta -$${>}$$ 3 pi. Nucl. Phys. B 4, 315–325 (1968). https://doi.org/10.1016/0550-3213(68)90316-7 |t Nucl. Phys. B |v 4 |y 1968 |
999 | C | 5 | |a 10.1016/0031-9163(66)90477-X |9 -- missing cx lookup -- |1 DG Sutherland |p 384 - |2 Crossref |u D.G. Sutherland, Current algebra and the decay $$\eta \rightarrow 3\pi $$. Phys. Lett. 23, 384–385 (1966). https://doi.org/10.1016/0031-9163(66)90477-X |t Phys. Lett. |v 23 |y 1966 |
999 | C | 5 | |a 10.1016/0370-2693(85)91028-7 |9 -- missing cx lookup -- |1 VA Kuzmin |p 36 - |2 Crossref |u V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 155, 36 (1985). https://doi.org/10.1016/0370-2693(85)91028-7 |t Phys. Lett. B |v 155 |y 1985 |
999 | C | 5 | |a 10.1016/j.physrep.2020.07.006 |9 -- missing cx lookup -- |1 T Aoyama |p 1 - |2 Crossref |u T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model. Phys. Rept. 887, 1–166 (2020). https://doi.org/10.1016/j.physrep.2020.07.006. arXiv:2006.04822 |t Phys. Rept. |v 887 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevLett.121.112002 |1 M Hoferichter |9 -- missing cx lookup -- |2 Crossref |u M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, S.P. Schneider, Pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon. Phys. Rev. Lett. 121(11), 112002 (2018). https://doi.org/10.1103/PhysRevLett.121.112002. arXiv:1805.01471 |t Phys. Rev. Lett. |v 121 |y 2018 |
999 | C | 5 | |a 10.1007/JHEP10(2018)141 |9 -- missing cx lookup -- |1 M Hoferichter |p 141 - |2 Crossref |u M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, S.P. Schneider, Dispersion relation for hadronic light-by-light scattering: pion pole. JHEP 10, 141 (2018). https://doi.org/10.1007/JHEP10(2018)141. arXiv:1808.04823 |t JHEP |v 10 |y 2018 |
999 | C | 5 | |a 10.1126/science.aay6641 |9 -- missing cx lookup -- |1 I Larin |p 506 - |2 Crossref |u I. Larin et al., Precision measurement of the neutral pion lifetime. Science 368(6490), 506–509 (2020). https://doi.org/10.1126/science.aay6641 |t Science |v 368 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevD.100.034520 |1 A Gérardin |9 -- missing cx lookup -- |2 Crossref |u A. Gérardin, H.B. Meyer, A. Nyffeler, Lattice calculation of the pion transition form factor with $$N_f=2+1$$ Wilson quarks. Phys. Rev. D 100(3), 034520 (2019). https://doi.org/10.1103/PhysRevD.100.034520. arXiv:1903.09471 |t Phys. Rev. D |v 100 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevD.66.076014 |1 JL Goity |9 -- missing cx lookup -- |2 Crossref |u J.L. Goity, A.M. Bernstein, B.R. Holstein, The Decay pi0 -$${>}$$ gamma gamma to next to leading order in chiral perturbation theory. Phys. Rev. D 66, 076014 (2002). https://doi.org/10.1103/PhysRevD.66.076014. arXiv:hep-ph/0206007 |t Phys. Rev. D |v 66 |y 2002 |
999 | C | 5 | |a 10.1088/1126-6708/2002/05/052 |9 -- missing cx lookup -- |1 B Ananthanarayan |p 052 - |2 Crossref |u B. Ananthanarayan, B. Moussallam, Electromagnetic corrections in the anomaly sector. JHEP 05, 052 (2002). https://doi.org/10.1088/1126-6708/2002/05/052. arXiv:hep-ph/0205232 |t JHEP |v 05 |y 2002 |
