000622276 001__ 622276
000622276 005__ 20250625130036.0
000622276 0247_ $$2doi$$a10.1140/epja/s10050-024-01282-x
000622276 0247_ $$2ISSN$$a1434-6001
000622276 0247_ $$2ISSN$$a1434-601X
000622276 0247_ $$2WOS$$aWOS:001325234200001
000622276 037__ $$aPUBDB-2025-00314
000622276 041__ $$aEnglish
000622276 082__ $$a530
000622276 1001_ $$aAccardi, A.$$b0
000622276 245__ $$aStrong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab
000622276 260__ $$aHeidelberg$$bSpringer$$c2024
000622276 3367_ $$2DRIVER$$aarticle
000622276 3367_ $$2DataCite$$aOutput Types/Journal article
000622276 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737990619_2170208
000622276 3367_ $$2BibTeX$$aARTICLE
000622276 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000622276 3367_ $$00$$2EndNote$$aJournal Article
000622276 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000622276 542__ $$2Crossref$$i2024-09-04$$uhttps://www.springernature.com/gp/researchers/text-and-data-mining
000622276 542__ $$2Crossref$$i2024-09-04$$uhttps://www.springernature.com/gp/researchers/text-and-data-mining
000622276 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000622276 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000622276 7001_ $$aAchenbach, P.$$b1
000622276 7001_ $$aAdhikari, D.$$b2
000622276 7001_ $$aAfanasev, A.$$b3
000622276 7001_ $$aAkondi, C. S.$$b4
000622276 7001_ $$aAkopov, N.$$b5
000622276 7001_ $$aAlbaladejo, M.$$b6
000622276 7001_ $$aAlbataineh, H.$$b7
000622276 7001_ $$aAlbrecht, M.$$b8
000622276 7001_ $$aAlmeida-Zamora, B.$$b9
000622276 7001_ $$aAmaryan, M.$$b10
000622276 7001_ $$aAndroić, D.$$b11
000622276 7001_ $$aArmstrong, W.$$b12
000622276 7001_ $$aArmstrong, D. S.$$b13
000622276 7001_ $$aArratia, M.$$b14
000622276 7001_ $$aArrington, J.$$b15
000622276 7001_ $$aAsaturyan, A.$$b16
000622276 7001_ $$aAustregesilo, A.$$b17
000622276 7001_ $$aAvakian, H.$$b18
000622276 7001_ $$aAverett, T.$$b19
000622276 7001_ $$aGayoso, C. Ayerbe$$b20
000622276 7001_ $$aBacchetta, A.$$b21
000622276 7001_ $$aBalantekin, A. B.$$b22
000622276 7001_ $$aBaltzell, N.$$b23
000622276 7001_ $$0P:(DE-HGF)0$$aBarion, L.$$b24
000622276 7001_ $$aBarry, P. C.$$b25
000622276 7001_ $$aBashir, A.$$b26
000622276 7001_ $$aBattaglieri, M.$$b27
000622276 7001_ $$aBellini, V.$$b28
000622276 7001_ $$aBelov, I.$$b29
000622276 7001_ $$aBenhar, O.$$b30
000622276 7001_ $$aBenkel, B.$$b31
000622276 7001_ $$aBenmokhtar, F.$$b32
000622276 7001_ $$aBentz, W.$$b33
000622276 7001_ $$aBertone, V.$$b34
000622276 7001_ $$aBhatt, H.$$b35
000622276 7001_ $$aBianconi, A.$$b36
000622276 7001_ $$aBibrzycki, L.$$b37
000622276 7001_ $$aBijker, R.$$b38
000622276 7001_ $$aBinosi, D.$$b39
000622276 7001_ $$aBiswas, D.$$b40
000622276 7001_ $$aBoër, M.$$b41
000622276 7001_ $$aBoeglin, W.$$b42
000622276 7001_ $$aBogacz, S. A.$$b43
000622276 7001_ $$aBoglione, M.$$b44
000622276 7001_ $$aBondí, M.$$b45
000622276 7001_ $$aBoos, E. E.$$b46
000622276 7001_ $$aBosted, P.$$b47
000622276 7001_ $$aBozzi, G.$$b48
000622276 7001_ $$aBrash, E. J.$$b49
000622276 7001_ $$aBriceño, R. A.$$b50
000622276 7001_ $$aBrindza, P. D.$$b51
000622276 7001_ $$aBriscoe, W. J.$$b52
000622276 7001_ $$aBrodsky, S. J.$$b53
000622276 7001_ $$aBrooks, W. K.$$b54
000622276 7001_ $$aBurkert, V. D.$$b55
000622276 7001_ $$aCamsonne, A.$$b56
000622276 7001_ $$aCao, T.$$b57
000622276 7001_ $$aCardman, L. S.$$b58
000622276 7001_ $$aCarman, D. S.$$b59
000622276 7001_ $$aCarpinelli, M.$$b60
000622276 7001_ $$aCates, G. D.$$b61
000622276 7001_ $$aCaylor, J.$$b62
000622276 7001_ $$aCelentano, A.$$b63
000622276 7001_ $$aCeliberto, F. G.$$b64
000622276 7001_ $$aCerutti, M.$$b65
000622276 7001_ $$aChang, L.$$b66
000622276 7001_ $$aChatagnon, P.$$b67
000622276 7001_ $$aChen, C.$$b68
000622276 7001_ $$aChen, J.-P.$$b69
000622276 7001_ $$aChetry, T.$$b70
000622276 7001_ $$aChristopher, A.$$b71
000622276 7001_ $$aChristy, E.$$b72
000622276 7001_ $$aChudakov, E.$$b73
000622276 7001_ $$aCisbani, E.$$b74
000622276 7001_ $$aCloët, I. C.$$b75
000622276 7001_ $$aCobos-Martinez, J. J.$$b76
000622276 7001_ $$aCohen, E. O.$$b77
000622276 7001_ $$aColangelo, P.$$b78
000622276 7001_ $$aCole, P. L.$$b79
000622276 7001_ $$aConstantinou, M.$$b80
000622276 7001_ $$aContalbrigo, M.$$b81
000622276 7001_ $$aCostantini, G.$$b82
000622276 7001_ $$aCosyn, W.$$b83
000622276 7001_ $$aCotton, C.$$b84
000622276 7001_ $$aCourtoy, A.$$b85
000622276 7001_ $$aDusa, S. Covrig$$b86
000622276 7001_ $$aCrede, V.$$b87
000622276 7001_ $$aCui, Z.-F.$$b88
000622276 7001_ $$aD’Angelo, A.$$b89
000622276 7001_ $$aDöring, M.$$b90
000622276 7001_ $$aDalton, M. M.$$b91
000622276 7001_ $$aDanilkin, I.$$b92
000622276 7001_ $$aDavydov, M.$$b93
000622276 7001_ $$aDay, D.$$b94
000622276 7001_ $$aDe Fazio, F.$$b95
000622276 7001_ $$aDe Napoli, M.$$b96
000622276 7001_ $$aDe Vita, R.$$b97
000622276 7001_ $$aDean, D. J.$$b98
000622276 7001_ $$aDefurne, M.$$b99
000622276 7001_ $$ade Paula, W.$$b100
000622276 7001_ $$ade Téramond, G. F.$$b101
000622276 7001_ $$aDeur, A.$$b102
000622276 7001_ $$aDevkota, B.$$b103
000622276 7001_ $$aDhital, S.$$b104
000622276 7001_ $$aDi Nezza, P.$$b105
000622276 7001_ $$aDiefenthaler, M.$$b106
000622276 7001_ $$aDiehl, S.$$b107
000622276 7001_ $$aDilks, C.$$b108
000622276 7001_ $$aDing, M.$$b109
000622276 7001_ $$aDjalali, C.$$b110
000622276 7001_ $$aDobbs, S.$$b111
000622276 7001_ $$aDupré, R.$$b112
000622276 7001_ $$aDutta, D.$$b113
000622276 7001_ $$aEdwards, R. G.$$b114
000622276 7001_ $$aEgiyan, H.$$b115
000622276 7001_ $$aEhinger, L.$$b116
000622276 7001_ $$aEichmann, G.$$b117
000622276 7001_ $$aElaasar, M.$$b118
000622276 7001_ $$aElouadrhiri, L.$$b119
000622276 7001_ $$aAlaoui, A. El$$b120
000622276 7001_ $$aFassi, L. El$$b121
000622276 7001_ $$aEmmert, A.$$b122
000622276 7001_ $$aEngelhardt, M.$$b123
000622276 7001_ $$aEnt, R.$$b124
000622276 7001_ $$aErnst, D. J.$$b125
000622276 7001_ $$aEugenio, P.$$b126
000622276 7001_ $$aEvans, G.$$b127
000622276 7001_ $$aFanelli, C.$$b128
000622276 7001_ $$aFegan, S.$$b129
000622276 7001_ $$aFernández-Ramírez, C.$$b130
000622276 7001_ $$aFernandez, L. A.$$b131
000622276 7001_ $$aFernando, I. P.$$b132
000622276 7001_ $$aFilippi, A.$$b133
000622276 7001_ $$aFischer, C. S.$$b134
000622276 7001_ $$aFogler, C.$$b135
000622276 7001_ $$aFomin, N.$$b136
000622276 7001_ $$aFrankfurt, L.$$b137
000622276 7001_ $$aFrederico, T.$$b138
000622276 7001_ $$aFreese, A.$$b139
000622276 7001_ $$aFu, Y.$$b140
000622276 7001_ $$aGamberg, L.$$b141
000622276 7001_ $$aGan, L.$$b142
000622276 7001_ $$aGao, F.$$b143
000622276 7001_ $$aGarcia-Tecocoatzi, H.$$b144
000622276 7001_ $$aGaskell, D.$$b145
000622276 7001_ $$aGasparian, A.$$b146
000622276 7001_ $$aGates, K.$$b147
000622276 7001_ $$aGavalian, G.$$b148
000622276 7001_ $$aGhoshal, P. K.$$b149
000622276 7001_ $$aGiachino, A.$$b150
000622276 7001_ $$aGiacosa, F.$$b151
000622276 7001_ $$aGiannuzzi, F.$$b152
000622276 7001_ $$aGilfoyle, G.-P.$$b153
000622276 7001_ $$aGirod, F.-X.$$b154
000622276 7001_ $$aGlazier, D. I.$$b155
000622276 7001_ $$aGleason, C.$$b156
000622276 7001_ $$aGodfrey, S.$$b157
000622276 7001_ $$aGoity, J. L.$$b158
000622276 7001_ $$aGolubenko, A. A.$$b159
000622276 7001_ $$aGonzàlez-Solís, S.$$b160
000622276 7001_ $$aGothe, R. W.$$b161
000622276 7001_ $$aGotra, Y.$$b162
000622276 7001_ $$aGriffioen, K.$$b163
000622276 7001_ $$0P:(DE-H253)PIP1097931$$aGrocholski, Oskar$$b164
000622276 7001_ $$aGrube, B.$$b165
000622276 7001_ $$aGuèye, P.$$b166
000622276 7001_ $$aGuo, F.-K.$$b167
000622276 7001_ $$aGuo, Y.$$b168
000622276 7001_ $$aGuo, L.$$b169
000622276 7001_ $$aHague, T. J.$$b170
000622276 7001_ $$aHammoud, N.$$b171
000622276 7001_ $$aHansen, J.-O.$$b172
000622276 7001_ $$aHattawy, M.$$b173
000622276 7001_ $$aHauenstein, F.$$b174
000622276 7001_ $$aHayward, T.$$b175
000622276 7001_ $$aHeddle, D.$$b176
000622276 7001_ $$aHeinrich, N.$$b177
000622276 7001_ $$aHen, O.$$b178
000622276 7001_ $$aHiginbotham, D. W.$$b179
000622276 7001_ $$aHiguera-Angulo, I. M.$$b180
000622276 7001_ $$aHiller Blin, A. N.$$b181
000622276 7001_ $$aHobart, A.$$b182
000622276 7001_ $$aHobbs, T.$$b183
000622276 7001_ $$aHolmberg, D. E.$$b184
000622276 7001_ $$aHorn, T.$$b185
000622276 7001_ $$aHoyer, P.$$b186
000622276 7001_ $$aHuber, G. M.$$b187
000622276 7001_ $$aHurck, P.$$b188
000622276 7001_ $$aHutauruk, P. T. P.$$b189
000622276 7001_ $$aIlieva, Y.$$b190
000622276 7001_ $$aIllari, I.$$b191
000622276 7001_ $$aIreland, D. G.$$b192
000622276 7001_ $$aIsupov, E. L.$$b193
000622276 7001_ $$aItaliano, A.$$b194
000622276 7001_ $$aJaegle, I.$$b195
000622276 7001_ $$aJarvis, N. S.$$b196
000622276 7001_ $$aJenkins, D. J.$$b197
000622276 7001_ $$aJeschonnek, S.$$b198
000622276 7001_ $$aJi, C.-R.$$b199
000622276 7001_ $$aJo, H. S.$$b200
000622276 7001_ $$aJones, M.$$b201
000622276 7001_ $$aJones, R. T.$$b202
000622276 7001_ $$aJones, D. C.$$b203
000622276 7001_ $$aJoo, K.$$b204
000622276 7001_ $$aJunaid, M.$$b205
000622276 7001_ $$aKageya, T.$$b206
000622276 7001_ $$aKalantarians, N.$$b207
000622276 7001_ $$aKarki, A.$$b208
000622276 7001_ $$aKaryan, G.$$b209
000622276 7001_ $$aKatramatou, A. T.$$b210
000622276 7001_ $$aKay, S. J. D.$$b211
000622276 7001_ $$aKazimi, R.$$b212
000622276 7001_ $$aKeith, C. D.$$b213
000622276 7001_ $$aKeppel, C.$$b214
000622276 7001_ $$aKerbizi, A.$$b215
000622276 7001_ $$aKhachatryan, V.$$b216
000622276 7001_ $$aKhanal, A.$$b217
000622276 7001_ $$aKhandaker, M.$$b218
000622276 7001_ $$aKim, A.$$b219
000622276 7001_ $$aKinney, E. R.$$b220
000622276 7001_ $$aKohl, M.$$b221
000622276 7001_ $$aKotzinian, A.$$b222
000622276 7001_ $$aKriesten, B. T.$$b223
000622276 7001_ $$aKubarovsky, V.$$b224
000622276 7001_ $$aKubis, B.$$b225
000622276 7001_ $$aKuhn, S. E.$$b226
000622276 7001_ $$aKumar, V.$$b227
000622276 7001_ $$aKutz, T.$$b228
000622276 7001_ $$aLeali, M.$$b229
000622276 7001_ $$aLebed, R. F.$$b230
000622276 7001_ $$aLenisa, P.$$b231
000622276 7001_ $$aLeskovec, L.$$b232
000622276 7001_ $$aLi, S.$$b233
000622276 7001_ $$aLi, X.$$b234
000622276 7001_ $$aLiao, J.$$b235
000622276 7001_ $$aLin, H.-W.$$b236
000622276 7001_ $$aLiu, L.$$b237
000622276 7001_ $$aLiuti, S.$$b238
000622276 7001_ $$aLiyanage, N.$$b239
000622276 7001_ $$aLu, Y.$$b240
000622276 7001_ $$aMacGregor, I. J. D.$$b241
000622276 7001_ $$aMack, D. J.$$b242
000622276 7001_ $$aMaiani, L.$$b243
000622276 7001_ $$aMamo, K. A.$$b244
000622276 7001_ $$aMandaglio, G.$$b245
000622276 7001_ $$aMariani, C.$$b246
000622276 7001_ $$aMarkowitz, P.$$b247
000622276 7001_ $$aMarukyan, H.$$b248
000622276 7001_ $$aMascagna, V.$$b249
000622276 7001_ $$aMathieu, V.$$b250
000622276 7001_ $$aMaxwell, J.$$b251
000622276 7001_ $$aMazouz, M.$$b252
000622276 7001_ $$aMcCaughan, M.$$b253
000622276 7001_ $$aMcKeown, R. D.$$b254
000622276 7001_ $$aMcKinnon, B.$$b255
000622276 7001_ $$aMeekins, D.$$b256
000622276 7001_ $$aMelnitchouk, W.$$b257
000622276 7001_ $$aMetz, A.$$b258
000622276 7001_ $$aMeyer, C. A.$$b259
000622276 7001_ $$aMeziani, Z.-E.$$b260
000622276 7001_ $$aMezrag, C.$$b261
000622276 7001_ $$aMichaels, R.$$b262
000622276 7001_ $$aMiller, G. A.$$b263
000622276 7001_ $$aMineeva, T.$$b264
000622276 7001_ $$aMiramontes, A. S.$$b265
000622276 7001_ $$aMirazita, M.$$b266
000622276 7001_ $$aMizutani, K.$$b267
000622276 7001_ $$aMkrtchyan, A.$$b268
000622276 7001_ $$aMkrtchyan, H.$$b269
000622276 7001_ $$aMoffit, B.$$b270
000622276 7001_ $$aMohanmurthy, P.$$b271
000622276 7001_ $$aMokeev, V. I.$$b272
000622276 7001_ $$aMonaghan, P.$$b273
000622276 7001_ $$aMontaña, G.$$b274
000622276 7001_ $$aMontgomery, R.$$b275
000622276 7001_ $$aMoretti, A.$$b276
000622276 7001_ $$aChàvez, J. M. Morgado$$b277
000622276 7001_ $$aMosel, U.$$b278
000622276 7001_ $$aMovsisyan, A.$$b279
000622276 7001_ $$aMusico, P.$$b280
000622276 7001_ $$aNadeeshani, S. A.$$b281
000622276 7001_ $$aNadolsky, P. M.$$b282
000622276 7001_ $$aNakamura, S. X.$$b283
000622276 7001_ $$aNazeer, J.$$b284
000622276 7001_ $$aNefediev, A. V.$$b285
000622276 7001_ $$aNeupane, K.$$b286
000622276 7001_ $$aNguyen, D.$$b287
000622276 7001_ $$aNiccolai, S.$$b288
000622276 7001_ $$aNiculescu, I.$$b289
000622276 7001_ $$aNiculescu, G.$$b290
000622276 7001_ $$aNocera, E. R.$$b291
000622276 7001_ $$aNycz, M.$$b292
000622276 7001_ $$aOlness, F. I.$$b293
000622276 7001_ $$aOrtega, P. G.$$b294
000622276 7001_ $$aOsipenko, M.$$b295
000622276 7001_ $$aPace, E.$$b296
000622276 7001_ $$aPandey, B.$$b297
000622276 7001_ $$aPandey, P.$$b298
000622276 7001_ $$aPapandreou, Z.$$b299
000622276 7001_ $$aPapavassiliou, J.$$b300
000622276 7001_ $$aPappalardo, L. L.$$b301
000622276 7001_ $$aParedes-Torres, G.$$b302
000622276 7001_ $$aParemuzyan, R.$$b303
000622276 7001_ $$aPark, S.$$b304
000622276 7001_ $$aParsamyan, B.$$b305
000622276 7001_ $$aPaschke, K. D.$$b306
000622276 7001_ $$aPasquini, B.$$b307
000622276 7001_ $$aPassemar, E.$$b308
000622276 7001_ $$aPasyuk, E.$$b309
000622276 7001_ $$aPatel, T.$$b310
000622276 7001_ $$aPaudel, C.$$b311
000622276 7001_ $$aPaul, S. J.$$b312
000622276 7001_ $$aPeng, J.-C.$$b313
000622276 7001_ $$aPentchev, L.$$b314
000622276 7001_ $$aPerrino, R.$$b315
000622276 7001_ $$aPerry, R. J.$$b316
000622276 7001_ $$aPeters, K.$$b317
000622276 7001_ $$aPetratos, G. G.$$b318
000622276 7001_ $$aPhelps, W.$$b319
000622276 7001_ $$aPiasetzky, E.$$b320
000622276 7001_ $$aPilloni, A.$$b321
000622276 7001_ $$aPire, B.$$b322
000622276 7001_ $$aPitonyak, D.$$b323
000622276 7001_ $$aPitt, M. L.$$b324
000622276 7001_ $$aPolosa, A. D.$$b325
000622276 7001_ $$aPospelov, M.$$b326
000622276 7001_ $$aPostuma, A. C.$$b327
000622276 7001_ $$aPoudel, J.$$b328
000622276 7001_ $$aPreet, L.$$b329
000622276 7001_ $$aPrelovsek, S.$$b330
000622276 7001_ $$aPrice, J. W.$$b331
000622276 7001_ $$aProkudin, A.$$b332
000622276 7001_ $$aPuckett, A. J. R.$$b333
000622276 7001_ $$aPybus, J. R.$$b334
000622276 7001_ $$aQin, S.-X.$$b335
000622276 7001_ $$aQiu, J.-W.$$b336
000622276 7001_ $$aRadici, M.$$b337
000622276 7001_ $$aRashidi, H.$$b338
000622276 7001_ $$aRathnayake, A. D.$$b339
000622276 7001_ $$aRaue, B. A.$$b340
000622276 7001_ $$aReed, T.$$b341
000622276 7001_ $$aReimer, P. E.$$b342
000622276 7001_ $$aReinhold, J.$$b343
000622276 7001_ $$aRichard, J.-M.$$b344
000622276 7001_ $$aRinaldi, M.$$b345
000622276 7001_ $$aRinger, F.$$b346
000622276 7001_ $$aRipani, M.$$b347
000622276 7001_ $$aRitman, J.$$b348
000622276 7001_ $$aWest, J. Rittenhouse$$b349
000622276 7001_ $$aRivero-Acosta, A.$$b350
000622276 7001_ $$aRoberts, C. D.$$b351
000622276 7001_ $$aRodas, A.$$b352
000622276 7001_ $$0P:(DE-H253)PIP1098620$$aRodini, S.$$b353
000622276 7001_ $$aRodríguez-Quintero, J.$$b354
000622276 7001_ $$aRogers, T. C.$$b355
000622276 7001_ $$0P:(DE-HGF)0$$aRojo, J.$$b356
000622276 7001_ $$0P:(DE-HGF)0$$aRossi, P.$$b357$$eCorresponding author
000622276 7001_ $$aRossi, G. C.$$b358
000622276 7001_ $$aSalmè, G.$$b359
000622276 7001_ $$aSantiesteban, S. N.$$b360
000622276 7001_ $$aSantopinto, E.$$b361
000622276 7001_ $$aSargsian, M.$$b362
000622276 7001_ $$aSato, N.$$b363
000622276 7001_ $$aSchadmand, S.$$b364
000622276 7001_ $$aSchmidt, A.$$b365
000622276 7001_ $$aSchmidt, S. M.$$b366
000622276 7001_ $$aSchnell, G.$$b367
000622276 7001_ $$aSchumacher, R. A.$$b368
000622276 7001_ $$aSchweitzer, P.$$b369
000622276 7001_ $$aScimemi, I.$$b370
000622276 7001_ $$aScott, K. C.$$b371
000622276 7001_ $$aSeay, D. A.$$b372
000622276 7001_ $$aSegovia, J.$$b373
000622276 7001_ $$aSemenov-Tian-Shansky, K.$$b374
000622276 7001_ $$aSeryi, A.$$b375
000622276 7001_ $$aSharda, A. S.$$b376
000622276 7001_ $$aShepherd, M. R.$$b377
000622276 7001_ $$aShirokov, E. V.$$b378
000622276 7001_ $$aShrestha, S.$$b379
000622276 7001_ $$aShrestha, U.$$b380
000622276 7001_ $$aShvedunov, V. I.$$b381
000622276 7001_ $$aSignori, A.$$b382
000622276 7001_ $$aSlifer, K. J.$$b383
000622276 7001_ $$aSmith, W. A.$$b384
000622276 7001_ $$aSomov, A.$$b385
000622276 7001_ $$aSouder, P.$$b386
000622276 7001_ $$aSparveris, N.$$b387
000622276 7001_ $$aSpizzo, F.$$b388
000622276 7001_ $$aSpreafico, M.$$b389
000622276 7001_ $$aStepanyan, S.$$b390
000622276 7001_ $$aStevens, J. R.$$b391
000622276 7001_ $$aStrakovsky, I. I.$$b392
000622276 7001_ $$aStrauch, S.$$b393
000622276 7001_ $$aStrikman, M.$$b394
000622276 7001_ $$aSu, S.$$b395
000622276 7001_ $$aSumner, B. C. L.$$b396
000622276 7001_ $$aSun, E.$$b397
000622276 7001_ $$aSuresh, M.$$b398
000622276 7001_ $$aSutera, C.$$b399
000622276 7001_ $$aSwanson, E. S.$$b400
000622276 7001_ $$aSzczepaniak, A. P.$$b401
000622276 7001_ $$aSznajder, P.$$b402
000622276 7001_ $$aSzumila-Vance, H.$$b403
000622276 7001_ $$aSzymanowski, L.$$b404
000622276 7001_ $$aTadepalli, A.-S.$$b405
000622276 7001_ $$aTadevosyan, V.$$b406
000622276 7001_ $$aTamang, B.$$b407
000622276 7001_ $$aTarasov, V. V.$$b408
000622276 7001_ $$aThiel, A.$$b409
000622276 7001_ $$aTong, X.-B.$$b410
000622276 7001_ $$aTyson, R.$$b411
000622276 7001_ $$aUngaro, M.$$b412
000622276 7001_ $$aUrciuoli, G. M.$$b413
000622276 7001_ $$aUsman, A.$$b414
000622276 7001_ $$aValcarce, A.$$b415
000622276 7001_ $$aVallarino, S.$$b416
000622276 7001_ $$aVaquera-Araujo, C. A.$$b417
000622276 7001_ $$aVenturelli, L.$$b418
000622276 7001_ $$aVera, F.$$b419
000622276 7001_ $$aVladimirov, A.$$b420
000622276 7001_ $$aVossen, A.$$b421
000622276 7001_ $$aWagner, J.$$b422
000622276 7001_ $$aWei, X.$$b423
000622276 7001_ $$aWeinstein, L. B.$$b424
000622276 7001_ $$aWeiss, C.$$b425
000622276 7001_ $$aWilliams, R.$$b426
000622276 7001_ $$aWinney, D.$$b427
000622276 7001_ $$aWojtsekhowski, B.$$b428
000622276 7001_ $$aWood, M. H.$$b429
000622276 7001_ $$aXiao, T.$$b430
000622276 7001_ $$aXu, S.-S.$$b431
000622276 7001_ $$aYe, Z.$$b432
000622276 7001_ $$aYero, C.$$b433
000622276 7001_ $$0P:(DE-H253)PIP1103338$$aYuan, C.-P.$$b434
000622276 7001_ $$aYurov, M.$$b435
000622276 7001_ $$aZachariou, N.$$b436
000622276 7001_ $$aZhang, Z.$$b437
000622276 7001_ $$aZhao, Y.$$b438
000622276 7001_ $$aZhao, Z. W.$$b439
000622276 7001_ $$aZheng, X.$$b440
000622276 7001_ $$aZhou, X.$$b441
000622276 7001_ $$aZiegler, V.$$b442
000622276 7001_ $$aZihlmann, B.$$b443
000622276 77318 $$2Crossref$$3journal-article$$a10.1140/epja/s10050-024-01282-x$$bSpringer Science and Business Media LLC$$d2024-09-04$$n9$$p173$$tThe European Physical Journal A$$v60$$x1434-601X$$y2024
000622276 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/s10050-024-01282-x$$gVol. 60, no. 9, p. 173$$n9$$p173$$tThe European physical journal / A$$v60$$x1434-601X$$y2024
000622276 8564_ $$uhttps://bib-pubdb1.desy.de/record/622276/files/s10050-024-01282-x.pdf$$yRestricted
000622276 8564_ $$uhttps://bib-pubdb1.desy.de/record/622276/files/s10050-024-01282-x.pdf?subformat=pdfa$$xpdfa$$yRestricted
000622276 909CO $$ooai:bib-pubdb1.desy.de:622276$$pVDB
000622276 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1097931$$aDeutsches Elektronen-Synchrotron$$b164$$kDESY
000622276 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1098620$$aDeutsches Elektronen-Synchrotron$$b353$$kDESY
000622276 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1103338$$aDeutsches Elektronen-Synchrotron$$b434$$kDESY
000622276 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000622276 9141_ $$y2024
000622276 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-21$$wger
000622276 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-21$$wger
000622276 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-21
000622276 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000622276 980__ $$ajournal
000622276 980__ $$aVDB
000622276 980__ $$aI:(DE-H253)T-20120731
000622276 980__ $$aUNRESTRICTED
000622276 999C5 $$1J Arrington$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2022.103985$$tProg. Part. Nucl. Phys.$$uJ. Arrington et al., Physics with CEBAF at 12 GeV and future opportunities. Prog. Part. Nucl. Phys. 127, 103985 (2022). https://doi.org/10.1016/j.ppnp.2022.103985. arXiv:2112.00060$$v127$$y2022
000622276 999C5 $$2Crossref$$uJ. Bulava, et al., Hadron Spectroscopy with Lattice QCD, in: Snowmass 2021, (2022). arXiv:2203.03230
000622276 999C5 $$1CA Meyer$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2015.03.001$$p21 -$$tProg. Part. Nucl. Phys.$$uC.A. Meyer, E.S. Swanson, Hybrid Mesons. Prog. Part. Nucl. Phys. 82, 21–58 (2015). https://doi.org/10.1016/j.ppnp.2015.03.001. arXiv:1502.07276$$v82$$y2015
000622276 999C5 $$1A Rodas$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.042002$$tPhys. Rev. Lett.$$uA. Rodas et al., Determination of the pole position of the lightest hybrid meson candidate. Phys. Rev. Lett. 122(4), 042002 (2019). https://doi.org/10.1103/PhysRevLett.122.042002. arXiv:1810.04171$$v122$$y2019
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.129.192002$$uM. Ablikim, et al., Observation of an Isoscalar Resonance with Exotic JPC=1-+ Quantum Numbers in $$\text{J}/\psi \rightarrow \gamma \eta \eta $$’, Phys. Rev. Lett. 129 (19) (2022) 192002, [Erratum: Phys.Rev.Lett. 130, 159901 (2023)]. arXiv:2202.00621, https://doi.org/10.1103/PhysRevLett.129.192002
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.90.015003$$uS.L. Olsen, T. Skwarnicki, D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence. Rev. Mod. Phys. 90(1), 015003 (2018). https://doi.org/10.1103/RevModPhys.90.015003. arXiv:1708.04012
000622276 999C5 $$1RF Lebed$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2016.11.003$$p143 -$$tProg. Part. Nucl. Phys.$$uR.F. Lebed, R.E. Mitchell, E.S. Swanson, Heavy-Quark QCD Exotica. Prog. Part. Nucl. Phys. 93, 143–194 (2017). https://doi.org/10.1016/j.ppnp.2016.11.003. arXiv:1610.04528$$v93$$y2017
000622276 999C5 $$1RA Briceno$$2Crossref$$9-- missing cx lookup --$$a10.1088/1674-1137/40/4/042001$$tChin. Phys. C$$uR.A. Briceno et al., Issues and Opportunities in Exotic Hadrons. Chin. Phys. C 40(4), 042001 (2016). https://doi.org/10.1088/1674-1137/40/4/042001. arXiv:1511.06779$$v40$$y2016
000622276 999C5 $$1M Ablikim$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.252001$$tPhys. Rev. Lett.$$uM. Ablikim et al., Observation of a Charged Charmoniumlike Structure in $$e^+e^- \rightarrow \pi ^+\pi ^- J/\psi $$ at $$\sqrt{s}$$ =4.26 GeV. Phys. Rev. Lett. 110, 252001 (2013). https://doi.org/10.1103/PhysRevLett.110.252001. arXiv:1303.5949$$v110$$y2013
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.252002$$uZ. Q. Liu, et al., Study of $$e^+e^- \rightarrow \pi ^+ \pi ^- J/\psi $$ and Observation of a Charged Charmoniumlike State at Belle, Phys. Rev. Lett. 110 (2013) 252002, [Erratum: Phys.Rev.Lett. 111, 019901 (2013)]. arXiv:1304.0121, https://doi.org/10.1103/PhysRevLett.110.252002
000622276 999C5 $$1A Bondar$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.122001$$tPhys. Rev. Lett.$$uA. Bondar et al., Observation of two charged bottomonium-like resonances in Y(5S) decays. Phys. Rev. Lett. 108, 122001 (2012). https://doi.org/10.1103/PhysRevLett.108.122001. arXiv:1110.2251$$v108$$y2012
000622276 999C5 $$1M Ablikim$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.242001$$tPhys. Rev. Lett.$$uM. Ablikim et al., Observation of a Charged Charmoniumlike Structure $$Z_c$$(4020) and Search for the $$Z_c$$(3900) in $$e^+e^- \rightarrow \pi ^+\pi ^- h_c$$. Phys. Rev. Lett. 111(24), 242001 (2013). https://doi.org/10.1103/PhysRevLett.111.242001. arXiv:1309.1896$$v111$$y2013
000622276 999C5 $$1VD Burkert$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2020.163419$$tNucl. Instrum. Meth. A$$uV.D. Burkert et al., The CLAS12 Spectrometer at Jefferson Laboratory. Nucl. Instrum. Meth. A 959, 163419 (2020). https://doi.org/10.1016/j.nima.2020.163419$$v959$$y2020
000622276 999C5 $$1S Adhikari$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2020.164807$$tNucl. Instrum. Meth. A$$uS. Adhikari et al., The GLUEX beamline and detector. Nucl. Instrum. Meth. A 987, 164807 (2021). https://doi.org/10.1016/j.nima.2020.164807. arXiv:2005.14272$$v987$$y2021
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.L091102$$uR. Aaij et al., Observation of excited $$\Omega _c^0$$ baryons in $$\Omega _b^- \rightarrow \Xi _c^+ K^-\pi ^-$$decays. Phys. Rev. D 104(9), L091102 (2021). https://doi.org/10.1103/PhysRevD.104.L091102. arXiv:2107.03419
000622276 999C5 $$1R Aaij$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.222002$$tPhys. Rev. Lett.$$uR. Aaij et al., Observation of the resonant character of the $$Z(4430)^-$$ state. Phys. Rev. Lett. 112(22), 222002 (2014). https://doi.org/10.1103/PhysRevLett.112.222002. arXiv:1404.1903$$v112$$y2014
000622276 999C5 $$1K Chilikin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.90.112009$$tPhys. Rev. D$$uK. Chilikin et al., Observation of a new charged charmoniumlike state in $${\bar{B}}^0 \rightarrow J/\psi K^- \pi ^+$$ decays. Phys. Rev. D 90(11), 112009 (2014). https://doi.org/10.1103/PhysRevD.90.112009. arXiv:1408.6457$$v90$$y2014
000622276 999C5 $$1H-X Chen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2016.05.004$$p1 -$$tPhys. Rept.$$uH.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, The hidden-charm pentaquark and tetraquark states. Phys. Rept. 639, 1–121 (2016). https://doi.org/10.1016/j.physrep.2016.05.004. arXiv:1601.02092$$v639$$y2016
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2020.05.001$$uN. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C.E. Thomas, A. Vairo, C.-Z. Yuan, The $$XYZ$$ states: experimental and theoretical status and perspectives. Phys. Rept. 873, 1–154 (2020). https://doi.org/10.1016/j.physrep.2020.05.001. arXiv:1907.07583
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.90.015004$$uF.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Hadronic molecules, Rev. Mod. Phys. 90 (1) (2018) 015004, [Erratum: Rev.Mod.Phys. 94, 029901 (2022)]. https://doi.org/10.1103/RevModPhys.90.015004. arXiv:1705.00141
000622276 999C5 $$2Crossref$$uS. Adhikari, et al., Measurement of the J/$$\psi $$ photoproduction cross section over the full near-threshold kinematic region (4 2023). arXiv:2304.03845
000622276 999C5 $$1AN Hiller Blin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.034002$$tPhys. Rev. D$$uA.N. Hiller Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V.I. Mokeev, A. Pilloni, A.P. Szczepaniak, Studying the $$\text{ P}_c$$(4450) resonance in J/$$\psi $$ photoproduction off protons. Phys. Rev. D 94(3), 034002 (2016). https://doi.org/10.1103/PhysRevD.94.034002. arXiv:1606.08912$$v94$$y2016
000622276 999C5 $$1D Winney$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.094009$$tPhys. Rev. D$$uD. Winney, A. Pilloni, V. Mathieu, A.N. Hiller Blin, M. Albaladejo, W.A. Smith, A. Szczepaniak, XYZ spectroscopy at electron-hadron facilities. II. Semi-inclusive processes with pion exchange. Phys. Rev. D 106(9), 094009 (2022). https://doi.org/10.1103/PhysRevD.106.094009. arXiv:2209.05882$$v106$$y2022
000622276 999C5 $$1RL Workman$$2Crossref$$uR.L. Workman et al., Review of Particle Physics. PTEP 2022, 083C01 (2022)$$y2022
000622276 999C5 $$1F-K Guo$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2016-16318-4$$p318 -$$tEur. Phys. J. A$$uF.-K. Guo, U.G. Meißner, J. Nieves, Z. Yang, Remarks on the $$P_c$$ structures and triangle singularities. Eur. Phys. J. A 52(10), 318 (2016). https://doi.org/10.1140/epja/i2016-16318-4. arXiv:1605.05113$$v52$$y2016
000622276 999C5 $$1M Bayar$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.074039$$tPhys. Rev. D$$uM. Bayar, F. Aceti, F.-K. Guo, E. Oset, A Discussion on Triangle Singularities in the $$\Lambda _b \rightarrow J/\psi K^{-} p$$ Reaction. Phys. Rev. D 94(7), 074039 (2016). https://doi.org/10.1103/PhysRevD.94.074039. arXiv:1609.04133$$v94$$y2016
000622276 999C5 $$1SX Nakamura$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.L111503$$tPhys. Rev. D$$uS.X. Nakamura, $$P_c(4312)^+$$, $$P_c(4380)^+$$, and $$P_c(4457)^+$$ as double triangle cusps. Phys. Rev. D 103, 111503 (2021). https://doi.org/10.1103/PhysRevD.103.L111503. arXiv:2103.06817$$v103$$y2021
000622276 999C5 $$1F-K Guo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2020.103757$$tProg. Part. Nucl. Phys.$$uF.-K. Guo, X.-H. Liu, S. Sakai, Threshold cusps and triangle singularities in hadronic reactions. Prog. Part. Nucl. Phys. 112, 103757 (2020). https://doi.org/10.1016/j.ppnp.2020.103757. arXiv:1912.07030$$v112$$y2020
000622276 999C5 $$1A Pilloni$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2017.06.030$$p200 -$$tPhys. Lett. B$$uA. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, A.P. Szczepaniak, Amplitude analysis and the nature of the $$\text{ Z}_c$$(3900). Phys. Lett. B 772, 200–209 (2017). https://doi.org/10.1016/j.physletb.2017.06.030. arXiv:1612.06490$$v772$$y2017
000622276 999C5 $$1SK Choi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.91.262001$$tPhys. Rev. Lett.$$uS.K. Choi et al., Observation of a narrow charmonium-like state in exclusive $$B^\pm \rightarrow K^\pm \pi ^+ \pi ^- J/\psi $$ decays. Phys. Rev. Lett. 91, 262001 (2003). https://doi.org/10.1103/PhysRevLett.91.262001. arXiv:hep-ex/0309032$$v91$$y2003
000622276 999C5 $$1R Aaij$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.222001$$tPhys. Rev. Lett.$$uR. Aaij et al., Determination of the X(3872) meson quantum numbers. Phys. Rev. Lett. 110, 222001 (2013). https://doi.org/10.1103/PhysRevLett.110.222001. arXiv:1302.6269$$v110$$y2013
000622276 999C5 $$1M Aghasyan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2018.07.008$$p334 -$$tPhys. Lett. B$$uM. Aghasyan et al., Search for muoproduction of $$X (3872)$$ at COMPASS and indication of a new state $${\widetilde{X}}(3872)$$. Phys. Lett. B 783, 334–340 (2018). https://doi.org/10.1016/j.physletb.2018.07.008. arXiv:1707.01796$$v783$$y2018
000622276 999C5 $$1RL Workman$$2Crossref$$9-- missing cx lookup --$$a10.1093/ptep/ptac097$$p083C01 -$$tPTEP$$uR.L. Workman et al., Review of Particle Physics. PTEP 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097$$v2022$$y2022
000622276 999C5 $$1R Aaij$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.072001$$tPhys. Rev. Lett.$$uR. Aaij et al., Observation of $$J/\psi p$$ Resonances Consistent with Pentaquark States in $$\Lambda _b^0 \rightarrow J/\psi K^- p$$ Decays. Phys. Rev. Lett. 115, 072001 (2015). https://doi.org/10.1103/PhysRevLett.115.072001. arXiv:1507.03414$$v115$$y2015
000622276 999C5 $$1R Aaij$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.222001$$tPhys. Rev. Lett.$$uR. Aaij et al., Observation of a narrow pentaquark state, $$P_c(4312)^+$$, and of two-peak structure of the $$P_c(4450)^+$$. Phys. Rev. Lett. 122(22), 222001 (2019). https://doi.org/10.1103/PhysRevLett.122.222001. arXiv:1904.03947$$v122$$y2019
000622276 999C5 $$2Crossref$$uD. Winney, et al., Dynamics in near-threshold $$J/\psi $$ photoproduction (5 2023). arXiv:2305.01449
000622276 999C5 $$1GKC Cheung$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2017)033$$p033 -$$tJHEP$$uG.K.C. Cheung, C.E. Thomas, J.J. Dudek, R.G. Edwards, Tetraquark operators in lattice QCD and exotic flavour states in the charm sector. JHEP 11, 033 (2017). https://doi.org/10.1007/JHEP11(2017)033. arXiv:1709.01417$$v11$$y2017
000622276 999C5 $$2Crossref$$uY. Lyu, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, J. Meng, Doubly charmed tetraquark $$T^+_{cc}$$ from Lattice QCD near Physical Point (2 2023). arXiv:2302.04505
000622276 999C5 $$1M Padmanath$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.129.032002$$tPhys. Rev. Lett.$$uM. Padmanath, S. Prelovsek, Signature of a Doubly Charm Tetraquark Pole in DD* Scattering on the Lattice. Phys. Rev. Lett. 129(3), 032002 (2022). https://doi.org/10.1103/PhysRevLett.129.032002. arXiv:2202.10110$$v129$$y2022
000622276 999C5 $$1A Francis$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.054505$$tPhys. Rev. D$$uA. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Evidence for charm-bottom tetraquarks and the mass dependence of heavy-light tetraquark states from lattice QCD. Phys. Rev. D 99(5), 054505 (2019). https://doi.org/10.1103/PhysRevD.99.054505. arXiv:1810.10550$$v99$$y2019
000622276 999C5 $$1J Pumplin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.65.014013$$tPhys. Rev. D$$uJ. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk, H.L. Lai, W.K. Tung, Uncertainties of predictions from parton distribution functions. 2. The Hessian method. Phys. Rev. D 65, 014013 (2001). https://doi.org/10.1103/PhysRevD.65.014013. arXiv:hep-ph/0101032$$v65$$y2001
000622276 999C5 $$1PM Nadolsky$$2Crossref$$uP.M. Nadolsky, Z. Sullivan, PDF Uncertainties in WH Production at Tevatron. eConf C010630, P510 (2001). arXiv:hep-ph/0110378$$y2001
000622276 999C5 $$1PM Nadolsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.78.013004$$tPhys. Rev. D$$uP.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, C.P. Yuan, Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). https://doi.org/10.1103/PhysRevD.78.013004. arXiv:0802.0007$$v78$$y2008
000622276 999C5 $$1W-C Chang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.252002$$tPhys. Rev. Lett.$$uW.-C. Chang, J.-C. Peng, Flavor Asymmetry of the Nucleon Sea and the Five-Quark Components of the Nucleons. Phys. Rev. Lett. 106, 252002 (2011). https://doi.org/10.1103/PhysRevLett.106.252002. arXiv:1102.5631$$v106$$y2011
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(80)90364-0$$p451 -$$tPhys. Lett. B$$uS.J. Brodsky, P. Hoyer, C. Peterson, N. Sakai, The Intrinsic Charm of the Proton. Phys. Lett. B 93, 451–455 (1980). https://doi.org/10.1016/0370-2693(80)90364-0$$v93$$y1980
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-021-03282-z 10.1038/s41586-022-04707-z$$uJ. Dove, et al., Publisher Correction: The asymmetry of antimatter in the proton [https://doi.org/10.1038/s41586-021-03282-z], Nature 590 (7847) (2021) 561–565. arXiv:2103.04024, https://doi.org/10.1038/s41586-022-04707-z
000622276 999C5 $$1RS Towell$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.64.052002$$tPhys. Rev. D$$uR.S. Towell et al., Improved measurement of the dbar/ubar asymmetry in the nucleon sea. Phys. Rev. D 64, 052002 (2001). https://doi.org/10.1103/PhysRevD.64.052002$$v64$$y2001
000622276 999C5 $$1K Ackerstaff$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.5519$$p5519 -$$tPhys. Rev. Lett.$$uK. Ackerstaff et al., The Flavor asymmetry of the light quark sea from semiinclusive deep inelastic scattering. Phys. Rev. Lett. 81, 5519–5523 (1998). https://doi.org/10.1103/PhysRevLett.81.5519. arXiv:hep-ex/9807013$$v81$$y1998
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.247.0005$$uA. M. Cooper-Sarkar, HERA Collider Results, PoS DIS2015 (2015) 005https://doi.org/10.22323/1.247.0005. arXiv:1507.03849
000622276 999C5 $$1AO Bazarko$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01571875$$p189 -$$tZ. Phys. C$$uA.O. Bazarko et al., Determination of the strange quark content of the nucleon from a next-to-leading order QCD analysis of neutrino charm production. Z. Phys. C 65, 189–198 (1995). https://doi.org/10.1007/BF01571875. arXiv:hep-ex/9406007$$v65$$y1995
000622276 999C5 $$1D Mason$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.192001$$tPhys. Rev. Lett.$$uD. Mason et al., Measurement of the Nucleon Strange-Antistrange Asymmetry at Next-to-Leading Order in QCD from NuTeV Dimuon Data. Phys. Rev. Lett. 99, 192001 (2007). https://doi.org/10.1103/PhysRevLett.99.192001$$v99$$y2007
000622276 999C5 $$1A Kayis-Topaksu$$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/13/9/093002$$tNew J. Phys.$$uA. Kayis-Topaksu et al., Measurement of charm production in neutrino charged-current interactions. New J. Phys. 13, 093002 (2011). https://doi.org/10.1088/1367-2630/13/9/093002. arXiv:1107.0613$$v13$$y2011
000622276 999C5 $$1O Samoylov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2013.08.021$$p339 -$$tNucl. Phys. B$$uO. Samoylov et al., A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment. Nucl. Phys. B 876, 339–375 (2013). https://doi.org/10.1016/j.nuclphysb.2013.08.021. arXiv:1308.4750$$v876$$y2013
000622276 999C5 $$1N Kalantarians$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.96.032201$$tPhys. Rev. C$$uN. Kalantarians, C. Keppel, M.E. Christy, Comparison of the Structure Function F2 as Measured by Charged Lepton and Neutrino Scattering from Iron Targets. Phys. Rev. C 96(3), 032201 (2017). https://doi.org/10.1103/PhysRevC.96.032201. arXiv:1706.02002$$v96$$y2017
000622276 999C5 $$1A Accardi$$2Crossref$$9-- missing cx lookup --$$a10.1393/ncr/i2009-10048-0$$p439 -$$tRiv. Nuovo Cim.$$uA. Accardi, F. Arleo, W.K. Brooks, D. D’Enterria, V. Muccifora, Parton Propagation and Fragmentation in QCD Matter. Riv. Nuovo Cim. 32(9–10), 439–554 (2009). https://doi.org/10.1393/ncr/i2009-10048-0. arXiv:0907.3534$$v32$$y2009
000622276 999C5 $$1A Majumder$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2010.09.001$$p41 -$$tProg. Part. Nucl. Phys.$$uA. Majumder, M. Van Leeuwen, The Theory and Phenomenology of Perturbative QCD Based Jet Quenching. Prog. Part. Nucl. Phys. 66, 41–92 (2011). https://doi.org/10.1016/j.ppnp.2010.09.001. arXiv:1002.2206$$v66$$y2011
000622276 999C5 $$1G Aad$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.012001$$tPhys. Rev. Lett.$$uG. Aad et al., Determination of the strange quark density of the proton from ATLAS measurements of the $$W \rightarrow \ell \nu $$ and $$Z \rightarrow \ell \ell $$ cross sections. Phys. Rev. Lett. 109, 012001 (2012). https://doi.org/10.1103/PhysRevLett.109.012001. arXiv:1203.4051$$v109$$y2012
000622276 999C5 $$1M Aaboud$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-017-4911-9$$p367 -$$tEur. Phys. J. C$$uM. Aaboud et al., Precision measurement and interpretation of inclusive $$W^+$$, $$W^-$$ and $$Z/\gamma ^*$$ production cross sections with the ATLAS detector. Eur. Phys. J. C 77(6), 367 (2017). https://doi.org/10.1140/epjc/s10052-017-4911-9. arXiv:1612.03016$$v77$$y2017
000622276 999C5 $$1EA Hawker$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.3715$$p3715 -$$tPhys. Rev. Lett.$$uE.A. Hawker et al., Measurement of the light anti-quark flavor asymmetry in the nucleon sea. Phys. Rev. Lett. 80, 3715–3718 (1998). https://doi.org/10.1103/PhysRevLett.80.3715. arXiv:hep-ex/9803011$$v80$$y1998
000622276 999C5 $$1RS Towell$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.64.052002$$tPhys. Rev. D$$uR.S. Towell et al., Improved measurement of the anti-d / anti-u asymmetry in the nucleon sea. Phys. Rev. D 64, 052002 (2001). https://doi.org/10.1103/PhysRevD.64.052002. arXiv:hep-ex/0103030$$v64$$y2001
000622276 999C5 $$1S Alekhin$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2009.04.033$$p433 -$$tPhys. Lett. B$$uS. Alekhin, S.A. Kulagin, R. Petti, Determination of Strange Sea Distributions from Neutrino-Nucleon Deep Inelastic Scattering. Phys. Lett. B 675, 433–440 (2009). https://doi.org/10.1016/j.physletb.2009.04.033. arXiv:0812.4448$$v675$$y2009
000622276 999C5 $$1S Alekhin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.094002$$tPhys. Rev. D$$uS. Alekhin, J. Blumlein, L. Caminada, K. Lipka, K. Lohwasser, S. Moch, R. Petti, R. Placakyte, Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data. Phys. Rev. D 91(9), 094002 (2015). https://doi.org/10.1103/PhysRevD.91.094002. arXiv:1404.6469$$v91$$y2015
000622276 999C5 $$1S Alekhin$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2017.12.024$$p134 -$$tPhys. Lett. B$$uS. Alekhin, J. Blümlein, S. Moch, Strange sea determination from collider data. Phys. Lett. B 777, 134–140 (2018). https://doi.org/10.1016/j.physletb.2017.12.024. arXiv:1708.01067$$v777$$y2018
000622276 999C5 $$1S Alekhin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.96.014011$$tPhys. Rev. D$$uS. Alekhin, J. Blümlein, S. Moch, R. Placakyte, Parton distribution functions, $$\alpha _s$$, and heavy-quark masses for LHC Run II. Phys. Rev. D 96(1), 014011 (2017). https://doi.org/10.1103/PhysRevD.96.014011. arXiv:1701.05838$$v96$$y2017
000622276 999C5 $$1AM Cooper-Sarkar$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.014027$$tPhys. Rev. D$$uA.M. Cooper-Sarkar, K. Wichmann, QCD analysis of the ATLAS and CMS $$W^{\pm }$$ and $$Z$$ cross-section measurements and implications for the strange sea density. Phys. Rev. D 98(1), 014027 (2018). https://doi.org/10.1103/PhysRevD.98.014027. arXiv:1803.00968$$v98$$y2018
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2008.07.090$$p446 -$$tPhys. Lett. B$$uA. Airapetian et al., Measurement of Parton Distributions of Strange Quarks in the Nucleon from Charged-Kaon Production in Deep-Inelastic Scattering on the Deuteron. Phys. Lett. B 666, 446–450 (2008). https://doi.org/10.1016/j.physletb.2008.07.090. arXiv:0803.2993$$v666$$y2008
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.89.097101$$tPhys. Rev. D$$uA. Airapetian et al., Reevaluation of the parton distribution of strange quarks in the nucleon. Phys. Rev. D 89(9), 097101 (2014). https://doi.org/10.1103/PhysRevD.89.097101. arXiv:1312.7028$$v89$$y2014
000622276 999C5 $$1E Leader$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.82.114018$$tPhys. Rev. D$$uE. Leader, A.V. Sidorov, D.B. Stamenov, Determination of Polarized PDFs from a QCD Analysis of Inclusive and Semi-inclusive Deep Inelastic Scattering Data. Phys. Rev. D 82, 114018 (2010). https://doi.org/10.1103/PhysRevD.82.114018. arXiv:1010.0574$$v82$$y2010
000622276 999C5 $$1E Leader$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.014002$$tPhys. Rev. D$$uE. Leader, A.V. Sidorov, D.B. Stamenov, A Possible Resolution of the Strange Quark Polarization Puzzle? Phys. Rev. D 84, 014002 (2011). https://doi.org/10.1103/PhysRevD.84.014002. arXiv:1103.5979$$v84$$y2011
000622276 999C5 $$1N Sato$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.114004$$tPhys. Rev. D$$uN. Sato, J.J. Ethier, W. Melnitchouk, M. Hirai, S. Kumano, A. Accardi, First Monte Carlo analysis of fragmentation functions from single-inclusive $$e^+ e^-$$ annihilation. Phys. Rev. D 94(11), 114004 (2016). https://doi.org/10.1103/PhysRevD.94.114004. arXiv:1609.00899$$v94$$y2016
000622276 999C5 $$1EC Aschenauer$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.098102$$tPhys. Rev. D$$uE.C. Aschenauer, H.E. Jackson, S. Joosten, K. Rith, G. Schnell, C. Van Hulse, Reply to Comment on Reevaluation of the parton distribution of strange quarks in the nucleon. Phys. Rev. D 92(9), 098102 (2015). https://doi.org/10.1103/PhysRevD.92.098102. arXiv:1508.04020$$v92$$y2015
000622276 999C5 $$1I Borsa$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.96.094020$$tPhys. Rev. D$$uI. Borsa, R. Sassot, M. Stratmann, Probing the Sea Quark Content of the Proton with One-Particle-Inclusive Processes. Phys. Rev. D 96(9), 094020 (2017). https://doi.org/10.1103/PhysRevD.96.094020$$v96$$y2017
000622276 999C5 $$1N Sato$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.074020$$tPhys. Rev. D$$uN. Sato, C. Andres, J.J. Ethier, W. Melnitchouk, Strange quark suppression from a simultaneous Monte Carlo analysis of parton distributions and fragmentation functions. Phys. Rev. D 101(7), 074020 (2020). https://doi.org/10.1103/PhysRevD.101.074020. arXiv:1905.03788$$v101$$y2020
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.074008$$uL. T. Brady, A. Accardi, T. J. Hobbs, W. Melnitchouk, Next-to leading order analysis of target mass corrections to structure functions and asymmetries, Phys. Rev. D 84 (2011) 074008, [Erratum: Phys.Rev.D 85, 039902 (2012)]. arXiv:1108.4734, https://doi.org/10.1103/PhysRevD.84.074008
000622276 999C5 $$1T Hobbs$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.77.114023$$tPhys. Rev. D$$uT. Hobbs, W. Melnitchouk, Finite-Q**2 corrections to parity-violating DIS. Phys. Rev. D 77, 114023 (2008). https://doi.org/10.1103/PhysRevD.77.114023. arXiv:0801.4791$$v77$$y2008
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.076018$$uT.-J. Hou, H.-W. Lin, M. Yan, C. P. Yuan, Impact of Lattice Strangeness Asymmetry Data in the CTEQ-TEA Global Analysis (11 2022). arXiv:2211.11064
000622276 999C5 $$1T Liu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.094033$$tPhys. Rev. D$$uT. Liu, W. Melnitchouk, J.-W. Qiu, N. Sato, Factorized approach to radiative corrections for inelastic lepton-hadron collisions. Phys. Rev. D 104(9), 094033 (2021). https://doi.org/10.1103/PhysRevD.104.094033. arXiv:2008.02895$$v104$$y2021
000622276 999C5 $$1C Cocuzza$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.L031502$$pL031502 -$$tPhys. Rev. D$$uC. Cocuzza, W. Melnitchouk, A. Metz, N. Sato, Polarized antimatter in the proton from a global QCD analysis. Phys. Rev. D 106(3), L031502 (2022). https://doi.org/10.1103/PhysRevD.106.L031502. arXiv:2202.03372$$v106$$y2022
000622276 999C5 $$1RD Ball$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-016-4469-y$$p647 -$$tEur. Phys. J. C$$uR.D. Ball, V. Bertone, M. Bonvini, S. Carrazza, S. Forte, A. Guffanti, N.P. Hartland, J. Rojo, L. Rottoli, A Determination of the Charm Content of the Proton. Eur. Phys. J. C 76(11), 647 (2016). https://doi.org/10.1140/epjc/s10052-016-4469-y. arXiv:1605.06515$$v76$$y2016
000622276 999C5 $$1RD Ball$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-022-04998-2$$p483 -$$tNature$$uR.D. Ball, A. Candido, J. Cruz-Martinez, S. Forte, T. Giani, F. Hekhorn, K. Kudashkin, G. Magni, J. Rojo, Evidence for intrinsic charm quarks in the proton. Nature 608(7923), 483–487 (2022). https://doi.org/10.1038/s41586-022-04998-2. arXiv:2208.08372$$v608$$y2022
000622276 999C5 $$1RD Ball$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10328-7$$p428 -$$tEur. Phys. J. C$$uR.D. Ball et al., The path to proton structure at 1% accuracy. Eur. Phys. J. C 82(5), 428 (2022). https://doi.org/10.1140/epjc/s10052-022-10328-7. arXiv:2109.02653$$v82$$y2022
000622276 999C5 $$1TJ Hobbs$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.89.074008$$tPhys. Rev. D$$uT.J. Hobbs, J.T. Londergan, W. Melnitchouk, Phenomenology of nonperturbative charm in the nucleon. Phys. Rev. D 89(7), 074008 (2014). https://doi.org/10.1103/PhysRevD.89.074008. arXiv:1311.1578$$v89$$y2014
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2023.137975$$uM. Guzzi, T. J. Hobbs, K. Xie, J. Huston, P. Nadolsky, C. P. Yuan, The persistent nonperturbative charm enigma (11 2022). arXiv:2211.01387
000622276 999C5 $$1M Kelsey$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.054002$$tPhys. Rev. D$$uM. Kelsey, R. Cruz-Torres, X. Dong, Y. Ji, S. Radhakrishnan, E. Sichtermann, Constraints on gluon distribution functions in the nucleon and nucleus from open charm hadron production at the Electron-Ion Collider. Phys. Rev. D 104(5), 054002 (2021). https://doi.org/10.1103/PhysRevD.104.054002. arXiv:2107.05632$$v104$$y2021
000622276 999C5 $$1R Abdul Khalek$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2022.122447$$tNucl. Phys. A$$uR. Abdul Khalek et al., Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report. Nucl. Phys. A 1026, 122447 (2022). https://doi.org/10.1016/j.nuclphysa.2022.122447. arXiv:2103.05419$$v1026$$y2022
000622276 999C5 $$1J Gao$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.L011503$$pL011503 -$$tPhys. Rev. D$$uJ. Gao, T.J. Hobbs, P.M. Nadolsky, C. Sun, C.P. Yuan, General heavy-flavor mass scheme for charged-current DIS at NNLO and beyond. Phys. Rev. D 105(1), L011503 (2022). https://doi.org/10.1103/PhysRevD.105.L011503. arXiv:2107.00460$$v105$$y2022
000622276 999C5 $$1R Gauld$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2015)009$$p009 -$$tJHEP$$uR. Gauld, J. Rojo, L. Rottoli, J. Talbert, Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy. JHEP 11, 009 (2015). https://doi.org/10.1007/JHEP11(2015)009. arXiv:1506.08025$$v11$$y2015
000622276 999C5 $$1J Gao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2018.03.002$$p1 -$$tPhys. Rept.$$uJ. Gao, L. Harland-Lang, J. Rojo, The Structure of the Proton in the LHC Precision Era. Phys. Rept. 742, 1–121 (2018). https://doi.org/10.1016/j.physrep.2018.03.002. arXiv:1709.04922$$v742$$y2018