999 | C | 5 | |a 10.1103/PhysRevD.79.076005 |1 K Kampf |9 -- missing cx lookup -- |2 Crossref |u K. Kampf, B. Moussallam, Chiral expansions of the pi0 lifetime. Phys. Rev. D 79, 076005 (2009). https://doi.org/10.1103/PhysRevD.79.076005. arXiv:0901.4688 |t Phys. Rev. D |v 79 |y 2009 |
999 | C | 5 | |a 10.22323/1.430.0306 |9 -- missing cx lookup -- |2 Crossref |u S. A. Burri, et al., Pseudoscalar-pole contributions to the muon $$g-2$$ at the physical point, PoS LATTICE2022 (2023) 306. https://doi.org/10.22323/1.430.0306. arXiv:2212.10300 |
999 | C | 5 | |a 10.22323/1.430.0332 |9 -- missing cx lookup -- |2 Crossref |u A. Gérardin, J. N. Guenther, L. Varnhorst, W. E. A. Verplanke, Pseudoscalar transition form factors and the hadronic light-by-light contribution to the muon g-2, PoS LATTICE2022 (2023) 332. https://doi.org/10.22323/1.430.0332. arXiv:2211.04159 |
999 | C | 5 | |a 10.1140/epjc/s10052-014-3180-0 |9 -- missing cx lookup -- |1 M Hoferichter |p 3180 - |2 Crossref |u M. Hoferichter, B. Kubis, S. Leupold, F. Niecknig, S.P. Schneider, Dispersive analysis of the pion transition form factor. Eur. Phys. J. C 74, 3180 (2014). https://doi.org/10.1140/epjc/s10052-014-3180-0. arXiv:1410.4691 |t Eur. Phys. J. C |v 74 |y 2014 |
999 | C | 5 | |a 10.1140/epjc/s10052-013-2668-3 |9 -- missing cx lookup -- |2 Crossref |u C. Hanhart, A. Kupść, U.-G. Meißner, F. Stollenwerk, A. Wirzba, Dispersive analysis for $$\eta \rightarrow \gamma \gamma ^*$$, Eur. Phys. J. C 73 (12) (2013) 2668, [Erratum: Eur. Phys. J. C 75, 242 (2015)]. arXiv:1307.5654, https://doi.org/10.1140/epjc/s10052-013-2668-3 |
999 | C | 5 | |a 10.1140/epjc/s10052-015-3495-5 |9 -- missing cx lookup -- |1 B Kubis |p 283 - |2 Crossref |u B. Kubis, J. Plenter, Anomalous decay and scattering processes of the $$\eta $$ meson. Eur. Phys. J. C 75(6), 283 (2015). https://doi.org/10.1140/epjc/s10052-015-3495-5. arXiv:1504.02588 |t Eur. Phys. J. C |v 75 |y 2015 |
999 | C | 5 | |a 10.1140/epjc/s10052-021-09661-0 |9 -- missing cx lookup -- |1 S Holz |p 1002 - |2 Crossref |u S. Holz, J. Plenter, C.-W. Xiao, T. Dato, C. Hanhart, B. Kubis, U.-G. Meißner, A. Wirzba, Towards an improved understanding of $$\eta \rightarrow \gamma ^* \gamma ^*$$. Eur. Phys. J. C 81(11), 1002 (2021). https://doi.org/10.1140/epjc/s10052-021-09661-0. arXiv:1509.02194 |t Eur. Phys. J. C |v 81 |y 2021 |
999 | C | 5 | |a 10.1140/epjc/s10052-022-10247-7 |9 -- missing cx lookup -- |2 Crossref |u S. Holz, C. Hanhart, M. Hoferichter, B. Kubis, A dispersive analysis of $$\eta ^{\prime }\rightarrow \pi ^+\pi ^-\gamma $$ and $$\eta ^{\prime }\rightarrow \ell ^+\ell ^-\gamma $$, Eur. Phys. J. C 82 (5) (2022) 434, [Addendum: Eur. Phys. J. C 82, 1159 (2022)]. arXiv:2202.05846, https://doi.org/10.1140/epjc/s10052-022-10247-7 |
999 | C | 5 | |a 10.1103/PhysRevD.95.054026 |1 P Masjuan |9 -- missing cx lookup -- |2 Crossref |u P. Masjuan, P. Sánchez-Puertas, Pseudoscalar-pole contribution to the $$(g_{\mu }-2)$$: a rational approach. Phys. Rev. D 95(5), 054026 (2017). https://doi.org/10.1103/PhysRevD.95.054026. arXiv:1701.05829 |t Phys. Rev. D |v 95 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevD.94.054033 |1 R Escribano |9 -- missing cx lookup -- |2 Crossref |u R. Escribano, S. Gonzàlez-Solís, P. Masjuan, P. Sánchez-Puertas, $$\eta $$’ transition form factor from space- and timelike experimental data. Phys. Rev. D 94(5), 054033 (2016). https://doi.org/10.1103/PhysRevD.94.054033. arXiv:1512.07520 |t Phys. Rev. D |v 94 |y 2016 |