000622276 999C5 $$1RD Ball$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6471/ac7216$$tJ. Phys. G$$uR.D. Ball et al., The PDF4LHC21 combination of global PDF fits for the LHC Run III. J. Phys. G 49(8), 080501 (2022). https://doi.org/10.1088/1361-6471/ac7216. arXiv:2203.05506$$v49$$y2022
000622276 999C5 $$1T-J Hou$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.014013$$tPhys. Rev. D$$uT.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Phys. Rev. D 103(1), 014013 (2021). https://doi.org/10.1103/PhysRevD.103.014013. arXiv:1912.10053$$v103$$y2021
000622276 999C5 $$1S Bailey$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-021-09057-0$$p341 -$$tEur. Phys. J. C$$uS. Bailey, T. Cridge, L.A. Harland-Lang, A.D. Martin, R.S. Thorne, Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs. Eur. Phys. J. C 81(4), 341 (2021). https://doi.org/10.1140/epjc/s10052-021-09057-0. arXiv:2012.04684$$v81$$y2021
000622276 999C5 $$1JC Collins$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.16.2219$$p2219 -$$tPhys. Rev. D$$uJ.C. Collins, D.E. Soper, Angular Distribution of Dileptons in High-Energy Hadron Collisions. Phys. Rev. D 16, 2219 (1977). https://doi.org/10.1103/PhysRevD.16.2219$$v16$$y1977
000622276 999C5 $$1RD Ball$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-11133-y$$p1160 -$$tEur. Phys. J. C$$uR.D. Ball, A. Candido, S. Forte, F. Hekhorn, E.R. Nocera, J. Rojo, C. Schwan, Parton distributions and new physics searches: the Drell-Yan forward-backward asymmetry as a case study. Eur. Phys. J. C 82(12), 1160 (2022). https://doi.org/10.1140/epjc/s10052-022-11133-y. arXiv:2209.08115$$v82$$y2022
000622276 999C5 $$1A Greljo$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2021)122$$p122 -$$tJHEP$$uA. Greljo, S. Iranipour, Z. Kassabov, M. Madigan, J. Moore, J. Rojo, M. Ubiali, C. Voisey, Parton distributions in the SMEFT from high-energy Drell-Yan tails. JHEP 07, 122 (2021). https://doi.org/10.1007/JHEP07(2021)122. arXiv:2104.02723$$v07$$y2021
000622276 999C5 $$1J Gao$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2023)003$$p003 -$$tJHEP$$uJ. Gao, M. Gao, T.J. Hobbs, D. Liu, X. Shen, Simultaneous CTEQ-TEA extraction of PDFs and SMEFT parameters from jet and $$ t{\overline{t}} $$ data. JHEP 05, 003 (2023). https://doi.org/10.1007/JHEP05(2023)003. arXiv:2211.01094$$v05$$y2023
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2172/1865357$$uL. A. Ruso, et al., Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators (3 2022). arXiv:2203.09030
000622276 999C5 $$1T Liu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.082003$$tPhys. Rev. Lett.$$uT. Liu, R.S. Sufian, G.F. de Téramond, H.G. Dosch, S.J. Brodsky, A. Deur, Unified description of polarized and unpolarized quark distributions in the proton. Phys. Rev. Lett. 124, 082003 (2020). https://doi.org/10.1103/PhysRevLett.124.082003$$v124$$y2020
000622276 999C5 $$1A Deur$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2016.04.003$$p1 -$$tNucl. Phys.$$uA. Deur, S.J. Brodsky, G.F. de Teramond, The QCD Running Coupling. Nucl. Phys. 90, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.04.003. arXiv:1604.08082$$v90$$y2016
000622276 999C5 $$1PA Zyla$$2Crossref$$9-- missing cx lookup --$$a10.1093/ptep/ptaa104$$p083C01 -$$tPTEP$$uP.A. Zyla et al., Review of Particle Physics. PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104$$v2020$$y2020
000622276 999C5 $$2Crossref$$uD. d’Enterria, et al., The strong coupling constant: State of the art and the decade ahead (3 2022). arXiv:2203.08271
000622276 999C5 $$1JD Bjorken$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.148.1467$$p1467 -$$tPhys. Rev.$$uJ.D. Bjorken, Applications of the Chiral U(6) x (6) Algebra of Current Densities. Phys. Rev. 148, 1467–1478 (1966). https://doi.org/10.1103/PhysRev.148.1467$$v148$$y1966
000622276 999C5 $$2Crossref$$uS. Kuhn, et al., The Longitudinal Spin Structure of the Nucleon Jlab experiment E12-06-109 ”. (2006). https://misportal.jlab.org/mis/physics/experiments/viewProposal.cfm?paperId=688
000622276 999C5 $$1AL Kataev$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.50.R5469$$pR5469 -$$tPhys. Rev. D$$uA.L. Kataev, The Ellis-Jaffe sum rule: The Estimates of the next to next-to-leading order QCD corrections. Phys. Rev. D 50, R5469–R5472 (1994). https://doi.org/10.1103/PhysRevD.50.R5469. arXiv:hep-ph/9408248$$v50$$y1994
000622276 999C5 $$2Crossref$$uA. L. Kataev, private communication in S. Incerti, Ph. D dissertation “Mesure de la fonction de structure polarisée $$g_1^n$$ du neutron par l’experience e154 au slac”. (Jan. 1998). https://www.slac.stanford.edu/exp/e154/incerti_thesis.pdf
000622276 999C5 $$1A Deur$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.90.012009$$tPhys. Rev. D$$uA. Deur, Y. Prok, V. Burkert, D. Crabb, F.X. Girod, K.A. Griffioen, N. Guler, S.E. Kuhn, N. Kvaltine, High precision determination of the $$Q^2$$ evolution of the Bjorken Sum. Phys. Rev. D 90(1), 012009 (2014). https://doi.org/10.1103/PhysRevD.90.012009. arXiv:1405.7854$$v90$$y2014
000622276 999C5 $$1BA Kniehl$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.042001$$tPhys. Rev. Lett.$$uB.A. Kniehl, A.V. Kotikov, A.I. Onishchenko, O.L. Veretin, Strong-coupling constant with flavor thresholds at five loops in the anti-MS scheme. Phys. Rev. Lett. 97, 042001 (2006). https://doi.org/10.1103/PhysRevLett.97.042001. arXiv:hep-ph/0607202$$v97$$y2006
000622276 999C5 $$1A Deur$$2Crossref$$9-- missing cx lookup --$$a10.3390/particles5020015$$p171 -$$tParticles$$uA. Deur, V. Burkert, J.P. Chen, W. Korsch, Experimental determination of the QCD effective charge $$\alpha _{g_1}(Q)$$. Particles 5, 171 (2022). https://doi.org/10.3390/particles5020015. arXiv:2205.01169$$v5$$y2022
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.81.096010$$tPhys. Rev. D$$uS.J. Brodsky, G.F. de Teramond, A. Deur, Nonperturbative QCD Coupling and its $$\beta $$-function from Light-Front Holography. Phys. Rev. D 81, 096010 (2010). https://doi.org/10.1103/PhysRevD.81.096010. arXiv:1002.3948$$v81$$y2010
000622276 999C5 $$1Z-F Cui$$2Crossref$$9-- missing cx lookup --$$a10.1088/1674-1137/44/8/083102$$tChin. Phys. C$$uZ.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, S. Zafeiropoulos, Effective charge from lattice QCD. Chin. Phys. C 44(8), 083102 (2020). https://doi.org/10.1088/1674-1137/44/8/083102. arXiv:1912.08232$$v44$$y2020
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.L091504$$uP. C. Barry, L. Gamberg, W. Melnitchouk, E. Moffat, D. Pitonyak, A. Prokudin, N. Sato, Tomography of pions and protons via transverse momentum dependent distributions (2 2023). arXiv:2302.01192
000622276 999C5 $$1NY Cao$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.114014$$tPhys. Rev. D$$uN.Y. Cao, P.C. Barry, N. Sato, W. Melnitchouk, Towards the three-dimensional parton structure of the pion: Integrating transverse momentum data into global QCD analysis. Phys. Rev. D 103(11), 114014 (2021). https://doi.org/10.1103/PhysRevD.103.114014. arXiv:2103.02159$$v103$$y2021
000622276 999C5 $$2Crossref$$uC. E. Keppel, et al., C12-15-006 JLab experiment: Measurement of tagged deep inelastic scattering (2015)
000622276 999C5 $$2Crossref$$uK. Park, et al., C12-15-006A JLab run group: Measurement of kaon structure through tagged deep inelastic scattering (2017)
000622276 999C5 $$1B Betev$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01550243$$p9 -$$tZ. Phys. C$$uB. Betev et al., Differential Cross-section of High Mass Muon Pairs Produced by a 194-GeV/$$c \pi ^-$$ Beam on a Tungsten Target. Z. Phys. C 28, 9 (1985). https://doi.org/10.1007/BF01550243$$v28$$y1985
000622276 999C5 $$1JS Conway$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.39.92$$p92 -$$tPhys. Rev. D$$uJ.S. Conway et al., Experimental Study of Muon Pairs Produced by 252-GeV Pions on Tungsten. Phys. Rev. D 39, 92–122 (1989). https://doi.org/10.1103/PhysRevD.39.92$$v39$$y1989
000622276 999C5 $$1FD Aaron$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-010-1369-4$$p381 -$$tEur. Phys. J. C$$uF.D. Aaron et al., Measurement of Leading Neutron Production in Deep-Inelastic Scattering at HERA. Eur. Phys. J. C 68, 381–399 (2010). https://doi.org/10.1140/epjc/s10052-010-1369-4. arXiv:1001.0532$$v68$$y2010
000622276 999C5 $$1S Chekanov$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(02)00439-X$$p3 -$$tNucl. Phys. B$$uS. Chekanov et al., Leading neutron production in e+ p collisions at HERA. Nucl. Phys. B 637, 3–56 (2002). https://doi.org/10.1016/S0550-3213(02)00439-X. arXiv:hep-ex/0205076$$v637$$y2002
000622276 999C5 $$1J Arrington$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6471/abf5c3$$tJ. Phys. G$$uJ. Arrington et al., Revealing the Structure of Light Pseudoscalar Mesons at the Electron-Ion Collider. J. Phys. G 48, 075106 (2021)$$v48$$y2021
000622276 999C5 $$1A Bacchetta$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/02/093$$p093 -$$tJHEP$$uA. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders, M. Schlegel, Semi-inclusive deep inelastic scattering at small transverse momentum. JHEP 02, 093 (2007). https://doi.org/10.1088/1126-6708/2007/02/093. arXiv:hep-ph/0611265$$v02$$y2007
000622276 999C5 $$1J Gonzalez-Hernandez$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.114005$$tPhys. Rev. D$$uJ. Gonzalez-Hernandez, T. Rogers, N. Sato, B. Wang, Challenges with Large Transverse Momentum in Semi-Inclusive Deeply Inelastic Scattering. Phys. Rev. D 98(11), 114005 (2018). https://doi.org/10.1103/PhysRevD.98.114005. arXiv:1808.04396$$v98$$y2018
000622276 999C5 $$1B Wang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.094029$$tPhys. Rev. D$$uB. Wang, J.O. Gonzalez-Hernandez, T.C. Rogers, N. Sato, Large Transverse Momentum in Semi-Inclusive Deeply Inelastic Scattering Beyond Lowest Order. Phys. Rev. D 99(9), 094029 (2019). https://doi.org/10.1103/PhysRevD.99.094029. arXiv:1903.01529$$v99$$y2019
000622276 999C5 $$1M Boglione$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2017.01.021$$p245 -$$tPhys. Lett. B$$uM. Boglione, J. Collins, L. Gamberg, J.O. Gonzalez-Hernandez, T.C. Rogers, N. Sato, Kinematics of Current Region Fragmentation in Semi-Inclusive Deeply Inelastic Scattering. Phys. Lett. B 766, 245–253 (2017). https://doi.org/10.1016/j.physletb.2017.01.021. arXiv:1611.10329$$v766$$y2017
000622276 999C5 $$1J Collins$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.034014$$tPhys. Rev. D$$uJ. Collins, L. Gamberg, A. Prokudin, T.C. Rogers, N. Sato, B. Wang, Relating Transverse Momentum Dependent and Collinear Factorization Theorems in a Generalized Formalism. Phys. Rev. D 94(3), 034014 (2016). https://doi.org/10.1103/PhysRevD.94.034014. arXiv:1605.00671$$v94$$y2016
000622276 999C5 $$1M Boglione$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2019)122$$p122 -$$tJHEP$$uM. Boglione, A. Dotson, L. Gamberg, S. Gordon, J. Gonzalez-Hernandez, A. Prokudin, T. Rogers, N. Sato, Mapping the Kinematical Regimes of Semi-Inclusive Deep Inelastic Scattering. JHEP 10, 122 (2019). https://doi.org/10.1007/JHEP10(2019)122. arXiv:1904.12882$$v10$$y2019
000622276 999C5 $$1H Avakian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.262002$$tPhys. Rev. Lett.$$uH. Avakian et al., Measurement of Single and Double Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target. Phys. Rev. Lett. 105, 262002 (2010). https://doi.org/10.1103/PhysRevLett.105.262002. arXiv:1003.4549$$v105$$y2010
000622276 999C5 $$1S Jawalkar$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2018.06.014$$p662 -$$tPhys. Lett. B$$uS. Jawalkar et al., Semi-Inclusive $$\pi _0$$ target and beam-target asymmetries from 6 GeV electron scattering with CLAS. Phys. Lett. B 782, 662–667 (2018). https://doi.org/10.1016/j.physletb.2018.06.014. arXiv:1709.10054$$v782$$y2018
000622276 999C5 $$1BU Musch$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.83.094507$$tPhys. Rev. D$$uB.U. Musch, P. Hagler, J.W. Negele, A. Schafer, Exploring quark transverse momentum distributions with lattice QCD. Phys. Rev. D 83, 094507 (2011). https://doi.org/10.1103/PhysRevD.83.094507. arXiv:1011.1213$$v83$$y2011
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.352.0265$$uH. Avakian, Hadronization of quarks and correlated di-hadron production in hard scattering, PoS DIS2019 (2019) 265. https://doi.org/10.22323/1.352.0265
000622276 999C5 $$1CJ Bebek$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.34.759$$p759 -$$tPhys. Rev. Lett.$$uC.J. Bebek, C.N. Brown, M. Herzlinger, S.D. Holmes, C.A. Lichtenstein, F.M. Pipkin, S. Raither, L.K. Sisterson, Scaling Behavior of Inclusive Pion Electroproduction. Phys. Rev. Lett. 34, 759 (1975). https://doi.org/10.1103/PhysRevLett.34.759$$v34$$y1975
000622276 999C5 $$1CJ Bebek$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.37.1525$$p1525 -$$tPhys. Rev. Lett.$$uC.J. Bebek, A. Browman, C.N. Brown, K.M. Hanson, R.V. Kline, D. Larson, F.M. Pipkin, S.W. Raither, A. Silverman, L.K. Sisterson, Charged Pion Electroproduction from Protons Up to Q**2 = 9.5-GeV**2. Phys. Rev. Lett. 37, 1525–1528 (1976). https://doi.org/10.1103/PhysRevLett.37.1525$$v37$$y1976
000622276 999C5 $$1CJ Bebek$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.15.3085$$p3085 -$$tPhys. Rev. D$$uC.J. Bebek, C.N. Brown, M.S. Herzlinger, S.D. Holmes, C.A. Lichtenstein, F.M. Pipkin, S.W. Raither, L.K. Sisterson, Inclusive Charged Pion Electroproduction. Phys. Rev. D 15, 3085 (1977). https://doi.org/10.1103/PhysRevD.15.3085$$v15$$y1977
000622276 999C5 $$1A Bacchetta$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2008/08/023$$p023 -$$tJHEP$$uA. Bacchetta, D. Boer, M. Diehl, P.J. Mulders, Matches and mismatches in the descriptions of semi-inclusive processes at low and high transverse momentum. JHEP 08, 023 (2008). https://doi.org/10.1088/1126-6708/2008/08/023. arXiv:0803.0227$$v08$$y2008
000622276 999C5 $$1M Anselmino$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.71.074006$$tPhys. Rev. D$$uM. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin, The Role of Cahn and sivers effects in deep inelastic scattering. Phys. Rev. D 71, 074006 (2005). https://doi.org/10.1103/PhysRevD.71.074006. arXiv:hep-ph/0501196$$v71$$y2005
000622276 999C5 $$1A Bacchetta$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2022)127$$p127 -$$tJHEP$$uA. Bacchetta, V. Bertone, C. Bissolotti, G. Bozzi, M. Cerutti, F. Piacenza, M. Radici, A. Signori, Unpolarized transverse momentum distributions from a global fit of Drell-Yan and semi-inclusive deep-inelastic scattering data. JHEP 10, 127 (2022). https://doi.org/10.1007/JHEP10(2022)127. arXiv:2206.07598$$v10$$y2022
000622276 999C5 $$1C Adolph$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2014.07.019$$p1046 -$$tNucl. Phys. B$$uC. Adolph et al., Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons. Nucl. Phys. B 886, 1046–1077 (2014). https://doi.org/10.1016/j.nuclphysb.2014.07.019. arXiv:1401.6284$$v886$$y2014
000622276 999C5 $$1A Moretti$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhysProc.8.144$$p144 -$$tSciPost Phys. Proc.$$uA. Moretti, TMD observables in unpolarised Semi-Inclusive DIS at COMPASS. SciPost Phys. Proc. 8, 144 (2022). https://doi.org/10.21468/SciPostPhysProc.8.144. arXiv:2107.10740$$v8$$y2022
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.87.012010$$tPhys. Rev. D$$uA. Airapetian et al., Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons. Phys. Rev. D 87(1), 012010 (2013). https://doi.org/10.1103/PhysRevD.87.012010. arXiv:1204.4161$$v87$$y2013
000622276 999C5 $$1M Osipenko$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.80.032004$$tPhys. Rev. D$$uM. Osipenko et al., Measurement of unpolarized semi-inclusive pi+ electroproduction off the proton. Phys. Rev. D 80, 032004 (2009). https://doi.org/10.1103/PhysRevD.80.032004. arXiv:0809.1153$$v80$$y2009
000622276 999C5 $$2Crossref$$uS. Diehl, et al., First multidimensional, high precision measurements of semi-inclusive $$\pi ^+$$ beam single spin asymmetries from the proton over a wide range of kinematics (1 2021). arXiv:2101.03544
000622276 999C5 $$1JC Collins$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(93)90262-N$$p161 -$$tNucl. Phys. B$$uJ.C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions. Nucl. Phys. B 396, 161–182 (1993). https://doi.org/10.1016/0550-3213(93)90262-N. arXiv:hep-ph/9208213$$v396$$y1993
000622276 999C5 $$1A Kerbizi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.97.074010$$tPhys. Rev. D$$uA. Kerbizi, X. Artru, Z. Belghobsi, F. Bradamante, A. Martin, Recursive model for the fragmentation of polarized quarks. Phys. Rev. D 97(7), 074010 (2018). https://doi.org/10.1103/PhysRevD.97.074010. arXiv:1802.00962$$v97$$y2018
000622276 999C5 $$1HH Matevosyan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.014021$$tPhys. Rev. D$$uH.H. Matevosyan, A. Kotzinian, A.W. Thomas, Monte Carlo Implementation of Polarized Hadronization. Phys. Rev. D 95(1), 014021 (2017). https://doi.org/10.1103/PhysRevD.95.014021. arXiv:1610.05624$$v95$$y2017
000622276 999C5 $$1A Kerbizi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2021.108234$$tComput. Phys. Commun.$$uA. Kerbizi, L. Lönnblad, StringSpinner - adding spin to the PYTHIA string fragmentation. Comput. Phys. Commun. 272, 108234 (2022). https://doi.org/10.1016/j.cpc.2021.108234. arXiv:2105.09730$$v272$$y2022
000622276 999C5 $$1T Sjöstrand$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2015.01.024$$p159 -$$tComput. Phys. Commun.$$uT. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). https://doi.org/10.1016/j.cpc.2015.01.024. arXiv:1410.3012$$v191$$y2015
000622276 999C5 $$1TB Hayward$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.126.152501$$tPhys. Rev. Lett.$$uT.B. Hayward et al., Observation of Beam Spin Asymmetries in the Process $$ep\rightarrow {e}^{^{\prime }}{\pi }^{+}{\pi }^{-}X$$ with CLAS12. Phys. Rev. Lett. 126, 152501 (2021). https://doi.org/10.1103/PhysRevLett.126.152501. arXiv:2101.04842$$v126$$y2021
000622276 999C5 $$1A Kerbizi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.114038$$tPhys. Rev. D$$uA. Kerbizi, X. Artru, A. Martin, Production of vector mesons in the String+$$ ^3P_0$$ model of polarized quark fragmentation. Phys. Rev. D 104(11), 114038 (2021). https://doi.org/10.1103/PhysRevD.104.114038. arXiv:2109.06124$$v104$$y2021
000622276 999C5 $$1A Bacchetta$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.62.114004$$tPhys. Rev. D$$uA. Bacchetta, P.J. Mulders, Deep inelastic leptoproduction of spin-one hadrons. Phys. Rev. D 62, 114004 (2000). https://doi.org/10.1103/PhysRevD.62.114004. arXiv:hep-ph/0007120$$v62$$y2000
000622276 999C5 $$2Crossref$$uT. C. Collaboration, Collins and Sivers transverse-spin asymmetries in inclusive muoproduction of $$\rho ^0$$ mesons, CERN-EP-2022-234 (10 2022). arXiv:2211.00093
000622276 999C5 $$1C Adolph$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2015.03.056$$p250 -$$tPhys. Lett. B$$uC. Adolph et al., Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons. Phys. Lett. B 744, 250–259 (2015). https://doi.org/10.1016/j.physletb.2015.03.056. arXiv:1408.4405$$v744$$y2015
000622276 999C5 $$1L Trentadue$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(94)90292-5$$p201 -$$tPhys. Lett. B$$uL. Trentadue, G. Veneziano, Fracture functions: An Improved description of inclusive hard processes in QCD. Phys. Lett. B 323, 201–211 (1994). https://doi.org/10.1016/0370-2693(94)90292-5$$v323$$y1994
000622276 999C5 $$1M Anselmino$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2011.03.067$$p108 -$$tPhys. Lett. B$$uM. Anselmino, V. Barone, A. Kotzinian, SIDIS in the target fragmentation region: Polarized and transverse momentum dependent fracture functions. Phys. Lett. B 699, 108–118 (2011). https://doi.org/10.1016/j.physletb.2011.03.067. arXiv:1102.4214$$v699$$y2011
000622276 999C5 $$1H Avakian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.130.022501$$tPhys. Rev. Lett.$$uH. Avakian et al., Observation of Correlations between Spin and Transverse Momenta in Back-to-Back Dihadron Production at CLAS12. Phys. Rev. Lett. 130(2), 022501 (2023). https://doi.org/10.1103/PhysRevLett.130.022501. arXiv:2208.05086$$v130$$y2023
000622276 999C5 $$1P Schweitzer$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2013)163$$p163 -$$tJHEP$$uP. Schweitzer, M. Strikman, C. Weiss, Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking. JHEP 01, 163 (2013). https://doi.org/10.1007/JHEP01(2013)163. arXiv:1210.1267$$v01$$y2013
000622276 999C5 $$1M Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2006.05.091$$p223 -$$tPhys. Lett. B$$uM. Sargsian, M. Strikman, Model independent method for determination of the DIS structure of free neutron. Phys. Lett. B 639, 223–231 (2006). https://doi.org/10.1016/j.physletb.2006.05.091. arXiv:hep-ph/0511054$$v639$$y2006
000622276 999C5 $$1W Cosyn$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.102.065204$$tPhys. Rev. C$$uW. Cosyn, C. Weiss, Polarized electron-deuteron deep-inelastic scattering with spectator nucleon tagging. Phys. Rev. C 102, 065204 (2020). https://doi.org/10.1103/PhysRevC.102.065204. arXiv:2006.03033$$v102$$y2020
000622276 999C5 $$2Crossref$$uS. Bueltmann, M. Christy, H. Fenker, K. Griffioen, C. Keppel, S. Kuhn, W. Melnitchouk, V. s. Tvaskis, The Structure of the Free Neutron at Large x-Bjorken; http://www.jlab.org/exp_prog/12GEV_EXP/E1206113.html JLab Experiment E1206113 (2006)
000622276 999C5 $$2Crossref$$uW. Armstrong, et al., Partonic Structure of Light Nuclei (2017). arXiv:1708.00888
000622276 999C5 $$1JT Londergan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.54.3154$$p3154 -$$tPhys. Rev. D$$uJ.T. Londergan, A. Pang, A.W. Thomas, Probing charge symmetry violating quark distributions in semiinclusive leptoproduction of hadrons. Phys. Rev. D 54, 3154–3161 (1996). https://doi.org/10.1103/PhysRevD.54.3154. arXiv:hep-ph/9604446$$v54$$y1996
000622276 999C5 $$1AD Martin$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2004-01825-2$$p325 -$$tEur. Phys. J. C$$uA.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Uncertainties of predictions from parton distributions. 2. Theoretical errors. Eur. Phys. J. C 35, 325–348 (2004). https://doi.org/10.1140/epjc/s2004-01825-2. arXiv:hep-ph/0308087$$v35$$y2004
000622276 999C5 $$1D de Florian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.75.114010$$tPhys. Rev. D$$uD. de Florian, R. Sassot, M. Stratmann, Global analysis of fragmentation functions for pions and kaons and their uncertainties. Phys. Rev. D 75, 114010 (2007). https://doi.org/10.1103/PhysRevD.75.114010. arXiv:hep-ph/0703242$$v75$$y2007
000622276 999C5 $$1I Scimemi$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2020)137$$p137 -$$tJHEP$$uI. Scimemi, A. Vladimirov, Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum. JHEP 06, 137 (2020). https://doi.org/10.1007/JHEP06(2020)137. arXiv:1912.06532$$v06$$y2020
000622276 999C5 $$1M Bury$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2022)118$$p118 -$$tJHEP$$uM. Bury, F. Hautmann, S. Leal-Gomez, I. Scimemi, A. Vladimirov, P. Zurita, PDF bias and flavor dependence in TMD distributions. JHEP 10, 118 (2022). https://doi.org/10.1007/JHEP10(2022)118. arXiv:2201.07114$$v10$$y2022
000622276 999C5 $$1A Bermudez Martinez$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.L091501$$pL091501 -$$tPhys. Rev. D$$uA. Bermudez Martinez, A. Vladimirov, Determination of the Collins-Soper kernel from cross-sections ratios. Phys. Rev. D 106(9), L091501 (2022). https://doi.org/10.1103/PhysRevD.106.L091501. arXiv:2206.01105$$v106$$y2022
000622276 999C5 $$1M Boglione$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2015)095$$p095 -$$tJHEP$$uM. Boglione, J.O. Gonzalez Hernandez, S. Melis, A. Prokudin, A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes. JHEP 02, 095 (2015). https://doi.org/10.1007/JHEP02(2015)095. arXiv:1412.1383$$v02$$y2015
000622276 999C5 $$1B Yoon$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.96.094508$$tPhys. Rev. D$$uB. Yoon, M. Engelhardt, R. Gupta, T. Bhattacharya, J.R. Green, B.U. Musch, J.W. Negele, A.V. Pochinsky, A. Schäfer, S.N. Syritsyn, Nucleon Transverse Momentum-dependent Parton Distributions in Lattice QCD: Renormalization Patterns and Discretization Effects. Phys. Rev. D 96(9), 094508 (2017). https://doi.org/10.1103/PhysRevD.96.094508. arXiv:1706.03406$$v96$$y2017
000622276 999C5 $$1X Ji$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.262002$$tPhys. Rev. Lett.$$uX. Ji, Parton Physics on a Euclidean Lattice. Phys. Rev. Lett. 110, 262002 (2013). https://doi.org/10.1103/PhysRevLett.110.262002. arXiv:1305.1539$$v110$$y2013
000622276 999C5 $$1X Ji$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.93.035005$$tRev. Mod. Phys.$$uX. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, Y. Zhao, Large-momentum effective theory. Rev. Mod. Phys. 93(3), 035005 (2021). https://doi.org/10.1103/RevModPhys.93.035005. arXiv:2004.03543$$v93$$y2021
000622276 999C5 $$1MA Ebert$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.034505$$tPhys. Rev. D$$uM.A. Ebert, I.W. Stewart, Y. Zhao, Determining the Nonperturbative Collins-Soper Kernel From Lattice QCD. Phys. Rev. D 99(3), 034505 (2019). https://doi.org/10.1103/PhysRevD.99.034505. arXiv:1811.00026$$v99$$y2019
000622276 999C5 $$1X Ji$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2020.135946$$tPhys. Lett. B$$uX. Ji, Y. Liu, Y.-S. Liu, Transverse-momentum-dependent parton distribution functions from large-momentum effective theory. Phys. Lett. B 811, 135946 (2020). https://doi.org/10.1016/j.physletb.2020.135946. arXiv:1911.03840$$v811$$y2020
000622276 999C5 $$1P Shanahan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.102.014511$$tPhys. Rev. D$$uP. Shanahan, M. Wagman, Y. Zhao, Collins-Soper kernel for TMD evolution from lattice QCD. Phys. Rev. D 102(1), 014511 (2020). https://doi.org/10.1103/PhysRevD.102.014511. arXiv:2003.06063$$v102$$y2020
000622276 999C5 $$1Q.-A. Zhang$$2Crossref$$9-- missing cx lookup --$$a10.22323/1.396.0477$$p192001 -$$tPhys. Rev. Lett.$$uQ..-A.. Zhang et al., Lattice-QCD Calculations of TMD Soft Function Through Large-Momentum Effective Theory. Phys. Rev. Lett. 125(19), 192001 (2020). https://doi.org/10.22323/1.396.0477. arXiv:2005.14572$$v125$$y2020
000622276 999C5 $$1M Schlemmer$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2021)004$$p004 -$$tJHEP$$uM. Schlemmer, A. Vladimirov, C. Zimmermann, M. Engelhardt, A. Schäfer, Determination of the Collins-Soper Kernel from Lattice QCD. JHEP 08, 004 (2021). https://doi.org/10.1007/JHEP08(2021)004. arXiv:2103.16991$$v08$$y2021
000622276 999C5 $$1M-H Chu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.034509$$tPhys. Rev. D$$uM.-H. Chu et al., Nonperturbative determination of the Collins-Soper kernel from quasitransverse-momentum-dependent wave functions. Phys. Rev. D 106(3), 034509 (2022). https://doi.org/10.1103/PhysRevD.106.034509. arXiv:2204.00200$$v106$$y2022
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.074519$$uH.-T. Shu, M. Schlemmer, T. Sizmann, A. Vladimirov, L. Walter, M. Engelhardt, A. Schäfer, Y.-B. Yang, Universality of the Collins-Soper kernel in lattice calculations (2 2023). arXiv:2302.06502
000622276 999C5 $$2Crossref$$uJ.-C. He, M.-H. Chu, J. Hua, X. Ji, A. Schäfer, Y. Su, W. Wang, Y. Yang, J.-H. Zhang, Q.-A. Zhang, Unpolarized Transverse-Momentum-Dependent Parton Distributions of the Nucleon from Lattice QCD (11 2022). arXiv:2211.02340
000622276 999C5 $$1Y Zhou$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.074022$$tPhys. Rev. D$$uY. Zhou, N. Sato, W. Melnitchouk, How well do we know the gluon polarization in the proton? Phys. Rev. D 105(7), 074022 (2022). https://doi.org/10.1103/PhysRevD.105.074022. arXiv:2201.02075$$v105$$y2022
000622276 999C5 $$1M Alberg$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.100.035205$$tPhys. Rev. C$$uM. Alberg, G.A. Miller, Chiral Light Front Perturbation Theory and the Flavor Dependence of the Light-Quark Nucleon Sea. Phys. Rev. C 100(3), 035205 (2019). https://doi.org/10.1103/PhysRevC.100.035205. arXiv:1712.05814$$v100$$y2019
000622276 999C5 $$1P Amaudruz$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.66.2712$$p2712 -$$tPhys. Rev. Lett.$$uP. Amaudruz et al., The Gottfried sum from the ratio F2(n) / F2(p). Phys. Rev. Lett. 66, 2712–2715 (1991). https://doi.org/10.1103/PhysRevLett.66.2712$$v66$$y1991
000622276 999C5 $$1GT Garvey$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0146-6410(01)00155-7$$p203 -$$tProg. Part. Nucl. Phys.$$uG.T. Garvey, J.-C. Peng, Flavor asymmetry of light quarks in the nucleon sea. Prog. Part. Nucl. Phys. 47, 203–243 (2001). https://doi.org/10.1016/S0146-6410(01)00155-7. arXiv:nucl-ex/0109010$$v47$$y2001
000622276 999C5 $$1K Nagai$$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSCP.13.020051$$tJPS Conf. Proc.$$uK. Nagai, Measurement of Antiquark Flavor Asymmetry in the Proton by the Drell-Yan Experiment SeaQuest at Fermilab. JPS Conf. Proc. 13, 020051 (2017). https://doi.org/10.7566/JPSCP.13.020051$$v13$$y2017
000622276 999C5 $$1CA Aidala$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.85.655$$p655 -$$tRev. Mod. Phys.$$uC.A. Aidala, S.D. Bass, D. Hasch, G.K. Mallot, The Spin Structure of the Nucleon. Rev. Mod. Phys. 85, 655–691 (2013). https://doi.org/10.1103/RevModPhys.85.655. arXiv:1209.2803$$v85$$y2013
000622276 999C5 $$1L Adamczyk$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.092002$$tPhys. Rev. Lett.$$uL. Adamczyk et al., Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $$\sqrt{s}=200$$ GeV. Phys. Rev. Lett. 115(9), 092002 (2015). https://doi.org/10.1103/PhysRevLett.115.092002. arXiv:1405.5134$$v115$$y2015
000622276 999C5 $$1J Adam$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.052005$$tPhys. Rev. D$$uJ. Adam et al., Longitudinal double-spin asymmetry for inclusive jet and dijet production in pp collisions at $$\sqrt{s} = 510$$ GeV. Phys. Rev. D 100(5), 052005 (2019). https://doi.org/10.1103/PhysRevD.100.052005. arXiv:1906.02740$$v100$$y2019
000622276 999C5 $$1MS Abdallah$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.L091103$$pL091103 -$$tPhys. Rev. D$$uM.S. Abdallah et al., Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $$\sqrt{s}=200$$ GeV. Phys. Rev. D 103(9), L091103 (2021). https://doi.org/10.1103/PhysRevD.103.L091103. arXiv:2103.05571$$v103$$y2021
000622276 999C5 $$1MS Abdallah$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.092011$$tPhys. Rev. D$$uM.S. Abdallah et al., Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $$\sqrt{s}=510$$ GeV. Phys. Rev. D 105(9), 092011 (2022). https://doi.org/10.1103/PhysRevD.105.092011. arXiv:2110.11020$$v105$$y2022
000622276 999C5 $$1A Adare$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.012006$$tPhys. Rev. D$$uA. Adare et al., Event Structure and Double Helicity Asymmetry in Jet Production from Polarized $$p+p$$ Collisions at $$\sqrt{s} = 200$$ GeV. Phys. Rev. D 84, 012006 (2011). https://doi.org/10.1103/PhysRevD.84.012006. arXiv:1009.4921$$v84$$y2011
000622276 999C5 $$1SD Bass$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2010.01.008$$p216 -$$tPhys. Lett. B$$uS.D. Bass, A.W. Thomas, The Nucleon’s octet axial-charge g(A)**(8) with chiral corrections. Phys. Lett. B 684, 216–220 (2010). https://doi.org/10.1016/j.physletb.2010.01.008. arXiv:0912.1765$$v684$$y2010
000622276 999C5 $$1JJ Ethier$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.132001$$tPhys. Rev. Lett.$$uJ.J. Ethier, N. Sato, W. Melnitchouk, First simultaneous extraction of spin-dependent parton distributions and fragmentation functions from a global QCD analysis. Phys. Rev. Lett. 119(13), 132001 (2017). https://doi.org/10.1103/PhysRevLett.119.132001. arXiv:1705.05889$$v119$$y2017
000622276 999C5 $$1A Candido$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2020)129$$p129 -$$tJHEP$$uA. Candido, S. Forte, F. Hekhorn, Can $$ \overline{\rm MS } $$ parton distributions be negative? JHEP 11, 129 (2020). https://doi.org/10.1007/JHEP11(2020)129. arXiv:2006.07377$$v11$$y2020
000622276 999C5 $$1J Collins$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.076010$$tPhys. Rev. D$$uJ. Collins, T.C. Rogers, N. Sato, Positivity and renormalization of parton densities. Phys. Rev. D 105(7), 076010 (2022). https://doi.org/10.1103/PhysRevD.105.076010. arXiv:2111.01170$$v105$$y2022
000622276 999C5 $$1B Jager$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.121803$$tPhys. Rev. Lett.$$uB. Jager, M. Stratmann, S. Kretzer, W. Vogelsang, QCD hard scattering and the sign of the spin asymmetry A**pi(LL). Phys. Rev. Lett. 92, 121803 (2004). https://doi.org/10.1103/PhysRevLett.92.121803. arXiv:hep-ph/0310197$$v92$$y2004
000622276 999C5 $$1A Adare$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.011501$$tPhys. Rev. D$$uA. Adare et al., Inclusive cross section and double-helicity asymmetry for $$\pi ^{0}$$ production at midrapidity in $$p+p$$ collisions at $$\sqrt{s}=510$$ GeV. Phys. Rev. D 93(1), 011501 (2016). https://doi.org/10.1103/PhysRevD.93.011501. arXiv:1510.02317$$v93$$y2016
000622276 999C5 $$1A Adare$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.032001$$tPhys. Rev. D$$uA. Adare et al., Charged-pion cross sections and double-helicity asymmetries in polarized p+p collisions at $$\sqrt{s}$$=200 GeV. Phys. Rev. D 91(3), 032001 (2015). https://doi.org/10.1103/PhysRevD.91.032001. arXiv:1409.1907$$v91$$y2015
000622276 999C5 $$1UA Acharya$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.102.032001$$tPhys. Rev. D$$uU.A. Acharya et al., Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized $$p+p$$ collisions at $$\sqrt{s}$$ = 510 GeV. Phys. Rev. D 102(3), 032001 (2020). https://doi.org/10.1103/PhysRevD.102.032001. arXiv:2004.02681$$v102$$y2020
000622276 999C5 $$1RM Whitehill$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.034033$$tPhys. Rev. D$$uR.M. Whitehill, Y. Zhou, N. Sato, W. Melnitchouk, Accessing gluon polarization with high-PT hadrons in SIDIS. Phys. Rev. D 107(3), 034033 (2023). https://doi.org/10.1103/PhysRevD.107.034033. arXiv:2210.12295$$v107$$y2023
000622276 999C5 $$1MV Polyakov$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X18300259$$p1830025 -$$tInt. J. Mod. Phys. A$$uM.V. Polyakov, P. Schweitzer, Forces inside hadrons: pressure, surface tension, mechanical radius, and all that. Int. J. Mod. Phys. A 33(26), 1830025 (2018). https://doi.org/10.1142/S0217751X18300259. arXiv:1805.06596$$v33$$y2018
000622276 999C5 $$1C Lorcé$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-019-6572-3$$p89 -$$tEur. Phys. J. C$$uC. Lorcé, H. Moutarde, A.P. Trawiński, Revisiting the mechanical properties of the nucleon. Eur. Phys. J. C 79(1), 89 (2019). https://doi.org/10.1140/epjc/s10052-019-6572-3. arXiv:1810.09837$$v79$$y2019
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-018-5561-2$$uC. Lorcé, On the hadron mass decomposition. Eur. Phys. J. C 78(2), 120 (2018). https://doi.org/10.1140/epjc/s10052-018-5561-2. arXiv:1706.05853
000622276 999C5 $$1Y Hatta$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2018)008$$p008 -$$tJHEP$$uY. Hatta, A. Rajan, K. Tanaka, Quark and gluon contributions to the QCD trace anomaly. JHEP 12, 008 (2018). https://doi.org/10.1007/JHEP12(2018)008. arXiv:1810.05116$$v12$$y2018
000622276 999C5 $$1A Metz$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.102.114042$$tPhys. Rev. D$$uA. Metz, B. Pasquini, S. Rodini, Revisiting the proton mass decomposition. Phys. Rev. D 102(11), 114042 (2021). https://doi.org/10.1103/PhysRevD.102.114042. arXiv:2006.11171$$v102$$y2021
000622276 999C5 $$1K Goeke$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0146-6410(01)00158-2$$p401 -$$tProg. Part. Nucl. Phys.$$uK. Goeke, M.V. Polyakov, M. Vanderhaeghen, Hard exclusive reactions and the structure of hadrons. Prog. Part. Nucl. Phys. 47, 401–515 (2001). https://doi.org/10.1016/S0146-6410(01)00158-2. arXiv:hep-ph/0106012$$v47$$y2001
000622276 999C5 $$1M Diehl$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2003.08.002$$p41 -$$tGeneralized parton distributions. Phys. Rept.$$uM. Diehl, Generalized parton distributions. Phys. Rept. 388, 41–277 (2003). https://doi.org/10.1016/j.physrep.2003.08.002. arXiv:hep-ph/0307382$$v388$$y2003
000622276 999C5 $$1AV Belitsky$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2005.06.002$$p1 -$$tPhys. Rept.$$uA.V. Belitsky, A.V. Radyushkin, Unraveling hadron structure with generalized parton distributions. Phys. Rept. 418, 1–387 (2005). https://doi.org/10.1016/j.physrep.2005.06.002. arXiv:hep-ph/0504030$$v418$$y2005
000622276 999C5 $$1X-D Ji$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.74.1071$$p1071 -$$tPhys. Rev. Lett.$$uX.-D. Ji, A QCD analysis of the mass structure of the nucleon. Phys. Rev. Lett. 74, 1071–1074 (1995). https://doi.org/10.1103/PhysRevLett.74.1071. arXiv:hep-ph/9410274$$v74$$y1995
000622276 999C5 $$1X-D Ji$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.52.271$$p271 -$$tPhys. Rev. D$$uX.-D. Ji, Breakup of hadron masses and energy - momentum tensor of QCD. Phys. Rev. D 52, 271–281 (1995). arXiv:hep-ph/9502213$$v52$$y1995
000622276 999C5 $$1D Kharzeev$$2Crossref$$9-- missing cx lookup --$$a10.1007/s100529900047$$p459 -$$tEur. Phys. J. C$$uD. Kharzeev, H. Satz, A. Syamtomov, G. Zinovjev, $$J/\psi $$ photoproduction and the gluon structure of the nucleon. Eur. Phys. J. C 9, 459–462 (1999). https://doi.org/10.1007/s100529900047. arXiv:hep-ph/9901375$$v9$$y1999
000622276 999C5 $$1O Gryniuk$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.074001$$tPhys. Rev. D$$uO. Gryniuk, M. Vanderhaeghen, Accessing the real part of the forward $$J/\psi $$-p scattering amplitude from $$J/\psi $$ photoproduction on protons around threshold. Phys. Rev. D 94(7), 074001 (2016). https://doi.org/10.1103/PhysRevD.94.074001. arXiv:1608.08205$$v94$$y2016
000622276 999C5 $$1KA Mamo$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.086003$$tPhys. Rev. D$$uK.A. Mamo, I. Zahed, Diffractive photoproduction of $$J/\psi $$ and $$\Upsilon $$ using holographic QCD: gravitational form factors and GPD of gluons in the proton. Phys. Rev. D 101(8), 086003 (2020). https://doi.org/10.1103/PhysRevD.101.086003. arXiv:1910.04707$$v101$$y2020
000622276 999C5 $$1KA Mamo$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.086004$$tPhys. Rev. D$$uK.A. Mamo, I. Zahed, J/$$\psi $$ near threshold in holographic QCD: A and D gravitational form factors. Phys. Rev. D 106(8), 086004 (2022). https://doi.org/10.1103/PhysRevD.106.086004. arXiv:2204.08857$$v106$$y2022
000622276 999C5 $$1Y Guo$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.096010$$tPhys. Rev. D$$uY. Guo, X. Ji, Y. Liu, QCD Analysis of Near-Threshold Photon-Proton Production of Heavy Quarkonium. Phys. Rev. D 103(9), 096010 (2021). https://doi.org/10.1103/PhysRevD.103.096010. arXiv:2103.11506$$v103$$y2021
000622276 999C5 $$1B Duran$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-023-05730-4$$p813 -$$tNature$$uB. Duran et al., Determining the gluonic gravitational form factors of the proton. Nature 615(7954), 813–816 (2023). https://doi.org/10.1038/s41586-023-05730-4. arXiv:2207.05212$$v615$$y2023
000622276 999C5 $$1DA Pefkou$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.054509$$tPhys. Rev. D$$uD.A. Pefkou, D.C. Hackett, P.E. Shanahan, Gluon gravitational structure of hadrons of different spin. Phys. Rev. D 105(5), 054509 (2022). https://doi.org/10.1103/PhysRevD.105.054509. arXiv:2107.10368$$v105$$y2022
000622276 999C5 $$2Crossref$$uJ. P. Chen, H. Gao, T. K. Hemmick, Z. E. Meziani, P. A. Souder, A White Paper on SoLID (Solenoidal Large Intensity Device) (9 2014). arXiv:1409.7741
000622276 999C5 $$1MV Polyakov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.60.114017$$tPhys. Rev. D$$uM.V. Polyakov, C. Weiss, Skewed and double distributions in pion and nucleon. Phys. Rev. D 60, 114017 (1999). https://doi.org/10.1103/PhysRevD.60.114017. arXiv:hep-ph/9902451$$v60$$y1999
000622276 999C5 $$1MV Polyakov$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(03)00036-4$$p57 -$$tPhys. Lett. B$$uM.V. Polyakov, Generalized parton distributions and strong forces inside nucleons and nuclei. Phys. Lett. B 555, 57–62 (2003). https://doi.org/10.1016/S0370-2693(03)00036-4. arXiv:hep-ph/0210165$$v555$$y2003
000622276 999C5 $$1VD Burkert$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0060-z$$p396 -$$tNature$$uV.D. Burkert, L. Elouadrhiri, F.X. Girod, The pressure distribution inside the proton. Nature 557(7705), 396–399 (2018). https://doi.org/10.1038/s41586-018-0060-z$$v557$$y2018
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.95.041002$$uV. D. Burkert, L. Elouadrhiri, F. X. Girod, C. Lorcé, P. Schweitzer, P. E. Shanahan, Colloquium: Gravitational Form Factors of the Proton (3 2023). arXiv:2303.08347
000622276 999C5 $$1K Kumerički$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-019-1211-6$$pE1 -$$tNature$$uK. Kumerički, Measurability of pressure inside the proton. Nature 570(7759), E1–E2 (2019). https://doi.org/10.1038/s41586-019-1211-6$$v570$$y2019
000622276 999C5 $$1H Moutarde$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-019-7117-5$$p614 -$$tEur. Phys. J. C$$uH. Moutarde, P. Sznajder, J. Wagner, Unbiased determination of DVCS Compton Form Factors. Eur. Phys. J. C 79(7), 614 (2019). https://doi.org/10.1140/epjc/s10052-019-7117-5. arXiv:1905.02089$$v79$$y2019
000622276 999C5 $$2Crossref$$uG. Christiaens, et al., First CLAS12 measurement of DVCS beam-spin asymmetries in the extended valence region (11 2022). arXiv:2211.11274
000622276 999C5 $$1X-D Ji$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.78.610$$p610 -$$tPhys. Rev. Lett.$$uX.-D. Ji, Gauge-Invariant Decomposition of Nucleon Spin. Phys. Rev. Lett. 78, 610–613 (1997). https://doi.org/10.1103/PhysRevLett.78.610. arXiv:hep-ph/9603249$$v78$$y1997
000622276 999C5 $$1A Radyushkin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.56.5524$$p5524 -$$tPhys. Rev. D$$uA. Radyushkin, Nonforward parton distributions. Phys. Rev. D 56, 5524–5557 (1997). https://doi.org/10.1103/PhysRevD.56.5524. arXiv:hep-ph/9704207$$v56$$y1997
000622276 999C5 $$1K Kumericki$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2016-16157-3$$p157 -$$tEur. Phys. J. A$$uK. Kumericki, S. Liuti, H. Moutarde, GPD phenomenology and DVCS fitting: Entering the high-precision era. Eur. Phys. J. A 52(6), 157 (2016). https://doi.org/10.1140/epja/i2016-16157-3. arXiv:1602.02763$$v52$$y2016
000622276 999C5 $$1DE Soper$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.15.1141$$p1141 -$$tPhys. Rev. D$$uD.E. Soper, The Parton Model and the Bethe-Salpeter Wave Function. Phys. Rev. D 15, 1141 (1977). https://doi.org/10.1103/PhysRevD.15.1141$$v15$$y1977
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.62.071503$$uM. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for zeta —$${>}$$ 0, Phys. Rev. D 62 (2000) 071503, [Erratum: Phys.Rev.D 66, 119903 (2002)]. arXiv:hep-ph/0005108, https://doi.org/10.1103/PhysRevD.62.071503
000622276 999C5 $$1AV Belitsky$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(02)00144-X$$p323 -$$tNucl. Phys. B$$uA.V. Belitsky, D. Mueller, A. Kirchner, Theory of deeply virtual Compton scattering on the nucleon. Nucl. Phys. B 629, 323–392 (2002). https://doi.org/10.1016/S0550-3213(02)00144-X. arXiv:hep-ph/0112108$$v629$$y2002
000622276 999C5 $$1AV Belitsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.82.074010$$tPhys. Rev. D$$uA.V. Belitsky, D. Mueller, Exclusive electroproduction revisited: treating kinematical effects. Phys. Rev. D 82, 074010 (2010). https://doi.org/10.1103/PhysRevD.82.074010. arXiv:1005.5209$$v82$$y2010
000622276 999C5 $$1B Kriesten$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2022.137051$$tPhys. Lett. B$$uB. Kriesten, S. Liuti, A. Meyer, Novel Rosenbluth extraction framework for Compton form factors from deeply virtual exclusive experiments. Phys. Lett. B 829, 137051 (2022). https://doi.org/10.1016/j.physletb.2022.137051. arXiv:2011.04484$$v829$$y2022
000622276 999C5 $$1B Kriesten$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.016015$$tPhys. Rev. D$$uB. Kriesten, S. Liuti, Theory of deeply virtual Compton scattering off the unpolarized proton. Phys. Rev. D 105(1), 016015 (2022). https://doi.org/10.1103/PhysRevD.105.016015. arXiv:2004.08890$$v105$$y2022
000622276 999C5 $$1B Kriesten$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.054021$$tPhys. Rev. D$$uB. Kriesten, S. Liuti, L. Calero-Diaz, D. Keller, A. Meyer, G.R. Goldstein, J. Osvaldo Gonzalez-Hernandez, Extraction of generalized parton distribution observables from deeply virtual electron proton scattering experiments. Phys. Rev. D 101(5), 054021 (2020). https://doi.org/10.1103/PhysRevD.101.054021. arXiv:1903.05742$$v101$$y2020
000622276 999C5 $$1B Kriesten$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.056022$$tPhys. Rev. D$$uB. Kriesten, P. Velie, E. Yeats, F.Y. Lopez, S. Liuti, Parametrization of quark and gluon generalized parton distributions in a dynamical framework. Phys. Rev. D 105(5), 056022 (2022). https://doi.org/10.1103/PhysRevD.105.056022. arXiv:2101.01826$$v105$$y2022
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1142/9789811214950_0005$$uK. Kumerički, Extraction of DVCS form factors with uncertainties, in: Probing Nucleons and Nuclei in High Energy Collisions: Dedicated to the Physics of the Electron Ion Collider, 2020, pp. 25–29. https://doi.org/10.1142/9789811214950_0005arXiv:1910.04806
000622276 999C5 $$1J Grigsby$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.016001$$tPhys. Rev. D$$uJ. Grigsby, B. Kriesten, J. Hoskins, S. Liuti, P. Alonzi, M. Burkardt, Deep learning analysis of deeply virtual exclusive photoproduction. Phys. Rev. D 104(1), 016001 (2021). https://doi.org/10.1103/PhysRevD.104.016001. arXiv:2012.04801$$v104$$y2021
000622276 999C5 $$1M Čuić$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.232005$$tPhys. Rev. Lett.$$uM. Čuić, K. Kumerički, A. Schäfer, Separation of Quark Flavors Using Deeply Virtual Compton Scattering Data. Phys. Rev. Lett. 125(23), 232005 (2020). https://doi.org/10.1103/PhysRevLett.125.232005. arXiv:2007.00029$$v125$$y2020
000622276 999C5 $$2Crossref$$uM. Almaeen, J. Grigsby, J. Hoskins, B. Kriesten, Y. Li, H.-W. Lin, S. Liuti, Benchmarks for a Global Extraction of Information from Deeply Virtual Exclusive Scattering (7 2022). arXiv:2207.10766
000622276 999C5 $$1M Guidal$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.012001$$tPhys. Rev. Lett.$$uM. Guidal, M. Vanderhaeghen, Double deeply virtual Compton scattering off the nucleon. Phys. Rev. Lett. 90, 012001 (2003). https://doi.org/10.1103/PhysRevLett.90.012001. arXiv:hep-ph/0208275$$v90$$y2003
000622276 999C5 $$1AV Belitsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.022001$$tPhys. Rev. Lett.$$uA.V. Belitsky, D. Mueller, Exclusive electroproduction of lepton pairs as a probe of nucleon structure. Phys. Rev. Lett. 90, 022001 (2003). https://doi.org/10.1103/PhysRevLett.90.022001. arXiv:hep-ph/0210313$$v90$$y2003
000622276 999C5 $$1S Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/s10050-021-00551-3$$p240 -$$tEur. Phys. J. A$$uS. Zhao, A. Camsonne, D. Marchand, M. Mazouz, N. Sparveris, S. Stepanyan, E. Voutier, Z.W. Zhao, Double deeply virtual Compton scattering with positron beams at SoLID. Eur. Phys. J. A 57(7), 240 (2021). https://doi.org/10.1140/epja/s10050-021-00551-3. arXiv:2103.12773$$v57$$y2021
000622276 999C5 $$1DY Ivanov$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(02)02856-3$$p65 -$$tPhys. Lett. B$$uD.Y. Ivanov, B. Pire, L. Szymanowski, O.V. Teryaev, Probing chiral odd GPD’s in diffractive electroproduction of two vector mesons. Phys. Lett. B 550, 65–76 (2002). https://doi.org/10.1016/S0370-2693(02)02856-3. arXiv:hep-ph/0209300$$v550$$y2002