999 | C | 5 | |2 Crossref |u C. Alexandrou, et al., The $$\eta \rightarrow \gamma ^* \gamma ^*$$ transition form factor and the hadronic light-by-light $$\eta $$-pole contribution to the muon $$g-2$$ from lattice QCD (12 2022). arXiv:2212.06704 |
999 | C | 5 | |a 10.1103/PhysRevLett.32.1067 |9 -- missing cx lookup -- |1 A Browman |p 1067 - |2 Crossref |u A. Browman, J. DeWire, B. Gittelman, K.M. Hanson, E. Loh, R. Lewis, The Radiative Width of the eta Meson. Phys. Rev. Lett. 32, 1067 (1974). https://doi.org/10.1103/PhysRevLett.32.1067 |t Phys. Rev. Lett. |v 32 |y 1974 |
999 | C | 5 | |a 10.1103/PhysRev.81.899 |9 -- missing cx lookup -- |1 H Primakoff |p 899 - |2 Crossref |u H. Primakoff, Photoproduction of neutral mesons in nuclear electric fields and the mean life of the neutral meson. Phys. Rev. 81, 899 (1951). https://doi.org/10.1103/PhysRev.81.899 |t Phys. Rev. |v 81 |y 1951 |
999 | C | 5 | |a 10.1051/epjconf/20147307004 |9 -- missing cx lookup -- |1 L Gan |p 07004 - |2 Crossref |u L. Gan, Test of fundamental symmetries via the Primakoff effect. EPJ Web Conf. 73, 07004 (2014). https://doi.org/10.1051/epjconf/20147307004 |t EPJ Web Conf. |v 73 |y 2014 |
999 | C | 5 | |a 10.1103/RevModPhys.85.49 |9 -- missing cx lookup -- |1 AM Bernstein |p 49 - |2 Crossref |u A.M. Bernstein, B.R. Holstein, Neutral Pion Lifetime Measurements and the QCD Chiral Anomaly. Rev. Mod. Phys. 85, 49 (2013). https://doi.org/10.1103/RevModPhys.85.49. arXiv:1112.4809 |t Rev. Mod. Phys. |v 85 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevD.98.030001 |1 M Tanabashi |9 -- missing cx lookup -- |2 Crossref |u M. Tanabashi et al., Review of Particle Physics. Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001 |t Phys. Rev. D |v 98 |y 2018 |
999 | C | 5 | |a 10.1016/j.physletb.2007.02.021 |9 -- missing cx lookup -- |1 BL Ioffe |p 389 - |2 Crossref |u B.L. Ioffe, A.G. Oganesian, Axial anomaly and the precise value of the pi0 –$${>}$$ 2 gamma decay width. Phys. Lett. B 647, 389–393 (2007). https://doi.org/10.1016/j.physletb.2007.02.021. arXiv:hep-ph/0701077 |t Phys. Lett. B |v 647 |y 2007 |
999 | C | 5 | |a 10.1140/epjc/s10052-008-0703-6 |9 -- missing cx lookup -- |1 A Kastner |p 541 - |2 Crossref |u A. Kastner, H. Neufeld, The K(l3) scalar form factors in the standard model. Eur. Phys. J. C 57, 541–556 (2008). https://doi.org/10.1140/epjc/s10052-008-0703-6. arXiv:0805.2222 |t Eur. Phys. J. C |v 57 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevD.95.114504 |1 D Giusti |9 -- missing cx lookup -- |2 Crossref |u D. Giusti, V. Lubicz, C. Tarantino, G. Martinelli, F. Sanfilippo, S. Simula, N. Tantalo, Leading isospin-breaking corrections to pion, kaon and charmed-meson masses with Twisted-Mass fermions. Phys. Rev. D 95(11), 114504 (2017). https://doi.org/10.1103/PhysRevD.95.114504. arXiv:1704.06561 |t Phys. Rev. D |v 95 |y 2017 |