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2017)054$$uR. Boussarie, B. Pire, L. Szymanowski, S. Wallon, Exclusive photoproduction of a $$\gamma \,\rho $$ pair with a large invariant mass, JHEP 02 (2017) 054, [Erratum: JHEP 10, 029 (2018)]. arXiv:hep-ph/1609.03830, https://doi.org/10.1007/JHEP02(2017)054
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2023)241$$uG. Duplančić, S. Nabeebaccus, K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon, Probing chiral-even and chiral-odd leading twist quark generalised parton distributions through the exclusive photoproduction of a $$ \gamma \rho $$ pair (2 2023). arXiv:2302.12026
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.96.074008$$uA. Pedrak, B. Pire, L. Szymanowski, J. Wagner, Hard photoproduction of a diphoton with a large invariant mass, Phys. Rev. D 96 (7) (2017) 074008, [Erratum: Phys.Rev.D 100, 039901 (2019)]. arXiv:hep-ph/1708.01043, https://doi.org/10.1103/PhysRevD.96.074008
000622276 999C5 $$1O Grocholski$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.094025$$tPhys. Rev. D$$uO. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner, Phenomenology of diphoton photoproduction at next-to-leading order. Phys. Rev. D 105(9), 094025 (2022). https://doi.org/10.1103/PhysRevD.105.094025. arXiv:2204.00396$$v105$$y2022
000622276 999C5 $$1O Grocholski$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.114006$$tPhys. Rev. D$$uO. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner, Collinear factorization of diphoton photoproduction at next to leading order. Phys. Rev. D 104(11), 114006 (2021). https://doi.org/10.1103/PhysRevD.104.114006. arXiv:2110.00048$$v104$$y2021
000622276 999C5 $$1J-W Qiu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.014007$$tPhys. Rev. D$$uJ.-W. Qiu, Z. Yu, Single diffractive hard exclusive processes for the study of generalized parton distributions. Phys. Rev. D 107(1), 014007 (2023). https://doi.org/10.1103/PhysRevD.107.014007. arXiv:2210.07995$$v107$$y2023
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2014-14146-2$$uS. V. Goloskokov, P. Kroll, The pion pole in hard exclusive vector-meson leptoproduction, The European Physical Journal A 50 (9) (sep 2014). https://doi.org/10.1140/epja/i2014-14146-2.https://doi.org/10.1140%2Fepja%2Fi2014-14146-2
000622276 999C5 $$1C Mezrag$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.88.014001$$tPhys. Rev. D$$uC. Mezrag, H. Moutarde, F. Sabatié, Test of two new parametrizations of the generalized parton distribution H. Phys. Rev. D 88(1), 014001 (2013). https://doi.org/10.1103/PhysRevD.88.014001. arXiv:1304.7645$$v88$$y2013
000622276 999C5 $$1A Pedrak$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.114027$$tPhys. Rev. D$$uA. Pedrak, B. Pire, L. Szymanowski, J. Wagner, Electroproduction of a large invariant mass photon pair. Phys. Rev. D 101(11), 114027 (2020). https://doi.org/10.1103/PhysRevD.101.114027. arXiv:hep-ph/2003.03263$$v101$$y2020
000622276 999C5 $$1B Berthou$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-018-5948-0$$p478 -$$tEur. Phys. J. C$$uB. Berthou et al., PARTONS: PARtonic Tomography Of Nucleon Software: A computing framework for the phenomenology of Generalized Parton Distributions. Eur. Phys. J. C 78(6), 478 (2018). https://doi.org/10.1140/epjc/s10052-018-5948-0. arXiv:hep-ph/1512.06174$$v78$$y2018
000622276 999C5 $$1EC Aschenauer$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10651-z$$p819 -$$tEur. Phys. J. C$$uE.C. Aschenauer, V. Batozskaya, S. Fazio, K. Gates, H. Moutarde, D. Sokhan, H. Spiesberger, P. Sznajder, K. Tezgin, EpIC: novel Monte Carlo generator for exclusive processes. Eur. Phys. J. C 82(9), 819 (2022). https://doi.org/10.1140/epjc/s10052-022-10651-z. arXiv:2205.01762$$v82$$y2022
000622276 999C5 $$1J-W Qiu$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2022)103$$p103 -$$tJHEP$$uJ.-W. Qiu, Z. Yu, Exclusive production of a pair of high transverse momentum photons in pion-nucleon collisions for extracting generalized parton distributions. JHEP 08, 103 (2022). https://doi.org/10.1007/JHEP08(2022)103. arXiv:2205.07846$$v08$$y2022
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.131.161902$$uJ.-W. Qiu, Z. Yu, Extraction of the $$x$$-dependence of generalized parton distributions from exclusive photoproduction (5 2023). arXiv:2305.15397
000622276 999C5 $$1SV Goloskokov$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2005-02298-5$$p281 -$$tEur. Phys. J. C$$uS.V. Goloskokov, P. Kroll, Vector meson electroproduction at small Bjorken-x and generalized parton distributions. Eur. Phys. J. C 42, 281–301 (2005). https://doi.org/10.1140/epjc/s2005-02298-5. arXiv:hep-ph/0501242$$v42$$y2005
000622276 999C5 $$1S Goloskokov$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-007-0466-5$$p367 -$$tEur. Phys. J. C$$uS. Goloskokov, P. Kroll, The Role of the quark and gluon GPDs in hard vector-meson electroproduction. Eur. Phys. J. C 53, 367–384 (2008). https://doi.org/10.1140/epjc/s10052-007-0466-5. arXiv:0708.3569$$v53$$y2008
000622276 999C5 $$1SV Goloskokov$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-009-1178-9$$p137 -$$tEur. Phys. J. C$$uS.V. Goloskokov, P. Kroll, An Attempt to understand exclusive pi+ electroproduction. Eur. Phys. J. C 65, 137–151 (2010). https://doi.org/10.1140/epjc/s10052-009-1178-9. arXiv:0906.0460$$v65$$y2010
000622276 999C5 $$1P Kroll$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-013-2278-0$$p2278 -$$tEur. Phys. J. C$$uP. Kroll, H. Moutarde, F. Sabatie, From hard exclusive meson electroproduction to deeply virtual Compton scattering. Eur. Phys. J. C 73(1), 2278 (2013). https://doi.org/10.1140/epjc/s10052-013-2278-0. arXiv:1210.6975$$v73$$y2013
000622276 999C5 $$1V Bertone$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.114019$$tPhys. Rev. D$$uV. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, P. Sznajder, Deconvolution problem of deeply virtual Compton scattering. Phys. Rev. D 103(11), 114019 (2021). https://doi.org/10.1103/PhysRevD.103.114019. arXiv:2104.03836$$v103$$y2021
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.036027$$uE. Moffat, A. Freese, I. Cloët, T. Donohoe, L. Gamberg, W. Melnitchouk, A. Metz, A. Prokudin, N. Sato, Shedding light on shadow generalized parton distributions (3 2023). arXiv:2303.12006
000622276 999C5 $$1P Kroll$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.054009$$tPhys. Rev. D$$uP. Kroll, K. Passek-Kumerički, Transition GPDs and exclusive electroproduction of $$\pi $$-$$\Delta (1232)$$ final states. Phys. Rev. D 107(5), 054009 (2023). https://doi.org/10.1103/PhysRevD.107.054009. arXiv:2211.09474$$v107$$y2023
000622276 999C5 $$1PAM Guichon$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.68.034018$$tPhys. Rev. D$$uP.A.M. Guichon, L. Mossé, M. Vanderhaeghen, Pion production in deeply virtual Compton scattering. Phys. Rev. D 68, 034018 (2003). https://doi.org/10.1103/PhysRevD.68.034018. arXiv:hep-ph/0305231$$v68$$y2003
000622276 999C5 $$2Crossref$$uK. M. Semenov-Tian-Shansky, M. Vanderhaeghen, Deeply-Virtual Compton Process $$e^- N \rightarrow e^- \gamma \pi N$$ to Study Nucleon to Resonance Transitions - arXiv:2303.00119 [hep-ph] (2023). arXiv:2303.00119
000622276 999C5 $$1HF Jones$$2Crossref$$9-- missing cx lookup --$$a10.1016/0003-4916(73)90476-4$$p1 -$$tAnnals Phys.$$uH.F. Jones, M.D. Scadron, Multipole $$\gamma N$$-$$\Delta $$ form factors and resonant photoproduction and electroproduction. Annals Phys. 81, 1–14 (1973). https://doi.org/10.1016/0003-4916(73)90476-4$$v81$$y1973
000622276 999C5 $$1SL Adler$$2Crossref$$9-- missing cx lookup --$$a10.1016/0003-4916(68)90278-9$$p189 -$$tAnnals Phys.$$uS.L. Adler, Photoproduction, electroproduction and weak single pion production in the (3,3) resonance region. Annals Phys. 50, 189–311 (1968). https://doi.org/10.1016/0003-4916(68)90278-9$$v50$$y1968
000622276 999C5 $$1SL Adler$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.12.2644$$p2644 -$$tPhys. Rev. D$$uS.L. Adler, Application of Current Algebra Techniques to Soft Pion Production by the Weak Neutral Current: V, a Case. Phys. Rev. D 12, 2644 (1975). https://doi.org/10.1103/PhysRevD.12.2644$$v12$$y1975
000622276 999C5 $$1J-Y Kim$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2022.137442$$tPhys. Lett. B$$uJ.-Y. Kim, Parametrization of transition energy-momentum tensor form factors. Phys. Lett. B 834, 137442 (2022). https://doi.org/10.1016/j.physletb.2022.137442. arXiv:2206.10202$$v834$$y2022
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2023.138083$$uJ.-Y. Kim, H.-Y. Won, J. L. Goity, C. Weiss, QCD angular momentum in $$N \rightarrow \Delta $$ transitions (4 2023). arXiv:2304.08575
000622276 999C5 $$2Crossref$$uV. Pascalutsa, M. Vanderhaeghen, New large-N(c) relations among the nucleon and nucleon-to-Delta GPDs (11 2006). arXiv:hep-ph/0611050
000622276 999C5 $$1P Schweitzer$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.94.045202$$tPhys. Rev. C$$uP. Schweitzer, C. Weiss, Spin-flavor structure of chiral-odd generalized parton distributions in the large- $$\text{ N}_c$$ limit. Phys. Rev. C 94(4), 045202 (2016). https://doi.org/10.1103/PhysRevC.94.045202. arXiv:1606.08388$$v94$$y2016
000622276 999C5 $$1S Diehl$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.131.021901$$tPhys. Rev. Lett.$$uS. Diehl et al., First Measurement of Hard Exclusive $$\pi ^{-}\Delta ^{++}$$ Electroproduction Beam-Spin Asymmetries off the Proton. Phys. Rev. Lett. 131(2), 021901 (2023). https://doi.org/10.1103/PhysRevLett.131.021901. arXiv:2303.11762$$v131$$y2023
000622276 999C5 $$1S Diehl$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2023.137761$$tPhys. Lett. B$$uS. Diehl et al., A multidimensional study of the structure function ratio $$\sigma $$LT’/$$\sigma $$0 from hard exclusive $$\pi $$+ electro-production off protons in the GPD regime. Phys. Lett. B 839, 137761 (2023). https://doi.org/10.1016/j.physletb.2023.137761. arXiv:2210.14557$$v839$$y2023
000622276 999C5 $$1A Kim$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2024.138459$$tPhys. Lett. B$$uA. Kim et al., Beam spin asymmetry measurements of deeply virtual $$\pi $$0 production with CLAS12. Phys. Lett. B 849, 138459 (2024). https://doi.org/10.1016/j.physletb.2024.138459. arXiv:2307.07874$$v849$$y2024
000622276 999C5 $$1CA Gayoso$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/s10050-021-00625-2$$p342 -$$tEur. Phys. J. A$$uC.A. Gayoso et al., Progress and opportunities in backward angle (u-channel) physics. Eur. Phys. J. A 57(12), 342 (2021). https://doi.org/10.1140/epja/s10050-021-00625-2. arXiv:2107.06748$$v57$$y2021
000622276 999C5 $$1LL Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.60.014010$$tPhys. Rev. D$$uL.L. Frankfurt, P.V. Pobylitsa, M.V. Polyakov, M. Strikman, Hard exclusive pseudoscalar meson electroproduction and spin structure of a nucleon. Phys. Rev. D 60, 014010 (1999). https://doi.org/10.1103/PhysRevD.60.014010. arXiv:hep-ph/9901429$$v60$$y1999
000622276 999C5 $$1B Pire$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.71.111501$$tPhys. Rev. D$$uB. Pire, L. Szymanowski, Hadron annihilation into two photons and backward VCS in the scaling regime of QCD. Phys. Rev. D 71, 111501 (2005). https://doi.org/10.1103/PhysRevD.71.111501. arXiv:hep-ph/0411387$$v71$$y2005
000622276 999C5 $$1B Pire$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2021.09.002$$p1 -$$tPhys. Rept.$$uB. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Transition distribution amplitudes and hard exclusive reactions with baryon number transfer. Phys. Rept. 940, 1–121 (2021). https://doi.org/10.1016/j.physrep.2021.09.002. arXiv:2103.01079$$v940$$y2021
000622276 999C5 $$1K Park$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2018.03.026$$p340 -$$tPhys. Lett. B$$uK. Park et al., Hard exclusive pion electroproduction at backward angles with CLAS. Phys. Lett. B 780, 340–345 (2018). https://doi.org/10.1016/j.physletb.2018.03.026. arXiv:1711.08486$$v780$$y2018
000622276 999C5 $$1WB Li$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.182501$$tPhys. Rev. Lett.$$uW.B. Li et al., Unique Access to $$u$$-Channel Physics: Exclusive Backward-Angle Omega Meson Electroproduction. Phys. Rev. Lett. 123(18), 182501 (2019). https://doi.org/10.1103/PhysRevLett.123.182501. arXiv:1910.00464$$v123$$y2019
000622276 999C5 $$1S Diehl$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.182001$$tPhys. Rev. Lett.$$uS. Diehl et al., Extraction of Beam-Spin Asymmetries from the Hard Exclusive $$\pi ^+$$ Channel off Protons in a Wide Range of Kinematics. Phys. Rev. Lett. 125(18), 182001 (2020). https://doi.org/10.1103/PhysRevLett.125.182001. arXiv:2007.15677$$v125$$y2020
000622276 999C5 $$2Crossref$$uW. B. Li, et al., Backward-angle Exclusive pi0 Production above the Resonance Region (8 2020). arXiv:2008.10768
000622276 999C5 $$1B Pire$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.074014$$tPhys. Rev. D$$uB. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, $$\pi $$ N transition distribution amplitudes: their symmetries and constraints from chiral dynamics. Phys. Rev. D 84, 074014 (2011). https://doi.org/10.1103/PhysRevD.84.074014$$v84$$y2011
000622276 999C5 $$1JP Lansberg$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2006.10.014$$p16 -$$tNucl. Phys. A$$uJ.P. Lansberg, B. Pire, L. Szymanowski, Backward DVCS and Proton to Photon Transition Distribution Amplitudes. Nucl. Phys. A 782, 16–23 (2007). https://doi.org/10.1016/j.nuclphysa.2006.10.014. arXiv:hep-ph/0607130$$v782$$y2007
000622276 999C5 $$1B Pire$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10587-4$$p656 -$$tEur. Phys. J. C$$uB. Pire, K.M. Semenov-Tian-Shansky, A.A. Shaikhutdinova, L. Szymanowski, Backward timelike Compton scattering to decipher the photon content of the nucleon. Eur. Phys. J. C 82(7), 656 (2022). https://doi.org/10.1140/epjc/s10052-022-10587-4. arXiv:2201.12853$$v82$$y2022
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s43673-023-00094-3$$uB. Pire, K. M. Semenov-Tian-Shansky, A. A. Shaikhutdinova, L. Szymanowski, Pion and photon beam initiated backward charmonium or lepton pair production (12 2022). arXiv:2212.07688
000622276 999C5 $$2Crossref$$uS. Adhikari, et al., Measurement of the J/$$\psi $$ photoproduction cross section over the full near-threshold kinematic region (4 2023). arXiv:2304.03845
000622276 999C5 $$1P Jain$$2Crossref$$9-- missing cx lookup --$$a10.3390/physics4020038$$p578 -$$tMDPI Physics$$uP. Jain, B. Pire, J.P. Ralston, The Status and Future of Color Transparency and Nuclear Filtering. MDPI Physics 4(2), 578–589 (2022). https://doi.org/10.3390/physics4020038. arXiv:2203.02579$$v4$$y2022
000622276 999C5 $$1GM Huber$$2Crossref$$9-- missing cx lookup --$$a10.3390/physics4020030$$p451 -$$tMDPI Physics$$uG.M. Huber, W.B. Li, W. Cosyn, B. Pire, u-Channel Color Transparency Observables. MDPI Physics 4(2), 451–461 (2022). https://doi.org/10.3390/physics4020030. arXiv:2202.04470$$v4$$y2022
000622276 999C5 $$2Crossref$$uT. Horn, G. M. Huber, P. Markowitz, et al., Studies of the L/T Separated Kaon Electroproduction Cross Sections from 5-11 GeV, jefferson Lab 12 GeV Experiment E12-09-011. https://www.jlab.org/exp_prog/proposals/09/PR12-09-011.pdf
000622276 999C5 $$2Crossref$$uG. M. Huber, D. Gaskell, T. Horn, et al., Measurement of the Charged Pion Form Factor to High $$Q^{2}$$ and Scaling Study of the L/T-Separated Pion Electroproduction Cross Section at 11 GeV, jefferson Lab 12 GeV Experiment E12-19-006 (2019). https://www.jlab.org/exp_prog/proposals/19/E12-19-006.pdf
000622276 999C5 $$1MK Jones$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.84.1398$$p1398 -$$tPhys. Rev. Lett.$$uM.K. Jones et al., $$g_{Ep}/g_{Mp}$$ ratio by polarization transfer in $$\vec{e} p \rightarrow e \vec{p}$$. Phys. Rev. Lett. 84, 1398–1402 (2000). https://doi.org/10.1103/PhysRevLett.84.1398. arXiv:nucl-ex/9910005$$v84$$y2000
000622276 999C5 $$1O Gayou$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.092301$$tPhys. Rev. Lett.$$uO. Gayou et al., Measurement of $$G_{Ep}/G_{Mp}$$ in $$\vec{e} p \rightarrow e \vec{p}$$ to $$Q^2 = 5.6$$-$$\text{ GeV}^2$$. Phys. Rev. Lett. 88, 092301 (2002). https://doi.org/10.1103/PhysRevLett.88.092301. arXiv:nucl-ex/0111010$$v88$$y2002
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.242301$$uA. J. R. Puckett, et al., Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to $$Q^2$$ = 8.5 $$\text{ GeV}^2$$, Phys. Rev. Lett. 104 (2010) 242301. arXiv:1005.3419, https://doi.org/10.1103/PhysRevLett.104.242301
000622276 999C5 $$2Crossref$$uAmerican Physical Society 2017 Bonner Prize in Nuclear Physics Recipient Charles F. Perdrisat (College of William and Mary), https://www.aps.org/programs/honors/prizes/prizerecipient.cfm?last_nm=F&first_nm=C &year=2017[Webpage]
000622276 999C5 $$1MY Barabanov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2020.103835$$tProg. Part. Nucl. Phys.$$uM.Y. Barabanov et al., Diquark correlations in hadron physics: Origin, impact and evidence. Prog. Part. Nucl. Phys. 116, 103835 (2021). https://doi.org/10.1016/j.ppnp.2020.103835. arXiv:2008.07630$$v116$$y2021
000622276 999C5 $$2Crossref$$uF. Gross, et al., 50 Years of Quantum Chromodynamics (12 2022). arXiv:2212.11107
000622276 999C5 $$2Crossref$$uB. Schmookler, A. Pierre-Louis, A. Deshpande, D. Higinbotham, E. Long, A. J. R. Puckett, High $$Q^2$$ electron-proton elastic scattering at the future Electron-Ion Collider (7 2022). arXiv:2207.04378
000622276 999C5 $$1F Englert$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.86.843$$p843 -$$tRev. Mod. Phys.$$uF. Englert, Nobel Lecture: The BEH Mechanism and its Scalar Boson. Rev. Mod. Phys. 86, 843 (2014)$$v86$$y2014
000622276 999C5 $$1PW Higgs$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.86.851$$p851 -$$tRev. Mod. Phys.$$uP.W. Higgs, Nobel Lecture: Evading the Goldstone theorem. Rev. Mod. Phys. 86, 851 (2014)$$v86$$y2014
000622276 999C5 $$1CD Roberts$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2021.103883$$tProg. Part. Nucl. Phys.$$uC.D. Roberts, D.G. Richards, T. Horn, L. Chang, Insights into the Emergence of Mass from Studies of Pion and Kaon Structure. Prog. Part. Nucl. Phys. 120, 103883 (2021)$$v120$$y2021
000622276 999C5 $$1VV Flambaum$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00601-005-0123-1$$p31 -$$tFew Body Syst.$$uV.V. Flambaum et al., Sigma Terms of Light-Quark Hadrons. Few Body Syst. 38, 31 (2006)$$v38$$y2006
000622276 999C5 $$1J-H Huang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.054007$$tPhys. Rev. D$$uJ.-H. Huang, T.-T. Sun, H. Chen, Evaluation of pion-nucleon sigma term in Dyson-Schwinger equation approach of QCD. Phys. Rev. D 101(5), 054007 (2020). https://doi.org/10.1103/PhysRevD.101.054007. arXiv:1910.08298$$v101$$y2020
000622276 999C5 $$1J Ruiz de Elvira$$2Crossref$$uJ. Ruiz de Elvira, M. Hoferichter, B. Kubis, U.-G. Meißner, Extracting the $$\sigma $$-Term from Low-Energy Pion-Nucleon Scattering. J. Phys. G 45(2), 024001 (2018)$$y2018
000622276 999C5 $$1S Aoki$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-019-7354-7$$p113 -$$tEur. Phys. J. C$$uS. Aoki et al., FLAG Review 2019. Eur. Phys. J. C 80, 113 (2020)$$v80$$y2020
000622276 999C5 $$1D Binosi$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00601-022-01740-6$$p42 -$$tFew Body Syst.$$uD. Binosi, Emergent Hadron Mass in Strong Dynamics. Few Body Syst. 63(2), 42 (2022)$$v63$$y2022
000622276 999C5 $$1MN Ferreira$$2Crossref$$9-- missing cx lookup --$$a10.3390/particles6010017$$p312 -$$tParticles$$uM.N. Ferreira, J. Papavassiliou, Gauge Sector Dynamics in QCD. Particles 6(1), 312 (2023)$$v6$$y2023
000622276 999C5 $$1M Ding$$2Crossref$$9-- missing cx lookup --$$a10.3390/particles6010004$$p57 -$$tParticles$$uM. Ding, C.D. Roberts, S.M. Schmidt, Emergence of Hadron Mass and Structure. Particles 6(1), 57 (2023)$$v6$$y2023
000622276 999C5 $$1DS Carman$$2Crossref$$9-- missing cx lookup --$$a10.3390/particles6010023$$p416 -$$tParticles$$uD.S. Carman, R.W. Gothe, V.I. Mokeev, C.D. Roberts, Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass. Particles 6(1), 416 (2023)$$v6$$y2023
000622276 999C5 $$1MY Barabanov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2020.103835$$tProgress in Particle and Nuclear Physics$$uM.Y. Barabanov et al., Diquark Correlations in Hadron Physics: Origin, Impact and Evidence. Progress in Particle and Nuclear Physics 116, 103835 (2021)$$v116$$y2021
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0218301320300064$$p2030006 -$$tInt. J. Mod. Phys. E$$uS.J. Brodsky et al., Strong QCD from Hadron Structure Experiments: Newport News, VA, USA, November 4–8, 2019. Int. J. Mod. Phys. E 29(08), 2030006 (2020)$$v29$$y2020
000622276 999C5 $$1VD Burkert$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.91.011003$$tRev. Mod. Phys.$$uV.D. Burkert, C.D. Roberts, Colloquium?: Roper Resonance: Toward a Solution to the Fifty Year Puzzle. Rev. Mod. Phys. 91(1), 011003 (2019)$$v91$$y2019
000622276 999C5 $$1AC Aguilar$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2019-12885-0$$p190 -$$tEur. Phys. J. A$$uA.C. Aguilar et al., Pion and Kaon Structure at the Electron-Ion Collider. Eur. Phys. J. A 55, 190 (2019)$$v55$$y2019
000622276 999C5 $$1DP Anderle$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11467-021-1062-0$$p64701 -$$tFront. Phys. (Beijing)$$uD.P. Anderle et al., Electron-Ion Collider in China. Front. Phys. (Beijing) 16(6), 64701 (2021)$$v16$$y2021
000622276 999C5 $$1JS Schwinger$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.128.2425$$p2425 -$$tPhys. Rev.$$uJ.S. Schwinger, Gauge Invariance and Mass. 2. Phys. Rev. 128, 2425 (1962)$$v128$$y1962
000622276 999C5 $$1JM Cornwall$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.26.1453$$p1453 -$$tPhys. Rev. D$$uJ.M. Cornwall, Dynamical Mass Generation in Continuum QCD. Phys. Rev. D 26, 1453 (1982)$$v26$$y1982
000622276 999C5 $$1J Mandula$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(87)91541-3$$p127 -$$tPhys. Lett. B$$uJ. Mandula, M. Ogilvie, The Gluon Is Massive: A Lattice Calculation of the Gluon Propagator in the Landau Gauge. Phys. Lett. B 185, 127 (1987)$$v185$$y1987
000622276 999C5 $$1O Oliveira$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.094506$$tPhys. Rev. D$$uO. Oliveira, P.J. Silva, J.-I. Skullerud, A. Sternbeck, Quark Propagator with Two Flavors of $$O(a)$$-Improved Wilson Fermions. Phys. Rev. D 99(9), 094506 (2019)$$v99$$y2019
000622276 999C5 $$1N Suzuki$$2Crossref$$uN. Suzuki, B. Julia-Diaz, H. Kamano, T.S.H. Lee, A. Matsuyama, T. Sato, Disentangling the Dynamical Origin of P-11 Nucleon Resonances. Phys. Rev. Lett. 104, 042302 (2010)$$y2010
000622276 999C5 $$1MM Giannini$$2Crossref$$uM.M. Giannini, E. Santopinto, The Hypercentral Constituent Quark Model and its Application to Baryon Properties. Chin. J. Phys. 53, 020301 (2015)$$y2015
000622276 999C5 $$1S-X Qin$$2Crossref$$uS.-X. Qin, C.D. Roberts, Impressions of the Continuum Bound State Problem in QCD. Chin. Phys. Lett. 37(12), 121201 (2020)$$y2020
000622276 999C5 $$1F Gao$$2Crossref$$uF. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, P.C. Tandy, Exposing Strangeness: Projections for Kaon Electromagnetic Form Factors. Phys. Rev. D 96(3), 034024 (2017)$$y2017
000622276 999C5 $$1S-S Xu$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2019-12805-4$$p113 -$$tEur. Phys. J. A (Lett.)$$uS.-S. Xu, Z.-F. Cui, L. Chang, J. Papavassiliou, C.D. Roberts, H.-S. Zong, New Perspective on Hybrid Mesons. Eur. Phys. J. A (Lett.) 55, 113 (2019)$$v55$$y2019
000622276 999C5 $$1Q-W Wang$$2Crossref$$uQ.-W. Wang, S.-X. Qin, C.D. Roberts, S.M. Schmidt, Proton Tensor Charges from a Poincaré-Covariant Faddeev Equation. Phys. Rev. D 98, 054019 (2018)$$y2018
000622276 999C5 $$1M Chen$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.091505$$p091505(R) -$$tPhys. Rev. D$$uM. Chen, M. Ding, L. Chang, C.D. Roberts, Mass-Dependence of Pseudoscalar Meson Elastic Form Factors. Phys. Rev. D 98, 091505(R) (2018)$$v98$$y2018