999 | C | 5 | |2 Crossref |u A. Gasparian, L. Gan, et al., A precision measurement of the $$\eta $$ radiative decay width via the primakoff effect, https://www.jlab.org/exp_-prog/proposals/10/PR12-10-011.pdf |
999 | C | 5 | |a 10.1016/0370-2693(96)00167-0 |9 -- missing cx lookup -- |1 H Leutwyler |p 181 - |2 Crossref |u H. Leutwyler, Implications of eta eta-prime mixing for the decay eta –$${>}$$ 3 pi. Phys. Lett. B 374, 181–185 (1996). https://doi.org/10.1016/0370-2693(96)00167-0. arXiv:hep-ph/9601236 |t Phys. Lett. B |v 374 |y 1996 |
999 | C | 5 | |2 Crossref |u R. Essig, et al., Working Group Report: New Light Weakly Coupled Particles, in: Community Summer Study 2013: Snowmass on the Mississippi, 2013. arXiv:1311.0029 |
999 | C | 5 | |2 Crossref |u J. Alexander, et al., Dark Sectors 2016 Workshop: Community Report, 2016. arXiv:1608.08632 |
999 | C | 5 | |2 Crossref |u M. Battaglieri, et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in: U.S. Cosmic Visions: New Ideas in Dark Matter, 2017. arXiv:1707.04591 |
999 | C | 5 | |a 10.1103/PhysRevD.79.015014 |1 N Arkani-Hamed |9 -- missing cx lookup -- |2 Crossref |u N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, N. Weiner, A Theory of Dark Matter. Phys. Rev. D 79, 015014 (2009). https://doi.org/10.1103/PhysRevD.79.015014. arXiv:0810.0713 |t Phys. Rev. D |v 79 |y 2009 |
999 | C | 5 | |a 10.1016/j.physletb.2008.12.012 |9 -- missing cx lookup -- |1 M Pospelov |p 391 - |2 Crossref |u M. Pospelov, A. Ritz, Astrophysical Signatures of Secluded Dark Matter. Phys. Lett. B 671, 391–397 (2009). https://doi.org/10.1016/j.physletb.2008.12.012. arXiv:0810.1502 |t Phys. Lett. B |v 671 |y 2009 |
999 | C | 5 | |a 10.1016/j.nuclphysb.2019.114638 |9 -- missing cx lookup -- |2 Crossref |u Y.-S. Liu, I. C. Cloët, G. A. Miller, Eta Decay and Muonic Puzzles, Nucl. Phys. B (2019) 114638. https://doi.org/10.1016/j.nuclphysb.2019.114638. arXiv:1805.01028 |
999 | C | 5 | |a 10.1103/PhysRevD.75.115017 |1 P Fayet |9 -- missing cx lookup -- |2 Crossref |u P. Fayet, U-boson production in e+ e- annihilations, psi and Upsilon decays, and Light Dark Matter. Phys. Rev. D 75, 115017 (2007). https://doi.org/10.1103/PhysRevD.75.115017. arXiv:hep-ph/0702176 |t Phys. Rev. D |v 75 |y 2007 |
999 | C | 5 | |a 10.1103/PhysRevD.80.095002 |1 M Pospelov |9 -- missing cx lookup -- |2 Crossref |u M. Pospelov, Secluded U(1) below the weak scale. Phys. Rev. D 80, 095002 (2009). https://doi.org/10.1103/PhysRevD.80.095002. arXiv:0811.1030 |t Phys. Rev. D |v 80 |y 2009 |
999 | C | 5 | |a 10.1103/PhysRevLett.116.042501 |1 AJ Krasznahorkay |9 -- missing cx lookup -- |2 Crossref |u A.J. Krasznahorkay et al., Observation of Anomalous Internal Pair Creation in Be8: A Possible Indication of a Light, Neutral Boson. Phys. Rev. Lett. 116(4), 042501 (2016). https://doi.org/10.1103/PhysRevLett.116.042501. arXiv:1504.01527 |t Phys. Rev. Lett. |v 116 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevLett.117.071803 |1 JL Feng |9 -- missing cx lookup -- |2 Crossref |u J.L. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T.M.P. Tait, P. Tanedo, Protophobic Fifth-Force Interpretation of the Observed Anomaly in $$^8$$Be Nuclear Transitions. Phys. Rev. Lett. 117(7), 071803 (2016). https://doi.org/10.1103/PhysRevLett.117.071803. arXiv:1604.07411 |t Phys. Rev. Lett. |v 117 |y 2016 |