000622276 999C5 $$1D Binosi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2019.01.033$$p257 -$$tPhys. Lett. B$$uD. Binosi, L. Chang, M. Ding, F. Gao, J. Papavassiliou, C.D. Roberts, Distribution Amplitudes of Heavy-Light Mesons. Phys. Lett. B 790, 257 (2019)$$v790$$y2019
000622276 999C5 $$1C Chen$$2Crossref$$uC. Chen, G.I. Krein, C.D. Roberts, S.M. Schmidt, J. Segovia, Spectrum and Structure of Octet and Decuplet Baryons and Their Positive-Parity Excitations. Phys. Rev. D 100, 054009 (2019)$$y2019
000622276 999C5 $$1S-X Qin$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00601-019-1488-x$$p26 -$$tFew Body Syst.$$uS.-X. Qin, C.D. Roberts, S.M. Schmidt, Spectrum of Light- and Heavy-Baryons. Few Body Syst. 60, 26 (2019)$$v60$$y2019
000622276 999C5 $$1Y Lu$$2Crossref$$uY. Lu, C. Chen, Z.-F. Cui, C.D. Roberts, S.M. Schmidt, J. Segovia, H.S. Zong, Transition Form Factors: $$\gamma ^* + p \rightarrow \Delta (1232)$$, $$\Delta (1600)$$. Phys. Rev. D 100(3), 034001 (2019)$$y2019
000622276 999C5 $$1EV Souza$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/s10050-020-00041-y$$p25 -$$tEur. Phys. J. A (Lett.)$$uE.V. Souza, M. Narciso Ferreira, A.C. Aguilar, J. Papavassiliou, C.D. Roberts, S.-S. Xu, Pseudoscalar Glueball Mass: A Window on Three-Gluon Interactions. Eur. Phys. J. A (Lett.) 56, 25 (2020)$$v56$$y2020
000622276 999C5 $$1K Raya$$2Crossref$$uK. Raya, Z.-F. Cui, L. Chang, J.-M. Morgado, C.D. Roberts, J. Rodríguez-Quintero, Revealing Pion and Kaon Structure via Generalised Parton Distributions. Chin. Phys. C 46(26), 013105 (2022)$$y2022
000622276 999C5 $$1ZF Cui$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/s10050-021-00658-7$$p10 -$$tEur. Phys. J. A$$uZ.F. Cui, M. Ding, J.M. Morgado, K. Raya, D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, Concerning Pion Parton Distributions. Eur. Phys. J. A 58(1), 10 (2022)$$v58$$y2022
000622276 999C5 $$1L Liu$$2Crossref$$uL. Liu, C. Chen, C.D. Roberts, Wave functions of $$(I, J^P)=(\tfrac{1}{2},\tfrac{3}{2}^{\mp })$$ baryons. Phys. Rev. D 107(1), 014002 (2023)$$y2023
000622276 999C5 $$2Crossref$$uV. D. Burkert, Nucleon Resonances and Transition Form Factors –arXiv:2212.08980 [hep-ph] (2022)
000622276 999C5 $$1IG Aznauryan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2011.08.001$$p1 -$$tProg. Part. Nucl. Phys.$$uI.G. Aznauryan, V.D. Burkert, Electroexcitation of Nucleon Resonances. Prog. Part. Nucl. Phys. 67, 1–54 (2012)$$v67$$y2012
000622276 999C5 $$1VI Mokeev$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00601-022-01760-2$$p59 -$$tFew Body Syst.$$uV.I. Mokeev, D.S. Carman, Photo- and Electrocouplings of Nucleon Resonances. Few Body Syst. 63(3), 59 (2022)$$v63$$y2022
000622276 999C5 $$1J Segovia$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.171801$$tPhys. Rev. Lett.$$uJ. Segovia, B. El-Bennich, E. Rojas, I.C. Cloet, C.D. Roberts, S.-S. Xu, H.-S. Zong, Completing the Picture of the Roper Resonance. Phys. Rev. Lett. 115(17), 171801 (2015)$$v115$$y2015
000622276 999C5 $$1DJ Wilson$$2Crossref$$uD.J. Wilson, I.C. Cloet, L. Chang, C.D. Roberts, Nucleon and Roper Electromagnetic Elastic and Transition Form Factors. Phys. Rev. C 85, 025205 (2012)$$y2012
000622276 999C5 $$1Z-F Cui$$2Crossref$$uZ.-F. Cui, C. Chen, D. Binosi, F. de Soto, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, J. Segovia, Nucleon Elastic Form Factors at Accessible Large Spacelike Momenta. Phys. Rev. D 102, 014043 (2020)$$y2020
000622276 999C5 $$1C Chen$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/s10050-022-00848-x$$p206 -$$tEur. Phys. J. A$$uC. Chen, C.D. Roberts, Nucleon Axial Form Factor at Large Momentum Transfers. Eur. Phys. J. A 58(10), 206 (2022)$$v58$$y2022
000622276 999C5 $$1M Ding$$2Crossref$$uM. Ding, K. Raya, A. Bashir, D. Binosi, L. Chang, M. Chen, C.D. Roberts, $$\gamma ^\ast \gamma \rightarrow \eta, \eta ^\prime $$ Transition Form Factors. Phys. Rev. D 99, 014014 (2019)$$y2019
000622276 999C5 $$1RG Edwards$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.074508$$tPhys. Rev. D$$uR.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Excited state baryon spectroscopy from lattice QCD. Phys. Rev. D 84, 074508 (2011). https://doi.org/10.1103/PhysRevD.84.074508. arXiv:1104.5152$$v84$$y2011
000622276 999C5 $$1JJ Dudek$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.85.054016$$tPhys. Rev. D$$uJ.J. Dudek, R.G. Edwards, Hybrid Baryons in QCD. Phys. Rev. D 85, 054016 (2012). https://doi.org/10.1103/PhysRevD.85.054016. arXiv:1201.2349$$v85$$y2012
000622276 999C5 $$1M Sun$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.054511$$tPhys. Rev. D$$uM. Sun et al., Roper State from Overlap Fermions. Phys. Rev. D 101(5), 054511 (2020). https://doi.org/10.1103/PhysRevD.101.054511. arXiv:1911.02635$$v101$$y2020
000622276 999C5 $$1CD Abell$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.094519$$tPhys. Rev. D$$uC.D. Abell, D.B. Leinweber, Z.-W. Liu, A.W. Thomas, J.-J. Wu, Low-lying odd-parity nucleon resonances as quark-model-like states. Phys. Rev. D 108(9), 094519 (2023). https://doi.org/10.1103/PhysRevD.108.094519. arXiv:2306.00337$$v108$$y2023
000622276 999C5 $$1H-W Lin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.78.114508$$tPhys. Rev. D$$uH.-W. Lin, S.D. Cohen, R.G. Edwards, D.G. Richards, First Lattice Study of the N - P(11)(1440) Transition Form Factors. Phys. Rev. D 78, 114508 (2008). https://doi.org/10.1103/PhysRevD.78.114508. arXiv:0803.3020$$v78$$y2008
000622276 999C5 $$1KS Egiyan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.68.014313$$tPhys. Rev. C$$uK.S. Egiyan et al., Observation of nuclear scaling in the $$a(e, e^{^{\prime }})$$ reaction at $${x}_{B}{>}1$$. Phys. Rev. C 68, 014313 (2003). https://doi.org/10.1103/PhysRevC.68.014313$$v68$$y2003
000622276 999C5 $$1KS Egiyan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.082501$$tPhys. Rev. Lett.$$uK.S. Egiyan et al., Measurement of two- and three-nucleon short-range correlation probabilities in nuclei. Phys. Rev. Lett. 96, 082501 (2006). https://doi.org/10.1103/PhysRevLett.96.082501$$v96$$y2006
000622276 999C5 $$1N Fomin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.092502$$tPhys. Rev. Lett.$$uN. Fomin et al., New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei. Phys. Rev. Lett. 108, 092502 (2012). https://doi.org/10.1103/PhysRevLett.108.092502$$v108$$y2012
000622276 999C5 $$1LL Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.48.2451$$p2451 -$$tPhys. Rev. C$$uL.L. Frankfurt, M.I. Strikman, D.B. Day, M. Sargsian, Evidence for short range correlations from high Q**2 (e, e-prime) reactions. Phys. Rev. C 48, 2451–2461 (1993). https://doi.org/10.1103/PhysRevC.48.2451$$v48$$y1993
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1142/s0217751x08041207$$p2991 -$$tInt. J. Mod. Phys. A$$uL. Frankfurt, M. Sargsian, M. Strikman, Recent observation of short range nucleon correlations in nuclei and their implications for the structure of nuclei and neutron stars. Int. J. Mod. Phys. A 23(20), 2991–3055 (2008). https://doi.org/10.1142/s0217751x08041207$$v23$$y2008
000622276 999C5 $$1E Piasetzky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.162504$$tPhys. Rev. Lett.$$uE. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, J.W. Watson, Evidence for strong dominance of proton-neutron correlations in nuclei. Phys. Rev. Lett. 97, 162504 (2006). https://doi.org/10.1103/PhysRevLett.97.162504$$v97$$y2006
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1156675$$uR. Subedi et al., Probing cold dense nuclear matter. Science 320(5882), 1476–1478 (2008). https://doi.org/10.1126/science.1156675https://science.sciencemag.org/content/320/5882/1476.full.pdf
000622276 999C5 $$1M Duer$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.172502$$tPhys. Rev. Lett.$$uM. Duer et al., Direct Observation of Proton-Neutron Short-Range Correlation Dominance in Heavy Nuclei. Phys. Rev. Lett. 122, 172502 (2019). https://doi.org/10.1103/PhysRevLett.122.172502$$v122$$y2019
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevc.71.044615$$uM. Sargsian, T. Abrahamyan, M. Strikman, L. Frankfurt, Exclusive electrodisintegration of $$^{3}{\rm He}$$ at high $${Q}^{2}$$. ii. decay function formalism, Phys. Rev. C 71 (4) (2005). https://doi.org/10.1103/physrevc.71.044615
000622276 999C5 $$1R Schiavilla$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.132501$$tPhys. Rev. Lett.$$uR. Schiavilla, R.B. Wiringa, S.C. Pieper, J. Carlson, Tensor Forces and the Ground-State Structure of Nuclei. Phys. Rev. Lett. 98, 132501 (2007). https://doi.org/10.1103/PhysRevLett.98.132501. arXiv:nucl-th/0611037$$v98$$y2007
000622276 999C5 $$1MM Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.89.034305$$tPhys. Rev. C$$uM.M. Sargsian, New properties of the high-momentum distribution of nucleons in asymmetric nuclei. Phys. Rev. C 89(3), 034305 (2014). https://doi.org/10.1103/PhysRevC.89.034305. arXiv:1210.3280$$v89$$y2014
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1256785$$uO. Hen, et al., Momentum sharing in imbalanced fermi systems, Science 346 (6209) (2014) 614–617. https://doi.org/10.1126/science.1256785arXiv:https://science.sciencemag.org/content/346/6209/614.full.pdf
000622276 999C5 $$1M Duer$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0400-z$$p617 -$$tNature$$uM. Duer et al., Probing the high-momentum protons and neutrons in neutron-rich nuclei. Nature 560, 617–621 (2018). https://doi.org/10.1038/s41586-018-0400-z$$v560$$y2018
000622276 999C5 $$1R Jastrow$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.81.165$$p165 -$$tPhys. Rev.$$uR. Jastrow, On the nucleon-nucleon interaction. Phys. Rev. 81, 165–170 (1951). https://doi.org/10.1103/PhysRev.81.165$$v81$$y1951
000622276 999C5 $$1RB Wiringa$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.51.38$$p38 -$$tPhys. Rev. C$$uR.B. Wiringa, V.G.J. Stoks, R. Schiavilla, An Accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 51, 38–51 (1995). https://doi.org/10.1103/PhysRevC.51.38. arXiv:nucl-th/9408016$$v51$$y1995
000622276 999C5 $$1E Epelbaum$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.81.1773$$p1773 -$$tRev. Mod. Phys.$$uE. Epelbaum, H.-W. Hammer, U.-G. Meissner, Modern Theory of Nuclear Forces. Rev. Mod. Phys. 81, 1773–1825 (2009). https://doi.org/10.1103/RevModPhys.81.1773. arXiv:0811.1338$$v81$$y2009
000622276 999C5 $$1M Harvey$$2Crossref$$9-- missing cx lookup --$$a10.1016/0375-9474(81)90413-9$$p326 -$$tNucl. Phys. A$$uM. Harvey, Effective nuclear forces in the quark model with delta and hidden-color channel coupling. Nucl. Phys. A 352(3), 326–342 (1981). https://doi.org/10.1016/0375-9474(81)90413-9$$v352$$y1981
000622276 999C5 $$1C Ji$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.34.1460$$p1460 -$$tPhys. Rev. D$$uC. Ji, S. Brodsky, Quantum-chromodynamic evolution of six-quark states. Phys. Rev. D 34, 1460–1473 (1986). https://doi.org/10.1103/PhysRevD.34.1460$$v34$$y1986
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(81)90129-0$$p215 -$$tPhys. Rept.$$uL. Frankfurt, M. Strikman, High-energy phenomena, short-range nuclear structure and QCD. Phys. Rept. 76(4), 215–347 (1981). https://doi.org/10.1016/0370-1573(81)90129-0$$v76$$y1981
000622276 999C5 $$1G Miller$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.89.045203$$tPhys. Rev. C$$uG. Miller, Pionic and hidden-color, six-quark contributions to the deuteron $${b}_{1}$$ structure function. Phys. Rev. C 89, 045203 (2014). https://doi.org/10.1103/PhysRevC.89.045203$$v89$$y2014
000622276 999C5 $$1J Rittenhouse$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2022.122563$$tNucl. Phys. A$$uJ. Rittenhouse, West, Diquark induced short-range nucleon-nucleon correlations & the EMC effect. Nucl. Phys. A 1029, 122563 (2023). https://doi.org/10.1016/j.nuclphysa.2022.122563. arXiv:2009.06968$$v1029$$y2023
000622276 999C5 $$1J Rittenhouse West$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2020.122134$$tNucl. Phys. A$$uJ. Rittenhouse West, S.J. Brodsky, G.F. de Teramond, A.S. Goldhaber, I. Schmidt, QCD hidden-color hexadiquark in the core of nuclei. Nucl. Phys. A 1007, 122134 (2021). https://doi.org/10.1016/j.nuclphysa.2020.122134. arXiv:2004.14659$$v1007$$y2021
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(88)90179-2$$p235 -$$tPhys. Rept.$$uL. Frankfurt, M. Strikman, Hard nuclear processes and microscopic nuclear structure. Phys. Rept. 160(5), 235–427 (1988). https://doi.org/10.1016/0370-1573(88)90179-2$$v160$$y1988
000622276 999C5 $$1MM Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2006.10.057$$p199 -$$tNucl. Phys. A$$uM.M. Sargsian, Superfast quarks in the nuclear medium. Nucl. Phys. A 782, 199–206 (2007). https://doi.org/10.1016/j.nuclphysa.2006.10.057$$v782$$y2007
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-015-3755-4$$uA. Freese, M. Sargsian, M. Strikman, Probing superfast quarks in nuclei through dijet production at the LHC, Eur. Phys. J. C 75 (11) (nov 2015). https://doi.org/10.1140/epjc/s10052-015-3755-4
000622276 999C5 $$1A Freese$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.114019$$tPhys. Rev. D$$uA. Freese, W. Cosyn, M. Sargsian, QCD evolution of superfast quarks. Phys. Rev. D 99, 114019 (2019). https://doi.org/10.1103/PhysRevD.99.114019$$v99$$y2019
000622276 999C5 $$1N Fomin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.212502$$tPhys. Rev. Lett.$$uN. Fomin et al., Scaling of the $${F}_{2}$$ structure function in nuclei and quark distributions at $$x {>} 1$$. Phys. Rev. Lett. 105, 212502 (2010). https://doi.org/10.1103/PhysRevLett.105.212502$$v105$$y2010
000622276 999C5 $$2Crossref$$uJ. Arrington, D. Day, N. Fomin, P. Solvignon, E12-06-105: Inclusive Scattering from Nuclei at $$x {>} 1$$ in the quasielastic and deeply inelastic regimes (2006). https://www.jlab.org/exp_prog/proposals/06/PR12-06-105.pdf
000622276 999C5 $$1C Yero$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.262501$$tPhys. Rev. Lett.$$uC. Yero et al., Probing the deuteron at very large internal momenta. Phys. Rev. Lett. 125, 262501 (2020). https://doi.org/10.1103/PhysRevLett.125.262501$$v125$$y2020
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevc.100.044320$$uM. Sargsian, D. Day, L. Frankfurt, M. Strikman, Searching for three-nucleon short-range correlations, Phys. Rev. C 100 (4) (2019). https://doi.org/10.1103/physrevc.100.044320
000622276 999C5 $$1D Day$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.107.014319$$tPhys. Rev. C$$uD. Day, L. Frankfurt, M. Sargsian, M. Strikman, Toward observation of three-nucleon short-range correlations in high-$${Q}^{2} a(e,{e}^{^{\prime }})x$$ reactions. Phys. Rev. C 107, 014319 (2023). https://doi.org/10.1103/PhysRevC.107.014319$$v107$$y2023
000622276 999C5 $$1C. Ciofi degli Atti$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2015.06.002$$p1 -$$tPhys. Rept.$$uC. Ciofi degli. Atti, In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances. Phys. Rept. 590, 1–85 (2015). https://doi.org/10.1016/j.physrep.2015.06.002$$v590$$y2015
000622276 999C5 $$1T Neff$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.92.024003$$tPhys. Rev. C$$uT. Neff, H. Feldmeier, W. Horiuchi, Short-range correlations in nuclei with similarity renormalization group transformations. Phys. Rev. C 92(2), 024003 (2015). https://doi.org/10.1103/PhysRevC.92.024003. arXiv:1506.02237$$v92$$y2015
000622276 999C5 $$1AJ Tropiano$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.104.034311$$tPhys. Rev. C$$uA.J. Tropiano, S.K. Bogner, R.J. Furnstahl, Short-range correlation physics at low renormalization group resolution. Phys. Rev. C 104(3), 034311 (2021). https://doi.org/10.1103/PhysRevC.104.034311. arXiv:2105.13936$$v104$$y2021
000622276 999C5 $$1RJ Furnstahl$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00601-021-01658-5$$p72 -$$tFew Body Syst.$$uR.J. Furnstahl, H.W. Hammer, A. Schwenk, Nuclear Structure at the Crossroads. Few Body Syst. 62(3), 72 (2021). https://doi.org/10.1007/s00601-021-01658-5. arXiv:2107.00413$$v62$$y2021
000622276 999C5 $$1JJ Aubert$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(83)90437-9$$p275 -$$tPhys. Lett. B$$uJ.J. Aubert et al., The ratio of the nucleon structure functions $$F2_n$$ for iron and deuterium. Phys. Lett. B 123, 275–278 (1983). https://doi.org/10.1016/0370-2693(83)90437-9$$v123$$y1983
000622276 999C5 $$1J Seely$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.202301$$tPhys. Rev. Lett.$$uJ. Seely et al., New measurements of the EMC effect in very light nuclei. Phys. Rev. Lett. 103, 202301 (2009). https://doi.org/10.1103/PhysRevLett.103.202301. arXiv:0904.4448$$v103$$y2009
000622276 999C5 $$1LB Weinstein$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.052301$$tPhys. Rev. Lett.$$uL.B. Weinstein, E. Piasetzky, D.W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Short Range Correlations and the EMC Effect. Phys. Rev. Lett. 106, 052301 (2011). https://doi.org/10.1103/PhysRevLett.106.052301. arXiv:1009.5666$$v106$$y2011
000622276 999C5 $$1B Schmookler$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-019-0925-9$$p354 -$$tNature$$uB. Schmookler et al., Modified structure of protons and neutrons in correlated pairs. Nature 566(7744), 354–358 (2019). https://doi.org/10.1038/s41586-019-0925-9. arXiv:2004.12065$$v566$$y2019
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2015.05.001$$p1 -$$tPhys. Rept.$$uS.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-Front Holographic QCD and Emerging Confinement. Phys. Rept. 584, 1–105 (2015). https://doi.org/10.1016/j.physrep.2015.05.001. arXiv:1407.8131$$v584$$y2015
000622276 999C5 $$1DN Kim$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.106.055202$$tPhys. Rev. C$$uD.N. Kim, G.A. Miller, Light-front holography model of the EMC effect. Phys. Rev. C 106(5), 055202 (2022). https://doi.org/10.1103/PhysRevC.106.055202. arXiv:2209.13753$$v106$$y2022
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2011.12.002$$p255 -$$tPhys. Rept.$$uL. Frankfurt, V. Guzey, M. Strikman, Leading Twist Nuclear Shadowing Phenomena in Hard Processes with Nuclei. Phys. Rept. 512, 255–393 (2012). https://doi.org/10.1016/j.physrep.2011.12.002. arXiv:1106.2091$$v512$$y2012
000622276 999C5 $$1GA Miller$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.64.022201$$tPhys. Rev. C$$uG.A. Miller, Revealing nuclear pions using electron scattering. Phys. Rev. C 64, 022201 (2001). https://doi.org/10.1103/PhysRevC.64.022201. arXiv:nucl-th/0104025$$v64$$y2001
000622276 999C5 $$1DM Alde$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.64.2479$$p2479 -$$tPhys. Rev. Lett.$$uD.M. Alde et al., Nuclear dependence of dimuon production at 800-GeV. FNAL-772 experiment. Phys. Rev. Lett. 64, 2479–2482 (1990). https://doi.org/10.1103/PhysRevLett.64.2479$$v64$$y1990
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2023.137935$$uM. Alvioli, M. Strikman, Hunting for an EMC-like effect for antiquarks (10 2022). arXiv:2210.12597
000622276 999C5 $$1P Kotko$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-017-4906-6$$p353 -$$tEur. Phys. J. C$$uP. Kotko, K. Kutak, S. Sapeta, A.M. Stasto, M. Strikman, Estimating nonlinear effects in forward dijet production in ultra-peripheral heavy ion collisions at the LHC. Eur. Phys. J. C 77(5), 353 (2017). https://doi.org/10.1140/epjc/s10052-017-4906-6. arXiv:1702.03063$$v77$$y2017
000622276 999C5 $$1LL Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.ns.44.120194.002441$$p501 -$$tAnn. Rev. Nucl. Part. Sci.$$uL.L. Frankfurt, G.A. Miller, M. Strikman, The Geometrical color optics of coherent high-energy processes. Ann. Rev. Nucl. Part. Sci. 44, 501–560 (1994). https://doi.org/10.1146/annurev.ns.44.120194.002441. arXiv:hep-ph/9407274$$v44$$y1994
000622276 999C5 $$1EM Aitala$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.86.4773$$p4773 -$$tPhys. Rev. Lett.$$uE.M. Aitala et al., Observation of color transparency in diffractive dissociation of pions. Phys. Rev. Lett. 86, 4773–4777 (2001). https://doi.org/10.1103/PhysRevLett.86.4773. arXiv:hep-ex/0010044$$v86$$y2001
000622276 999C5 $$1B Clasie$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.242502$$tPhys. Rev. Lett.$$uB. Clasie et al., Measurement of nuclear transparency for the A(e, e-prime’ pi+) reaction. Phys. Rev. Lett. 99, 242502 (2007). https://doi.org/10.1103/PhysRevLett.99.242502. arXiv:0707.1481$$v99$$y2007
000622276 999C5 $$1L El Fassi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2012.05.019$$p326 -$$tPhys. Lett. B$$uL. El Fassi et al., Evidence for the onset of color transparency in $$\rho ^0$$ electroproduction off nuclei. Phys. Lett. B 712, 326–330 (2012). https://doi.org/10.1016/j.physletb.2012.05.019. arXiv:1201.2735$$v712$$y2012
000622276 999C5 $$1L El Fassi$$2Crossref$$9-- missing cx lookup --$$a10.3390/physics4030064$$p970 -$$tPhysics$$uL. El Fassi, Chasing QCD Signatures in Nuclei Using Color Coherence Phenomena. Physics 4(3), 970–980 (2022). https://doi.org/10.3390/physics4030064$$v4$$y2022
000622276 999C5 $$1D Bhetuwal$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.126.082301$$tPhys. Rev. Lett.$$uD. Bhetuwal et al., Ruling out Color Transparency in Quasielastic $$^{12}$$C(e, e’p) up to $$Q^2$$ of 14.2 (GeV/c)$$^2$$. Phys. Rev. Lett. 126(8), 082301 (2021). https://doi.org/10.1103/PhysRevLett.126.082301. arXiv:2011.00703$$v126$$y2021
000622276 999C5 $$1O Caplow-Munro$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.104.L012201$$pL012201 -$$tPhys. Rev. C$$uO. Caplow-Munro, G.A. Miller, Color transparency and the proton form factor: Evidence for the Feynman mechanism. Phys. Rev. C 104(1), L012201 (2021). https://doi.org/10.1103/PhysRevC.104.L012201. arXiv:2104.11168$$v104$$y2021
000622276 999C5 $$1K Egiian$$2Crossref$$9-- missing cx lookup --$$a10.1016/0375-9474(94)90903-2$$p365 -$$tNucl. Phys. A$$uK. Egiian, L. Frankfurt, W.R. Greenberg, G.A. Miller, M. Sargsian, M. Strikman, Searching for color coherent effects at intermediate Q**2 via double scattering processes. Nucl. Phys. A 580, 365–382 (1994). https://doi.org/10.1016/0375-9474(94)90903-2. arXiv:nucl-th/9401002$$v580$$y1994
000622276 999C5 $$1LL Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01292764$$p97 -$$tZ. Phys. A$$uL.L. Frankfurt, W.R. Greenberg, G.A. Miller, M.M. Sargsian, M.I. Strikman, Color transparency effects in electron deuteron interactions at intermediate Q**2. Z. Phys. A 352, 97–113 (1995). https://doi.org/10.1007/BF01292764. arXiv:nucl-th/9501009$$v352$$y1995
000622276 999C5 $$1LL Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(95)01558-2$$p201 -$$tPhys. Lett. B$$uL.L. Frankfurt, W.R. Greenberg, G.A. Miller, M.M. Sargsian, M.I. Strikman, Color transparency and the vanishing deuterium shadow. Phys. Lett. B 369, 201–206 (1996). https://doi.org/10.1016/0370-2693(95)01558-2. arXiv:nucl-th/9412033$$v369$$y1996
000622276 999C5 $$1DJ Gross$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.30.1343$$p1343 -$$tPhys. Rev. Lett.$$uD.J. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973). https://doi.org/10.1103/PhysRevLett.30.1343$$v30$$y1973
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-94-010-0267-7_1$$uY. L. Dokshitzer, QCD phenomenology, 2003, pp. 1–33. arXiv:hep-ph/0306287
000622276 999C5 $$1B Andersson$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-8949/19/2/015$$p184 -$$tPhys. Scripta$$uB. Andersson, G. Gustafson, C. Peterson, Quark Jet Fragmentation. Phys. Scripta 19, 184–190 (1979). https://doi.org/10.1088/0031-8949/19/2/015$$v19$$y1979
000622276 999C5 $$1B Andersson$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(83)90080-7$$p31 -$$tPhys. Rept.$$uB. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Parton Fragmentation and String Dynamics. Phys. Rept. 97, 31–145 (1983). https://doi.org/10.1016/0370-1573(83)90080-7$$v97$$y1983