999 | C | 5 | |a 10.1016/j.physrep.2017.11.004 |9 -- missing cx lookup -- |1 S Tulin |p 1 - |2 Crossref |u S. Tulin, H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure. Phys. Rept. 730, 1–57 (2018). https://doi.org/10.1016/j.physrep.2017.11.004. arXiv:1705.02358 |t Phys. Rept. |v 730 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevLett.110.111301 |1 S Tulin |9 -- missing cx lookup -- |2 Crossref |u S. Tulin, H.-B. Yu, K.M. Zurek, Resonant Dark Forces and Small Scale Structure. Phys. Rev. Lett. 110(11), 111301 (2013). https://doi.org/10.1103/PhysRevLett.110.111301. arXiv:1210.0900 |t Phys. Rev. Lett. |v 110 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevD.87.115007 |1 S Tulin |9 -- missing cx lookup -- |2 Crossref |u S. Tulin, H.-B. Yu, K.M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure. Phys. Rev. D 87(11), 115007 (2013). https://doi.org/10.1103/PhysRevD.87.115007. arXiv:1302.3898 |t Phys. Rev. D |v 87 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevLett.123.031803 |1 D Aloni |9 -- missing cx lookup -- |2 Crossref |u D. Aloni, Y. Soreq, M. Williams, Coupling QCD-Scale Axionlike Particles to Gluons. Phys. Rev. Lett. 123(3), 031803 (2019). https://doi.org/10.1103/PhysRevLett.123.031803. arXiv:1811.03474 |t Phys. Rev. Lett. |v 123 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevLett.123.071801 |1 D Aloni |9 -- missing cx lookup -- |2 Crossref |u D. Aloni, C. Fanelli, Y. Soreq, M. Williams, Photoproduction of Axionlike Particles. Phys. Rev. Lett. 123(7), 071801 (2019). https://doi.org/10.1103/PhysRevLett.123.071801. arXiv:1903.03586 |t Phys. Rev. Lett. |v 123 |y 2019 |
999 | C | 5 | |a 10.1007/JHEP12(2017)094 |9 -- missing cx lookup -- |2 Crossref |u M. J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer, K. Schmidt-Hoberg, Revised constraints and Belle II sensitivity for visible and invisible axion-like particles, JHEP 12 (2017) 094, [Erratum: JHEP 03, 190 (2021)]. https://doi.org/10.1007/JHEP12(2017)094. arXiv:1709.00009 |
999 | C | 5 | |a 10.1103/PhysRevD.38.3375 |9 -- missing cx lookup -- |1 JD Bjorken |p 3375 - |2 Crossref |u J.D. Bjorken, S. Ecklund, W.R. Nelson, A. Abashian, C. Church, B. Lu, L.W. Mo, T.A. Nunamaker, P. Rassmann, Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump. Phys. Rev. D 38, 3375 (1988). https://doi.org/10.1103/PhysRevD.38.3375 |t Phys. Rev. D |v 38 |y 1988 |
999 | C | 5 | |a 10.1140/epjc/s2002-01074-5 |9 -- missing cx lookup -- |1 G Abbiendi |p 331 - |2 Crossref |u G. Abbiendi et al., Multiphoton production in e+ e- collisions at s**(1/2) = 181-GeV to 209-GeV. Eur. Phys. J. C 26, 331–344 (2003). https://doi.org/10.1140/epjc/s2002-01074-5. arXiv:hep-ex/0210016 |t Eur. Phys. J. C |v 26 |y 2003 |