000622276 999C5 $$1LS Osborne$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.40.1624$$p1624 -$$tPhys. Rev. Lett.$$uL.S. Osborne, C. Bolon, R.L. Lanza, D. Luckey, D.G. Roth, J.F. Martin, G.J. Feldman, M.E.B. Franklin, G. Hanson, M.L. Perl, Electroproduction of Hadrons From Nuclei. Phys. Rev. Lett. 40, 1624 (1978). https://doi.org/10.1103/PhysRevLett.40.1624$$v40$$y1978
000622276 999C5 $$1J Ashman$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01412322$$p1 -$$tZ. Phys. C$$uJ. Ashman et al., Comparison of forward hadrons produced in muon interactions on nuclear targets and deuterium. Z. Phys. C 52, 1–12 (1991). https://doi.org/10.1007/BF01412322$$v52$$y1991
000622276 999C5 $$1A Arvidson$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(84)90045-2$$p381 -$$tNucl. Phys. B$$uA. Arvidson et al., Hadron production in 200-GeV $$\mu $$ - copper and $$\mu $$ - carbon deep inelastic interactions. Nucl. Phys. B 246, 381–407 (1984). https://doi.org/10.1016/0550-3213(84)90045-2$$v246$$y1984
000622276 999C5 $$1X Artru$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(74)90360-5$$p93 -$$tNucl. Phys. B$$uX. Artru, G. Mennessier, String model and multiproduction. Nucl. Phys. B 70, 93–115 (1974). https://doi.org/10.1016/0550-3213(74)90360-5$$v70$$y1974
000622276 999C5 $$1EV Shuryak$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(78)90370-2$$p150 -$$tPhotons and Psions. Phys. Lett. B$$uE.V. Shuryak, Quark-Gluon Plasma and Hadronic Production of Leptons. Photons and Psions. Phys. Lett. B 78, 150 (1978). https://doi.org/10.1016/0370-2693(78)90370-2$$v78$$y1978
000622276 999C5 $$1X-N Wang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2003.11.011$$p299 -$$tPhys. Lett. B$$uX.-N. Wang, Why the observed jet quenching at RHIC is due to parton energy loss. Phys. Lett. B 579, 299–308 (2004). https://doi.org/10.1016/j.physletb.2003.11.011$$v579$$y2004
000622276 999C5 $$1BZ Kopeliovich$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2004.04.110$$p211 -$$tNucl. Phys. A$$uB.Z. Kopeliovich, J. Nemchik, E. Predazzi, A. Hayashigaki, Nuclear hadronization: Within or without? Nucl. Phys. A 740, 211–245 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.110$$v740$$y2004
000622276 999C5 $$1WK Brooks$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2021.136171$$tPhys. Lett. B$$uW.K. Brooks, J.A. López, Estimating the color lifetime of energetic quarks. Phys. Lett. B 816, 136171 (2021). https://doi.org/10.1016/j.physletb.2021.136171$$v816$$y2021
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.60.1924$$p1924 -$$tPhys. Rev. Lett.$$uS.J. Brodsky, G.F. de Teramond, Spin Correlations, QCD Color Transparency and Heavy Quark Thresholds in Proton Proton Scattering. Phys. Rev. Lett. 60, 1924 (1988). https://doi.org/10.1103/PhysRevLett.60.1924$$v60$$y1988
000622276 999C5 $$1M Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1088/0954-3899/29/3/201$$pR1 -$$tJ. Phys. G: Nucl. Part. Phys.$$uM. Sargsian et al., Hadrons in the nuclear medium. J. Phys. G: Nucl. Part. Phys. 29(3), R1–R45 (2003). https://doi.org/10.1088/0954-3899/29/3/201$$v29$$y2003
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1016/0375-9474(93)90504-Q$$p752 -$$tNucl. Phys. A$$uL. Frankfurt, G.A. Miller, M. Strikman, Precocious dominance of point - like configurations in hadronic form-factors. Nucl. Phys. A 555, 752–764 (1993). https://doi.org/10.1016/0375-9474(93)90504-Q$$v555$$y1993
000622276 999C5 $$1J Arrington$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2012.04.002$$p898 -$$tProg. Part. Nucl. Phys.$$uJ. Arrington, D. Higinbotham, G. Rosner, M. Sargsian, Hard probes of short-range nucleon-nucleon correlations. Prog. Part. Nucl. Phys. 67(4), 898–938 (2012). https://doi.org/10.1016/j.ppnp.2012.04.002$$v67$$y2012
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-nucl-102020-022253$$uJ. Arrington, N. Fomin, A. Schmidt, Progress in understanding short-range structure in nuclei: an experimental perspective, Ann. Rev. Nucl. Part. Sci. (2022) 307 arXiv:2203.02608
000622276 999C5 $$1J Arrington$$2Crossref$$9-- missing cx lookup --$$a10.1556/APH.21.2004.2-4.30$$p295 -$$tActa Phys. Hung. A$$uJ. Arrington, Do ordinary nuclei contain exotic states of matter? Acta Phys. Hung. A 21, 295 (2004). https://doi.org/10.1556/APH.21.2004.2-4.30. arXiv:hep-ph/0304213$$v21$$y2004
000622276 999C5 $$1PJ Mulders$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.52.1199$$p1199 -$$tPhys. Rev. Lett.$$uP.J. Mulders, A.W. Thomas, The ‘Six Quark’ Component in the Deuteron From a Comparison of Electron and Neutrino / Anti-neutrinos Structure Functions. Phys. Rev. Lett. 52, 1199 (1984). https://doi.org/10.1103/PhysRevLett.52.1199$$v52$$y1984
000622276 999C5 $$1O Hen$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.89.045002$$tRev. Mod. Phys.$$uO. Hen, G. Miller, E. Piasetzky, L. Weinstein, Nucleon-Nucleon Correlations, Short-lived Excitations, and the Quarks Within. Rev. Mod. Phys. 89(4), 045002 (2017). https://doi.org/10.1103/RevModPhys.89.045002$$v89$$y2017
000622276 999C5 $$1I Niculescu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.1186$$p1186 -$$tPhys. Rev. Lett.$$uI. Niculescu et al., Experimental verification of quark hadron duality. Phys. Rev. Lett. 85, 1186–1189 (2000). https://doi.org/10.1103/PhysRevLett.85.1186$$v85$$y2000
000622276 999C5 $$1I Niculescu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.91.055206$$tPhys. Rev. C$$uI. Niculescu et al., Direct observation of quark-hadron duality in the free neutron $$F_2$$ structure function. Phys. Rev. C 91(5), 055206 (2015). https://doi.org/10.1103/PhysRevC.91.055206. arXiv:1501.02203$$v91$$y2015
000622276 999C5 $$1J Arrington$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.73.035205$$tPhys. Rev. C$$uJ. Arrington, R. Ent, C.E. Keppel, J. Mammei, I. Niculescu, Low Q scaling, duality, and the EMC effect. Phys. Rev. C 73, 035205 (2006). https://doi.org/10.1103/PhysRevC.73.035205. arXiv:nucl-ex/0307012$$v73$$y2006
000622276 999C5 $$1W Boeglin$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0218301315300039$$p1530003 -$$tInt. J. Mod. Phys. E$$uW. Boeglin, M. Sargsian, Modern Studies of the Deuteron: from the Lab Frame to the Light Front. Int. J. Mod. Phys. E 24(03), 1530003 (2015). https://doi.org/10.1142/S0218301315300039. arXiv:1501.05377$$v24$$y2015
000622276 999C5 $$1WU Boeglin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.262501$$tPhys. Rev. Lett.$$uW.U. Boeglin et al., Probing the high momentum component of the deuteron at high $${Q}^{2}$$. Phys. Rev. Lett. 107, 262501 (2011). https://doi.org/10.1103/PhysRevLett.107.262501$$v107$$y2011
000622276 999C5 $$1MM Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.82.014612$$tPhys. Rev. C$$uM.M. Sargsian, Large $${Q}^{2}$$ electrodisintegration of the deuteron in the virtual nucleon approximation. Phys. Rev. C 82, 014612 (2010). https://doi.org/10.1103/PhysRevC.82.014612$$v82$$y2010
000622276 999C5 $$1J Laget$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2005.01.046$$p49 -$$tPhysics Letters B$$uJ. Laget, The electro-disintegration of few body systems revisited. Physics Letters B 609(1), 49–56 (2005). https://doi.org/10.1016/j.physletb.2005.01.046$$v609$$y2005
000622276 999C5 $$1WP Ford$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.90.064006$$tPhys. Rev. C$$uW.P. Ford, S. Jeschonnek, J.W. Van Orden, Momentum distributions for $$^{2}{\rm H} (e,{e}^{^{\prime }}p)$$. Phys. Rev. C 90, 064006 (2014). https://doi.org/10.1103/PhysRevC.90.064006$$v90$$y2014
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.48550/ARXIV.2108.11502$$uF. Vera, Probing the structure of deuteron at very short distances (2021). https://doi.org/10.48550/ARXIV.2108.11502. arxiv:2108.11502
000622276 999C5 $$1MM Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.130.112502$$tPhys. Rev. Lett.$$uM.M. Sargsian, F. Vera, New Structure in the Deuteron. Phys. Rev. Lett. 130(11), 112502 (2023). https://doi.org/10.1103/PhysRevLett.130.112502. arXiv:2208.00501$$v130$$y2023
000622276 999C5 $$2Crossref$$uC. Yero, Deuteron disintegration at large missing momenta (January 2023)
000622276 999C5 $$1H Heiselberg$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.nucl.50.1.481$$p481 -$$tAnn. Rev. Nucl. Part. Sci.$$uH. Heiselberg, V. Pandharipande, Recent progress in neutron star theory. Ann. Rev. Nucl. Part. Sci. 50, 481–524 (2000). https://doi.org/10.1146/annurev.nucl.50.1.481. arXiv:astro-ph/0003276$$v50$$y2000
000622276 999C5 $$1M Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.71.044614$$tPhys. Rev. C$$uM. Sargsian, T. Abrahamyan, M. Strikman, L. Frankfurt, Exclusive electrodisintegration of $$^{3}{\rm He}$$ at high $${Q}^{2}$$. i. generalized eikonal approximation. Phys. Rev. C 71, 044614 (2005). https://doi.org/10.1103/PhysRevC.71.044614$$v71$$y2005
000622276 999C5 $$1N Fomin$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-nucl-102115-044939$$p129 -$$tAnn. Rev. Nucl. Part. Sci.$$uN. Fomin, D. Higinbotham, M. Sargsian, P. Solvignon, New results on short-range correlations in nuclei. Ann. Rev. Nucl. Part. Sci. 67(1), 129–159 (2017). https://doi.org/10.1146/annurev-nucl-102115-044939$$v67$$y2017
000622276 999C5 $$1D Day$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.43.1143$$p1143 -$$tPhys. Rev. Lett.$$uD. Day, J.S. Mccarthy, I. Sick, R.G. Arnold, B.T. Chertok, S. Rock, Z.M. Szalata, F. Martin, B.A. Mecking, G. Tamas, INCLUSIVE ELECTRON SCATTERING FROM HE-3. Phys. Rev. Lett. 43, 1143 (1979). https://doi.org/10.1103/PhysRevLett.43.1143$$v43$$y1979
000622276 999C5 $$1S Rock$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.26.1592$$p1592 -$$tPhys. Rev. C$$uS. Rock, R.G. Arnold, B.T. Chertok, Z.M. Szalata, D. Day, J.S. McCarthy, F. Martin, B.A. Mecking, I. Sick, G. Tamas, Inelastic Electron Scattering From $$^{3}$$He and $$^{4}$$He in the Threshold Region at High Momentum Transfer. Phys. Rev. C 26, 1592 (1982). https://doi.org/10.1103/PhysRevC.26.1592$$v26$$y1982
000622276 999C5 $$1DF Geesaman$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.ns.45.120195.002005$$p337 -$$tAnn. Rev. Nucl. Part. Sci.$$uD.F. Geesaman, K. Saito, A.W. Thomas, The nuclear EMC effect. Ann. Rev. Nucl. Part. Sci. 45, 337–390 (1995). https://doi.org/10.1146/annurev.ns.45.120195.002005$$v45$$y1995
000622276 999C5 $$1PR Norton$$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/66/8/201$$p1253 -$$tProg. Phys.$$uP.R. Norton, The EMC effect. Rept. Prog. Phys. 66, 1253–1297 (2003). https://doi.org/10.1088/0034-4885/66/8/201$$v66$$y2003
000622276 999C5 $$1S Malace$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0218301314300136$$p1430013 -$$tInt. J. Mod. Phys. E$$uS. Malace, D. Gaskell, D.W. Higinbotham, I. Cloet, The Challenge of the EMC Effect: existing data and future directions. Int. J. Mod. Phys. E 23(08), 1430013 (2014). https://doi.org/10.1142/S0218301314300136. arXiv:1405.1270$$v23$$y2014
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.142001$$uN. Baillie, et al., Measurement of the neutron F2 structure function via spectator tagging with CLAS, Phys. Rev. Lett. 108 (2012) 142001, [Erratum: Phys.Rev.Lett. 108, 199902 (2012)]. arXiv:1110.2770, https://doi.org/10.1103/PhysRevLett.108.142001
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.89.045206$$uS. Tkachenko, et al., Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic $$^2$$H(e, e’p)X scattering with CLAS, Phys. Rev. C 89 (2014) 045206, [Addendum: Phys.Rev.C 90, 059901 (2014)]. arXiv:1402.2477, https://doi.org/10.1103/PhysRevC.89.045206
000622276 999C5 $$1KA Griffioen$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.92.015211$$tPhys. Rev. C$$uK.A. Griffioen et al., Measurement of the EMC Effect in the Deuteron. Phys. Rev. C 92(1), 015211 (2015). https://doi.org/10.1103/PhysRevC.92.015211. arXiv:1506.00871$$v92$$y2015
000622276 999C5 $$1AV Klimenko$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.73.035212$$tPhys. Rev. C$$uA.V. Klimenko et al., Electron scattering from high-momentum neutrons in deuterium. Phys. Rev. C 73, 035212 (2006). https://doi.org/10.1103/PhysRevC.73.035212. arXiv:nucl-ex/0510032$$v73$$y2006
000622276 999C5 $$1A Lovato$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.082501$$tPhys. Rev. Lett.$$uA. Lovato, S. Gandolfi, J. Carlson, S.C. Pieper, R. Schiavilla, Electromagnetic response of $$^{12}$$C: A first-principles calculation. Phys. Rev. Lett. 117(8), 082501 (2016). https://doi.org/10.1103/PhysRevLett.117.082501. arXiv:1605.00248$$v117$$y2016
000622276 999C5 $$1IC Cloët$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.032701$$tPhys. Rev. Lett.$$uI.C. Cloët, W. Bentz, A.W. Thomas, Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule. Phys. Rev. Lett. 116(3), 032701 (2016). https://doi.org/10.1103/PhysRevLett.116.032701. arXiv:1506.05875$$v116$$y2016
000622276 999C5 $$1MM Rvachev$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.192302$$tPhys. Rev. Lett.$$uM.M. Rvachev et al., Quasielastic $$^{3}{\rm He}{(e,{e}^{^{\prime }}p)^{2}}{\rm H}$$ reaction at $${Q}^{2}=1.5 {\rm gev}^{2}$$ for recoil momenta up to $$1 {\rm GeV/c}$$. Phys. Rev. Lett. 94, 192302 (2005). https://doi.org/10.1103/PhysRevLett.94.192302$$v94$$y2005
000622276 999C5 $$1B Hu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.73.064004$$tPhys. Rev. C$$uB. Hu et al., Polarization transfer in the H-2(polarized-e, e-prime polarized-p) n reaction up to Q**2 = 1.61-(GeV/c)**2. Phys. Rev. C 73, 064004 (2006). https://doi.org/10.1103/PhysRevC.73.064004. arXiv:nucl-ex/0601025$$v73$$y2006
000622276 999C5 $$1SP Malace$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.052501$$tPhys. Rev. Lett.$$uS.P. Malace et al., A precise extraction of the induced polarization in the 4He(e, e’p)3H reaction. Phys. Rev. Lett. 106, 052501 (2011). https://doi.org/10.1103/PhysRevLett.106.052501. arXiv:1011.4483$$v106$$y2011
000622276 999C5 $$1WP Ford$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.89.034004$$tPhys. Rev. C$$uW.P. Ford, R. Schiavilla, J.W. Van Orden, The $$^3$$He$$(e, e^\prime p)^2$$H and $$^4$$He$$(e, e^\prime p)^3$$H reactions at high momentum transfer. Phys. Rev. C 89(3), 034004 (2014). https://doi.org/10.1103/PhysRevC.89.034004. arXiv:1401.4399$$v89$$y2014
000622276 999C5 $$1R Dupré$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.104.025203$$tPhys. Rev. C$$uR. Dupré et al., Measurement of deeply virtual Compton scattering off $$^{4}{\rm He}$$ with the CEBAF Large Acceptance Spectrometer at Jefferson Lab. Phys. Rev. C 104(2), 025203 (2021). https://doi.org/10.1103/PhysRevC.104.025203. arXiv:2102.07419$$v104$$y2021
000622276 999C5 $$1V Guzey$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2009.01.064$$p9 -$$tPhys. Lett. B$$uV. Guzey, A.W. Thomas, K. Tsushima, Medium modifications of the bound nucleon GPDs and incoherent DVCS on nuclear targets. Phys. Lett. B 673, 9–14 (2009). https://doi.org/10.1016/j.physletb.2009.01.064. arXiv:0806.3288$$v673$$y2009
000622276 999C5 $$1S Liuti$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.72.034902$$tPhys. Rev. C$$uS. Liuti, S.K. Taneja, Nuclear medium modifications of hadrons from generalized parton distributions. Phys. Rev. C 72, 034902 (2005). https://doi.org/10.1103/PhysRevC.72.034902. arXiv:hep-ph/0504027$$v72$$y2005
000622276 999C5 $$1M Guidal$$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/76/6/066202$$tRept. Prog. Phys.$$uM. Guidal, H. Moutarde, M. Vanderhaeghen, Generalized Parton Distributions in the valence region from Deeply Virtual Compton Scattering. Rept. Prog. Phys. 76, 066202 (2013). https://doi.org/10.1088/0034-4885/76/6/066202. arXiv:1303.6600$$v76$$y2013
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.48550/ARXIV.1708.00835$$uW. Armstrong, et al., Spectator-tagged deeply virtual compton scattering on light nuclei, (2017). https://doi.org/10.48550/ARXIV.1708.00835arXiv:1708.00835
000622276 999C5 $$1S Fucini$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.98.015203$$tPhys. Rev. C$$uS. Fucini, S. Scopetta, M. Viviani, Coherent deeply virtual compton scattering off $$^{4}{\rm He}$$. Phys. Rev. C 98, 015203 (2018). https://doi.org/10.1103/PhysRevC.98.015203$$v98$$y2018
000622276 999C5 $$2Crossref$$uP. Zurita, Medium modified Fragmentation Functions with open source xFitter (1 2021). arXiv:2101.01088
000622276 999C5 $$1K Eskola$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10359-0$$p413 -$$tEur. Phys. J. C$$uK. Eskola, P. Paakkinen, H. Paukkunen, C. Salgado, EPPS21: a global QCD analysis of nuclear PDFs. Eur. Phys. J. C 82(5), 413 (2022). https://doi.org/10.1140/epjc/s10052-022-10359-0. arXiv:2112.12462$$v82$$y2022
000622276 999C5 $$1M Walt$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.096015$$tPhys. Rev. D$$uM. Walt, I. Helenius, W. Vogelsang, Open-source qcd analysis of nuclear parton distribution functions at nlo and nnlo. Phys. Rev. D 100, 096015 (2019). https://doi.org/10.1103/PhysRevD.100.096015$$v100$$y2019
000622276 999C5 $$2Crossref$$uW. Brooks, S. Kuhn, et al., The EMC Effect in Spin Structure Functions, CLAS12 E12-14-00 Experiment (Run Group G) (2014)
000622276 999C5 $$2Crossref$$uW. Brooks, S. Kuhn, et al., The EMC Effect in Spin Structure Functions, CLAS12 Run Group G Jeopardy Update (2020). https://www.jlab.org/exp_prog/proposals/20/Jeopardy/Run%20Group%20G_Update.pdf
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.70.116003$$tPhys. Rev. D$$uS.J. Brodsky, I. Schmidt, J.-J. Yang, Nuclear antishadowing in neutrino deep inelastic scattering. Phys. Rev. D 70, 116003 (2004). https://doi.org/10.1103/PhysRevD.70.116003$$v70$$y2004
000622276 999C5 $$1V Guzey$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.61.014002$$tPhys. Rev. C$$uV. Guzey, M. Strikman, Nuclear effects in $${g}_{1A}{(x, Q}^{2})$$ at small x in deep inelastic scattering on $$ ^{7}{\rm Li}$$ and $$ ^{3}{\rm He}$$. Phys. Rev. C 61, 014002 (1999). https://doi.org/10.1103/PhysRevC.61.014002$$v61$$y1999
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.95.055208$$tPhys. Rev. C$$uL. Frankfurt, V. Guzey, M. Strikman, Dynamical model of antishadowing of the nuclear gluon distribution. Phys. Rev. C 95, 055208 (2017). https://doi.org/10.1103/PhysRevC.95.055208$$v95$$y2017
000622276 999C5 $$1I Cloët$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2006.08.076$$p210 -$$tPhy. Lett. B$$uI. Cloët, W. Bentz, A. Thomas, EMC and polarized EMC effects in nuclei. Phy. Lett. B 642(3), 210–217 (2006). https://doi.org/10.1016/j.physletb.2006.08.076$$v642$$y2006
000622276 999C5 $$1J Smith$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.72.022203$$tPhys. Rev. C$$uJ. Smith, G. Miller, Polarized quark distributions in nuclear matter. Phys. Rev. C 72, 022203 (2005). https://doi.org/10.1103/PhysRevC.72.022203$$v72$$y2005
000622276 999C5 $$1H Fanchiotti$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2014-14116-8$$p116 -$$tEur. Phys. J. A$$uH. Fanchiotti, C.A. García-Canal, T. Tarutina, V. Vento, Medium Effects in DIS from Polarized Nuclear Targets. Eur. Phys. J. A 50, 116 (2014). https://doi.org/10.1140/epja/i2014-14116-8. arXiv:1404.3047$$v50$$y2014
000622276 999C5 $$1I Cloët$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.052302$$tPhys. Rev. Lett.$$uI. Cloët, W. Bentz, A. Thomas, Spin-dependent structure functions in nuclear matter and the polarized emc effect. Phys. Rev. Lett. 95, 052302 (2005). https://doi.org/10.1103/PhysRevLett.95.052302$$v95$$y2005
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(88)90719-8$$p685 -$$tPhys. Lett. B$$uS.J. Brodsky, A.H. Mueller, Using Nuclei to Probe Hadronization in QCD. Phys. Lett. B 206, 685–690 (1988). https://doi.org/10.1016/0370-2693(88)90719-8$$v206$$y1988
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.50.3134$$p3134 -$$tPhys. Rev. D$$uS.J. Brodsky, L. Frankfurt, J.F. Gunion, A.H. Mueller, M. Strikman, Diffractive leptoproduction of vector mesons in QCD. Phys. Rev. D 50, 3134–3144 (1994). https://doi.org/10.1103/PhysRevD.50.3134. arXiv:hep-ph/9402283$$v50$$y1994
000622276 999C5 $$1D Dutta$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2012.11.001$$p1 -$$tProg. Part. Nucl. Phys.$$uD. Dutta, K. Hafidi, M. Strikman, Color Transparency: past, present and future. Prog. Part. Nucl. Phys. 69, 1–27 (2013). https://doi.org/10.1016/j.ppnp.2012.11.001. arXiv:1211.2826$$v69$$y2013
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.3390/physics4020042$$p633 -$$tMDPI Physics$$uS.J. Brodsky, G.F. de Teramond, Onset of Color Transparency in Holographic Light-Front QCD. MDPI Physics 4(2), 633–646 (2022). https://doi.org/10.3390/physics4020042. arXiv:2202.13283$$v4$$y2022
000622276 999C5 $$1B Clasie$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.242502$$tPhys. Rev. Lett.$$uB. Clasie et al., Measurement of Nuclear Transparency for the $$A(e,{e}^{\prime }{\pi }^{+})$$ Reaction. Phys. Rev. Lett. 99, 242502 (2007). https://doi.org/10.1103/PhysRevLett.99.242502. arXiv:0707.1481$$v99$$y2007
000622276 999C5 $$1L El Fassi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2012.05.019$$p326 -$$tPhys. Lett. B$$uL. El Fassi et al., Evidence for the onset of color transparency in $$\rho ^0$$ electroproduction off nuclei. Phys. Lett. B 712, 326–330 (2012). https://doi.org/10.1016/j.physletb.2012.05.019. arXiv:1201.2735$$v712$$y2012
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.78.015208$$tPhys. Rev. C$$uL. Frankfurt, G.A. Miller, M. Strikman, Color Transparency in Semi-Inclusive Electroproduction of rho Mesons. Phys. Rev. C 78, 015208 (2008). https://doi.org/10.1103/PhysRevC.78.015208. arXiv:0803.4012$$v78$$y2008
000622276 999C5 $$1K Gallmeister$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.83.015201$$tPhys. Rev. C$$uK. Gallmeister, M. Kaskulov, U. Mosel, Color transparency in hadronic attenuation of $$\rho ^0$$ mesons. Phys. Rev. C 83, 015201 (2011). https://doi.org/10.1103/PhysRevC.83.015201. arXiv:1007.1141$$v83$$y2011
000622276 999C5 $$1W Cosyn$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.87.064608$$tPhys. Rev. C$$uW. Cosyn, J. Ryckebusch, Nuclear $$\rho $$ meson transparency in a relativistic Glauber model. Phys. Rev. C 87(6), 064608 (2013). https://doi.org/10.1103/PhysRevC.87.064608. arXiv:1301.1904$$v87$$y2013
000622276 999C5 $$1AS Carroll$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.61.1698$$p1698 -$$tPhys. Rev. Lett.$$uA.S. Carroll et al., Nuclear Transparency to Large Angle $$p p$$ Elastic Scattering. Phys. Rev. Lett. 61, 1698–1701 (1988). https://doi.org/10.1103/PhysRevLett.61.1698$$v61$$y1988
000622276 999C5 $$1I Mardor$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.5085$$p5085 -$$tPhys. Rev. Lett.$$uI. Mardor et al., Nuclear transparency in large momentum transfer quasielastic scattering. Phys. Rev. Lett. 81, 5085–5088 (1998). https://doi.org/10.1103/PhysRevLett.81.5085$$v81$$y1998
000622276 999C5 $$1A Leksanov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.212301$$tPhys. Rev. Lett.$$uA. Leksanov et al., Energy dependence of nuclear transparency in C$$(p, 2p)$$ scattering. Phys. Rev. Lett. 87, 212301 (2001). https://doi.org/10.1103/PhysRevLett.87.212301. arXiv:hep-ex/0104039$$v87$$y2001
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.70.015208$$uJ. Aclander et al., Nuclear transparency. Phys. Rev. C in $${90}_{{\rm c.m.}}^{\circ }$$ quasielastic $$A(p,2p)$$ reactions 70, 015208 (2004). https://doi.org/10.1103/PhysRevC.70.015208. arXiv:nucl-ex/0405025
000622276 999C5 $$1N Makins$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.72.1986$$p1986 -$$tPhys. Rev. Lett.$$uN. Makins et al., Momentum transfer dependence of nuclear transparency from the quasielastic $$^{12}{\rm C}$$(e, e’p) reaction. Phys. Rev. Lett. 72, 1986–1989 (1994). https://doi.org/10.1103/PhysRevLett.72.1986$$v72$$y1994
000622276 999C5 $$1TG O’Neill$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(95)00362-O$$p87 -$$tPhys. Lett. B$$uT.G. O’Neill et al., $$A$$-dependence of nuclear transparency in quasielastic $$A(e, e^{\prime } p)$$ at high $$Q^2$$. Phys. Lett. B 351, 87–92 (1995). https://doi.org/10.1016/0370-2693(95)00362-O. arXiv:hep-ph/9408260$$v351$$y1995