999 | C | 5 | |a 10.1103/PhysRevLett.118.171801 |9 -- missing cx lookup -- |2 Crossref |u S. Knapen, T. Lin, H.K. Lou, T. Melia, Searching for Axionlike Particles with Ultraperipheral Heavy-Ion Collisions. Phys. Rev. Lett. 118(17), 171801 (2017). https://doi.org/10.1103/PhysRevLett.118.171801. arXiv:1607.06083 |
999 | C | 5 | |a 10.1142/S0217751X9200171X |9 -- missing cx lookup -- |1 J Blumlein |p 3835 - |2 Crossref |u J. Blumlein et al., Limits on the mass of light (pseudo)scalar particles from Bethe-Heitler e+ e- and mu+ mu- pair production in a proton - iron beam dump experiment. Int. J. Mod. Phys. A 7, 3835–3850 (1992). https://doi.org/10.1142/S0217751X9200171X |t Int. J. Mod. Phys. A |v 7 |y 1992 |
999 | C | 5 | |2 Crossref |u P. A. Souder, P. E. Reimer, X. Zheng, Precision Measurement of Parity-violation in Deep Inelastic Scattering Over a Broad Kinematic Range, Jefferson Lab Experiment E12-10-007, 2010 with 2022 update |
999 | C | 5 | |a 10.1103/PhysRevLett.129.081801 |1 D Akimov |9 -- missing cx lookup -- |2 Crossref |u D. Akimov et al., Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENT. Phys. Rev. Lett. 129(8), 081801 (2022). https://doi.org/10.1103/PhysRevLett.129.081801. arXiv:2110.07730 |t Phys. Rev. Lett. |v 129 |y 2022 |
999 | C | 5 | |a 10.2172/1322154 |9 -- missing cx lookup -- |2 Crossref |u M. Battaglieri, et al., Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab (7 2016). arXiv:1607.01390 |
999 | C | 5 | |a 10.1103/PhysRevD.98.115022 |1 L Marsicano |9 -- missing cx lookup -- |2 Crossref |u L. Marsicano, M. Battaglieri, A. Celentano, R. De Vita, Y.-M. Zhong, Probing Leptophilic Dark Sectors at Electron Beam-Dump Facilities. Phys. Rev. D 98(11), 115022 (2018). https://doi.org/10.1103/PhysRevD.98.115022. arXiv:1812.03829 |t Phys. Rev. D |v 98 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevD.106.072011 |9 -- missing cx lookup -- |2 Crossref |u M. Battaglieri et al., Dark matter search with the BDX-MINI experiment. Phys. Rev. D 106(7), 072011 (2022). https://doi.org/10.1103/PhysRevD.106.072011. arXiv:2208.01387 |
999 | C | 5 | |a 10.1103/PhysRevLett.125.044803 |1 A Bartnik |9 -- missing cx lookup -- |2 Crossref |u A. Bartnik et al., CBETA: First Multipass Superconducting Linear Accelerator with Energy Recovery. Phys. Rev. Lett. 125(4), 044803 (2020). https://doi.org/10.1103/PhysRevLett.125.044803 |t Phys. Rev. Lett. |v 125 |y 2020 |
999 | C | 5 | |a 10.18429/JACoW-IPAC2021-MOPAB216 |9 -- missing cx lookup -- |2 Crossref |u S. Bogacz, et al., 20-24 GeV FFA CEBAF Energy Upgrade, Proc. IPAC’21, Campinas, Brazil, May 2021 (2023) 715–718 https://doi.org/10.18429/JACoW-IPAC2021-MOPAB216 |
999 | C | 5 | |a 10.18429/JACoW-IPAC2022-THPOTK011 |9 -- missing cx lookup -- |2 Crossref |u S. Brooks, S. Bogacz, Permanent Magnets forthe CEBAF 24GeV Upgrade, Proc. IPAC’22, Bangkok, Thailand, Jun. 2022 (2022) 2792–2795 https://doi.org/10.18429/JACoW-IPAC2022-THPOTK011 |
999 | C | 5 | |2 Crossref |u S. Brooks, et al., Open-Midplane Gradient Permanent Magnet with 1.53 T Peak Field, Proc. IPAC’23, Venice, Italy, May 2023 (2023) |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|