000622276 999C5 $$1D Abbott$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.5072$$p5072 -$$tPhys. Rev. Lett.$$uD. Abbott et al., Quasifree $$(e, e^{\prime }p)$$ reactions and proton propagation in nuclei. Phys. Rev. Lett. 80, 5072–5076 (1998). https://doi.org/10.1103/PhysRevLett.80.5072$$v80$$y1998
000622276 999C5 $$1K Garrow$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.66.044613$$tPhys. Rev. C$$uK. Garrow et al., Nuclear transparency from quasielastic $${A(e, e}^{^{\prime }}p)$$ reactions up to $${Q}^{2}=8.1({\rm GeV}/c)^{2}$$. Phys. Rev. C 66, 044613 (2002). https://doi.org/10.1103/PhysRevC.66.044613. arXiv:hep-ex/0109027$$v66$$y2002
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.126.082301$$uD. Bhetuwal, J. Matter, H. Szumila-Vance, M. L. Kabir, D. Dutta, R. Ent, et al., Ruling out color transparency in quasielastic $$^{12}{\rm C}({\rm e},{e}^{^{\prime }}{\rm p})$$ up to $${Q}^{2}$$ of $$14.2 ({\rm GeV}/{\rm c})^{2}$$, Phys. Rev. Lett. 126 (2021) 082301. https://doi.org/10.1103/PhysRevLett.126.082301
000622276 999C5 $$1S Li$$2Crossref$$9-- missing cx lookup --$$a10.3390/physics4040092$$p1426 -$$tPhysics$$uS. Li, C. Yero, J.R. West, C. Bennett, W. Cosyn, D. Higinbotham, M. Sargsian, H. Szumila-Vance, Searching for an enhanced signal of the onset of color transparency in baryons with d(e, e’p)n scattering. Physics 4(4), 1426–1439 (2022). https://doi.org/10.3390/physics4040092$$v4$$y2022
000622276 999C5 $$1RD Field$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.15.2590$$p2590 -$$tPhys. Rev. D$$uR.D. Field, R.P. Feynman, Quark Elastic Scattering as a Source of High Transverse Momentum Mesons. Phys. Rev. D 15, 2590–2616 (1977). https://doi.org/10.1103/PhysRevD.15.2590$$v15$$y1977
000622276 999C5 $$1J-J Aubert$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(83)90437-9$$p275 -$$tPhysics Letters B$$uJ.-J. Aubert, G. Bassompierre, K. Becks, C. Best, E. Böhm, X. de Bouard, F. Brasse, C. Broll, S. Brown, J. Carr et al., The ratio of the nucleon structure functions $$F_2^N$$ for iron and deuterium. Physics Letters B 123(3–4), 275–278 (1983)$$v123$$y1983
000622276 999C5 $$1K Adcox$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2005.03.086$$p184 -$$tNuclear Physics A$$uK. Adcox, S. Adler, S. Afanasiev, C. Aidala, N. Ajitanand, Y. Akiba, A. Al-Jamel, J. Alexander, R. Amirikas, K. Aoki et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at rhic: experimental evaluation by the phenix collaboration. Nuclear Physics A 757(1–2), 184–283 (2005)$$v757$$y2005
000622276 999C5 $$1J Adams$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2005.03.085$$p102 -$$tNucl. Phys. A$$uJ. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085. arXiv:nucl-ex/0501009$$v757$$y2005
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2010.01.020$$p114 -$$tPhys. Lett. B$$uA. Airapetian et al., Transverse momentum broadening of hadrons produced in semi-inclusive deep-inelastic scattering on nuclei. Phys. Lett. B 684, 114–118 (2010). https://doi.org/10.1016/j.physletb.2010.01.020$$v684$$y2010
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2011-11113-5$$p113 -$$tEur. Phys. J. A$$uA. Airapetian et al., Multidimensional Study of Hadronization in Nuclei. Eur. Phys. J. A 47, 113 (2011). https://doi.org/10.1140/epja/i2011-11113-5. arXiv:1107.3496$$v47$$y2011
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2007.06.004$$p1 -$$tNucl. Phys. B$$uA. Airapetian et al., Hadronization in semi-inclusive deep-inelastic scattering on nuclei. Nucl. Phys. B 780, 1–27 (2007). https://doi.org/10.1016/j.nuclphysb.2007.06.004. arXiv:0704.3270$$v780$$y2007
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.162301$$tPhys. Rev. Lett.$$uA. Airapetian et al., Double-hadron leptoproduction in the nuclear medium. Phys. Rev. Lett. 96, 162301 (2006). https://doi.org/10.1103/PhysRevLett.96.162301$$v96$$y2006
000622276 999C5 $$1SJ Paul$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.129.182501$$tPhys. Rev. Lett.$$uS.J. Paul, S. Morán, M. Arratia, A. El Alaoui, H. Hakobyan, W. Brooks et al., Observation of azimuth-dependent suppression of hadron pairs in electron scattering off nuclei. Phys. Rev. Lett. 129, 182501 (2022). https://doi.org/10.1103/PhysRevLett.129.182501$$v129$$y2022
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1007/s100520100697$$p479 -$$tEur. Phys. J. C$$uA. Airapetian et al., Hadron formation in deep inelastic positron scattering in a nuclear environment. Eur. Phys. J. C 20, 479–486 (2001). https://doi.org/10.1007/s100520100697$$v20$$y2001
000622276 999C5 $$1S Morán$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.105.015201$$tPhys. Rev. C$$uS. Morán, R. Dupré, H. Hakobyan, M. Arratia, W.K. Brooks, A. Bórquez, A. El Alaoui, L. El Fassi, K. Hafidi, R. Mendez, T. Mineeva, S.J. Paul et al., Measurement of charged-pion production in deep-inelastic scattering off nuclei with the CLAS detector. Phys. Rev. C 105, 015201 (2022). https://doi.org/10.1103/PhysRevC.105.015201$$v105$$y2022
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2003.10.026$$p37 -$$tPhys. Lett. B$$uA. Airapetian et al., Quark fragmentation to $$\pi ^\pm $$, $$\pi ^0$$, $$K^\pm $$, $$p$$ and $${\bar{p}}$$ in the nuclear environment. Phys. Lett. B 577, 37–46 (2003). https://doi.org/10.1016/j.physletb.2003.10.026$$v577$$y2003
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2007.06.004$$p1 -$$tNucl. Phys. B$$uA. Airapetian et al., Hadronization in semi-inclusive deep-inelastic scattering on nuclei. Nucl. Phys. B 780, 1–27 (2007). https://doi.org/10.1016/j.nuclphysb.2007.06.004$$v780$$y2007
000622276 999C5 $$1T Chetry$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.130.142301$$tPhys. Rev. Lett.$$uT. Chetry, L. El Fassi et al., First measurement of $$\Lambda $$ electroproduction off nuclei in the current and target fragmentation regions. Phys. Rev. Lett. 130, 142301 (2023). https://doi.org/10.1103/PhysRevLett.130.142301$$v130$$y2023
000622276 999C5 $$1A Accardi$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2016-16268-9$$p268 -$$tThe European Physical Journal A$$uA. Accardi et al., Electron-Ion Collider: The next QCD frontier. The European Physical Journal A 52(9), 268 (2016). https://doi.org/10.1140/epja/i2016-16268-9$$v52$$y2016
000622276 999C5 $$1V Khachatryan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2017.07.001$$p489 -$$tPhysics Letters B$$uV. Khachatryan et al., Coherent $$J/\psi $$ photoproduction in ultra-peripheral PbPb collisions at $$\sqrt{s_{NN}}=2.76$$ TeV with the CMS experiment. Physics Letters B 772, 489–511 (2017)$$v772$$y2017
000622276 999C5 $$1B Abelev$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2012.11.059$$p1273 -$$tPhysics Letters B$$uB. Abelev et al., Coherent $$J/\psi $$ photoproduction in ultra-peripheral Pb-Pb collisions at $$\sqrt{s_{NN}}=2.76 TeV$$. Physics Letters B 718(4), 1273–1283 (2013). https://doi.org/10.1016/j.physletb.2012.11.059$$v718$$y2013
000622276 999C5 $$1S Acharya$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2021.136280$$tPhysics Letters B$$uS. Acharya et al., First measurement of the $$|t|$$-dependence of coherent $$J/\psi $$ photonuclear production. Physics Letters B 817, 136280 (2021). https://doi.org/10.1016/j.physletb.2021.136280$$v817$$y2021
000622276 999C5 $$1S Acharya$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-021-09437-6$$p712 -$$tThe European Physical Journal C$$uS. Acharya et al., Coherent $$J/\psi $$ and $$\psi ^{\prime }$$ photoproduction at midrapidity in ultra-peripheral Pb-Pb collisions at $$\sqrt{s_{NN}}=5.02$$ TeV. The European Physical Journal C 81(8), 712 (2021). https://doi.org/10.1140/epjc/s10052-021-09437-6$$v81$$y2021
000622276 999C5 $$1R Aaij$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.105.L032201$$pL032201 -$$tPhys. Rev. C$$uR. Aaij et al., $$J/\psi $$ photoproduction in Pb-Pb peripheral collisions at $$\sqrt{{s}_{NN}}=5$$ TeV. Phys. Rev. C 105, L032201 (2022). https://doi.org/10.1103/PhysRevC.105.L032201$$v105$$y2022
000622276 999C5 $$1MS Abdallah$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.128.122303$$tPhys. Rev. Lett.$$uM.S. Abdallah et al., Probing the gluonic structure of the deuteron with $$J/\psi $$ photoproduction in $${{d}}+{\rm Au}$$ ultraperipheral collisions. Phys. Rev. Lett. 128, 122303 (2022). https://doi.org/10.1103/PhysRevLett.128.122303$$v128$$y2022
000622276 999C5 $$1A Ali$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.072001$$tPhys. Rev. Lett.$$uA. Ali et al., First Measurement of Near-Threshold $$J/\psi $$ Exclusive Photoproduction off the Proton. Phys. Rev. Lett. 123, 072001 (2019). https://doi.org/10.1103/PhysRevLett.123.072001$$v123$$y2019
000622276 999C5 $$1T Toll$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.87.024913$$tPhys. Rev. C$$uT. Toll, T. Ullrich, Exclusive diffractive processes in electron-ion collisions. Phys. Rev. C 87, 024913 (2013). https://doi.org/10.1103/PhysRevC.87.024913$$v87$$y2013
000622276 999C5 $$2Crossref$$uO. Hen, et al., Studying Short-Range Correlations with Real Photon Beams at GlueX (9 2020). arXiv:2009.09617
000622276 999C5 $$1U Camerini$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.35.483$$p483 -$$tPhys. Rev. Lett.$$uU. Camerini, J.G. Learned, R. Prepost, C.M. Spencer, D.E. Wiser, W.W. Ash, R.L. Anderson, D.M. Ritson, D.J. Sherden, C.K. Sinclair, Photoproduction of the $$\psi $$ Particles. Phys. Rev. Lett. 35, 483–486 (1975). https://doi.org/10.1103/PhysRevLett.35.483$$v35$$y1975
000622276 999C5 $$1RB Wiringa$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.89.024305$$tPhys. Rev. C$$uR.B. Wiringa, R. Schiavilla, S.C. Pieper, J. Carlson, Nucleon and nucleon-pair momentum distributions in $$A\le 12$$ nuclei. Phys. Rev. C 89, 024305 (2014). https://doi.org/10.1103/PhysRevC.89.024305$$v89$$y2014
000622276 999C5 $$1L Gan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2021.11.001$$p1 -$$tPhys. Rept.$$uL. Gan, B. Kubis, E. Passemar, S. Tulin, Precision tests of fundamental physics with $$\eta $$ and $$\eta $$’ mesons. Phys. Rept. 945, 1–105 (2022). https://doi.org/10.1016/j.physrep.2021.11.001$$v945$$y2022
000622276 999C5 $$1SL Adler$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.177.2426$$p2426 -$$tPhys. Rev.$$uS.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969). https://doi.org/10.1103/PhysRev.177.2426$$v177$$y1969
000622276 999C5 $$1JS Bell$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02823296$$p47 -$$tNuovo Cim. A$$uJ.S. Bell, R. Jackiw, A PCAC puzzle: $$\pi ^0 \rightarrow \gamma \gamma $$ in the $$\sigma $$ model. Nuovo Cim. A 60, 47–61 (1969). https://doi.org/10.1007/BF02823296$$v60$$y1969
000622276 999C5 $$1G ’t Hooft$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.37.8$$p8 -$$tPhys. Rev. Lett.$$uG. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies. Phys. Rev. Lett. 37, 8–11 (1976). https://doi.org/10.1103/PhysRevLett.37.8$$v37$$y1976
000622276 999C5 $$1E Witten$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(79)90031-2$$p269 -$$tNucl. Phys. B$$uE. Witten, Current Algebra Theorems for the U(1) Goldstone Boson. Nucl. Phys. B 156, 269–283 (1979). https://doi.org/10.1016/0550-3213(79)90031-2$$v156$$y1979
000622276 999C5 $$1M Gell-Mann$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.175.2195$$p2195 -$$tPhys. Rev.$$uM. Gell-Mann, R.J. Oakes, B. Renner, Behavior of current divergences under SU(3) x SU(3). Phys. Rev. 175, 2195–2199 (1968). https://doi.org/10.1103/PhysRev.175.2195$$v175$$y1968
000622276 999C5 $$1JS Bell$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(68)90316-7$$p315 -$$tNucl. Phys. B$$uJ.S. Bell, D.G. Sutherland, Current algebra and eta -$${>}$$ 3 pi. Nucl. Phys. B 4, 315–325 (1968). https://doi.org/10.1016/0550-3213(68)90316-7$$v4$$y1968
000622276 999C5 $$1DG Sutherland$$2Crossref$$9-- missing cx lookup --$$a10.1016/0031-9163(66)90477-X$$p384 -$$tPhys. Lett.$$uD.G. Sutherland, Current algebra and the decay $$\eta \rightarrow 3\pi $$. Phys. Lett. 23, 384–385 (1966). https://doi.org/10.1016/0031-9163(66)90477-X$$v23$$y1966
000622276 999C5 $$1VA Kuzmin$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(85)91028-7$$p36 -$$tPhys. Lett. B$$uV.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 155, 36 (1985). https://doi.org/10.1016/0370-2693(85)91028-7$$v155$$y1985
000622276 999C5 $$1T Aoyama$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2020.07.006$$p1 -$$tPhys. Rept.$$uT. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model. Phys. Rept. 887, 1–166 (2020). https://doi.org/10.1016/j.physrep.2020.07.006. arXiv:2006.04822$$v887$$y2020
000622276 999C5 $$1M Hoferichter$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.121.112002$$tPhys. Rev. Lett.$$uM. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, S.P. Schneider, Pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon. Phys. Rev. Lett. 121(11), 112002 (2018). https://doi.org/10.1103/PhysRevLett.121.112002. arXiv:1805.01471$$v121$$y2018
000622276 999C5 $$1M Hoferichter$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2018)141$$p141 -$$tJHEP$$uM. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, S.P. Schneider, Dispersion relation for hadronic light-by-light scattering: pion pole. JHEP 10, 141 (2018). https://doi.org/10.1007/JHEP10(2018)141. arXiv:1808.04823$$v10$$y2018
000622276 999C5 $$1I Larin$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aay6641$$p506 -$$tScience$$uI. Larin et al., Precision measurement of the neutral pion lifetime. Science 368(6490), 506–509 (2020). https://doi.org/10.1126/science.aay6641$$v368$$y2020
000622276 999C5 $$1A Gérardin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.034520$$tPhys. Rev. D$$uA. Gérardin, H.B. Meyer, A. Nyffeler, Lattice calculation of the pion transition form factor with $$N_f=2+1$$ Wilson quarks. Phys. Rev. D 100(3), 034520 (2019). https://doi.org/10.1103/PhysRevD.100.034520. arXiv:1903.09471$$v100$$y2019
000622276 999C5 $$1JL Goity$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.66.076014$$tPhys. Rev. D$$uJ.L. Goity, A.M. Bernstein, B.R. Holstein, The Decay pi0 -$${>}$$ gamma gamma to next to leading order in chiral perturbation theory. Phys. Rev. D 66, 076014 (2002). https://doi.org/10.1103/PhysRevD.66.076014. arXiv:hep-ph/0206007$$v66$$y2002
000622276 999C5 $$1B Ananthanarayan$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2002/05/052$$p052 -$$tJHEP$$uB. Ananthanarayan, B. Moussallam, Electromagnetic corrections in the anomaly sector. JHEP 05, 052 (2002). https://doi.org/10.1088/1126-6708/2002/05/052. arXiv:hep-ph/0205232$$v05$$y2002
000622276 999C5 $$1K Kampf$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.79.076005$$tPhys. Rev. D$$uK. Kampf, B. Moussallam, Chiral expansions of the pi0 lifetime. Phys. Rev. D 79, 076005 (2009). https://doi.org/10.1103/PhysRevD.79.076005. arXiv:0901.4688$$v79$$y2009
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.430.0306$$uS. A. Burri, et al., Pseudoscalar-pole contributions to the muon $$g-2$$ at the physical point, PoS LATTICE2022 (2023) 306. https://doi.org/10.22323/1.430.0306. arXiv:2212.10300
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.430.0332$$uA. Gérardin, J. N. Guenther, L. Varnhorst, W. E. A. Verplanke, Pseudoscalar transition form factors and the hadronic light-by-light contribution to the muon g-2, PoS LATTICE2022 (2023) 332. https://doi.org/10.22323/1.430.0332. arXiv:2211.04159
000622276 999C5 $$1M Hoferichter$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-014-3180-0$$p3180 -$$tEur. Phys. J. C$$uM. Hoferichter, B. Kubis, S. Leupold, F. Niecknig, S.P. Schneider, Dispersive analysis of the pion transition form factor. Eur. Phys. J. C 74, 3180 (2014). https://doi.org/10.1140/epjc/s10052-014-3180-0. arXiv:1410.4691$$v74$$y2014
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-013-2668-3$$uC. Hanhart, A. Kupść, U.-G. Meißner, F. Stollenwerk, A. Wirzba, Dispersive analysis for $$\eta \rightarrow \gamma \gamma ^*$$, Eur. Phys. J. C 73 (12) (2013) 2668, [Erratum: Eur. Phys. J. C 75, 242 (2015)]. arXiv:1307.5654, https://doi.org/10.1140/epjc/s10052-013-2668-3
000622276 999C5 $$1B Kubis$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-015-3495-5$$p283 -$$tEur. Phys. J. C$$uB. Kubis, J. Plenter, Anomalous decay and scattering processes of the $$\eta $$ meson. Eur. Phys. J. C 75(6), 283 (2015). https://doi.org/10.1140/epjc/s10052-015-3495-5. arXiv:1504.02588$$v75$$y2015
000622276 999C5 $$1S Holz$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-021-09661-0$$p1002 -$$tEur. Phys. J. C$$uS. Holz, J. Plenter, C.-W. Xiao, T. Dato, C. Hanhart, B. Kubis, U.-G. Meißner, A. Wirzba, Towards an improved understanding of $$\eta \rightarrow \gamma ^* \gamma ^*$$. Eur. Phys. J. C 81(11), 1002 (2021). https://doi.org/10.1140/epjc/s10052-021-09661-0. arXiv:1509.02194$$v81$$y2021
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10247-7$$uS. Holz, C. Hanhart, M. Hoferichter, B. Kubis, A dispersive analysis of $$\eta ^{\prime }\rightarrow \pi ^+\pi ^-\gamma $$ and $$\eta ^{\prime }\rightarrow \ell ^+\ell ^-\gamma $$, Eur. Phys. J. C 82 (5) (2022) 434, [Addendum: Eur. Phys. J. C 82, 1159 (2022)]. arXiv:2202.05846, https://doi.org/10.1140/epjc/s10052-022-10247-7
000622276 999C5 $$1P Masjuan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.054026$$tPhys. Rev. D$$uP. Masjuan, P. Sánchez-Puertas, Pseudoscalar-pole contribution to the $$(g_{\mu }-2)$$: a rational approach. Phys. Rev. D 95(5), 054026 (2017). https://doi.org/10.1103/PhysRevD.95.054026. arXiv:1701.05829$$v95$$y2017
000622276 999C5 $$1R Escribano$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.054033$$tPhys. Rev. D$$uR. Escribano, S. Gonzàlez-Solís, P. Masjuan, P. Sánchez-Puertas, $$\eta $$’ transition form factor from space- and timelike experimental data. Phys. Rev. D 94(5), 054033 (2016). https://doi.org/10.1103/PhysRevD.94.054033. arXiv:1512.07520$$v94$$y2016
000622276 999C5 $$2Crossref$$uC. Alexandrou, et al., The $$\eta \rightarrow \gamma ^* \gamma ^*$$ transition form factor and the hadronic light-by-light $$\eta $$-pole contribution to the muon $$g-2$$ from lattice QCD (12 2022). arXiv:2212.06704
000622276 999C5 $$1A Browman$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.32.1067$$p1067 -$$tPhys. Rev. Lett.$$uA. Browman, J. DeWire, B. Gittelman, K.M. Hanson, E. Loh, R. Lewis, The Radiative Width of the eta Meson. Phys. Rev. Lett. 32, 1067 (1974). https://doi.org/10.1103/PhysRevLett.32.1067$$v32$$y1974
000622276 999C5 $$1H Primakoff$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.81.899$$p899 -$$tPhys. Rev.$$uH. Primakoff, Photoproduction of neutral mesons in nuclear electric fields and the mean life of the neutral meson. Phys. Rev. 81, 899 (1951). https://doi.org/10.1103/PhysRev.81.899$$v81$$y1951
000622276 999C5 $$1L Gan$$2Crossref$$9-- missing cx lookup --$$a10.1051/epjconf/20147307004$$p07004 -$$tEPJ Web Conf.$$uL. Gan, Test of fundamental symmetries via the Primakoff effect. EPJ Web Conf. 73, 07004 (2014). https://doi.org/10.1051/epjconf/20147307004$$v73$$y2014
000622276 999C5 $$1AM Bernstein$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.85.49$$p49 -$$tRev. Mod. Phys.$$uA.M. Bernstein, B.R. Holstein, Neutral Pion Lifetime Measurements and the QCD Chiral Anomaly. Rev. Mod. Phys. 85, 49 (2013). https://doi.org/10.1103/RevModPhys.85.49. arXiv:1112.4809$$v85$$y2013
000622276 999C5 $$1M Tanabashi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.030001$$tPhys. Rev. D$$uM. Tanabashi et al., Review of Particle Physics. Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001$$v98$$y2018
000622276 999C5 $$1BL Ioffe$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2007.02.021$$p389 -$$tPhys. Lett. B$$uB.L. Ioffe, A.G. Oganesian, Axial anomaly and the precise value of the pi0 –$${>}$$ 2 gamma decay width. Phys. Lett. B 647, 389–393 (2007). https://doi.org/10.1016/j.physletb.2007.02.021. arXiv:hep-ph/0701077$$v647$$y2007
000622276 999C5 $$1A Kastner$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-008-0703-6$$p541 -$$tEur. Phys. J. C$$uA. Kastner, H. Neufeld, The K(l3) scalar form factors in the standard model. Eur. Phys. J. C 57, 541–556 (2008). https://doi.org/10.1140/epjc/s10052-008-0703-6. arXiv:0805.2222$$v57$$y2008
000622276 999C5 $$1D Giusti$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.114504$$tPhys. Rev. D$$uD. Giusti, V. Lubicz, C. Tarantino, G. Martinelli, F. Sanfilippo, S. Simula, N. Tantalo, Leading isospin-breaking corrections to pion, kaon and charmed-meson masses with Twisted-Mass fermions. Phys. Rev. D 95(11), 114504 (2017). https://doi.org/10.1103/PhysRevD.95.114504. arXiv:1704.06561$$v95$$y2017
000622276 999C5 $$2Crossref$$uA. Gasparian, L. Gan, et al., A precision measurement of the $$\eta $$ radiative decay width via the primakoff effect, https://www.jlab.org/exp_-prog/proposals/10/PR12-10-011.pdf
000622276 999C5 $$1H Leutwyler$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(96)00167-0$$p181 -$$tPhys. Lett. B$$uH. Leutwyler, Implications of eta eta-prime mixing for the decay eta –$${>}$$ 3 pi. Phys. Lett. B 374, 181–185 (1996). https://doi.org/10.1016/0370-2693(96)00167-0. arXiv:hep-ph/9601236$$v374$$y1996
000622276 999C5 $$2Crossref$$uR. Essig, et al., Working Group Report: New Light Weakly Coupled Particles, in: Community Summer Study 2013: Snowmass on the Mississippi, 2013. arXiv:1311.0029
000622276 999C5 $$2Crossref$$uJ. Alexander, et al., Dark Sectors 2016 Workshop: Community Report, 2016. arXiv:1608.08632
000622276 999C5 $$2Crossref$$uM. Battaglieri, et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in: U.S. Cosmic Visions: New Ideas in Dark Matter, 2017. arXiv:1707.04591
000622276 999C5 $$1N Arkani-Hamed$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.79.015014$$tPhys. Rev. D$$uN. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, N. Weiner, A Theory of Dark Matter. Phys. Rev. D 79, 015014 (2009). https://doi.org/10.1103/PhysRevD.79.015014. arXiv:0810.0713$$v79$$y2009
000622276 999C5 $$1M Pospelov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2008.12.012$$p391 -$$tPhys. Lett. B$$uM. Pospelov, A. Ritz, Astrophysical Signatures of Secluded Dark Matter. Phys. Lett. B 671, 391–397 (2009). https://doi.org/10.1016/j.physletb.2008.12.012. arXiv:0810.1502$$v671$$y2009
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2019.114638$$uY.-S. Liu, I. C. Cloët, G. A. Miller, Eta Decay and Muonic Puzzles, Nucl. Phys. B (2019) 114638. https://doi.org/10.1016/j.nuclphysb.2019.114638. arXiv:1805.01028
000622276 999C5 $$1P Fayet$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.75.115017$$tPhys. Rev. D$$uP. Fayet, U-boson production in e+ e- annihilations, psi and Upsilon decays, and Light Dark Matter. Phys. Rev. D 75, 115017 (2007). https://doi.org/10.1103/PhysRevD.75.115017. arXiv:hep-ph/0702176$$v75$$y2007
000622276 999C5 $$1M Pospelov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.80.095002$$tPhys. Rev. D$$uM. Pospelov, Secluded U(1) below the weak scale. Phys. Rev. D 80, 095002 (2009). https://doi.org/10.1103/PhysRevD.80.095002. arXiv:0811.1030$$v80$$y2009
000622276 999C5 $$1AJ Krasznahorkay$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.042501$$tPhys. Rev. Lett.$$uA.J. Krasznahorkay et al., Observation of Anomalous Internal Pair Creation in Be8: A Possible Indication of a Light, Neutral Boson. Phys. Rev. Lett. 116(4), 042501 (2016). https://doi.org/10.1103/PhysRevLett.116.042501. arXiv:1504.01527$$v116$$y2016
000622276 999C5 $$1JL Feng$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.071803$$tPhys. Rev. Lett.$$uJ.L. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T.M.P. Tait, P. Tanedo, Protophobic Fifth-Force Interpretation of the Observed Anomaly in $$^8$$Be Nuclear Transitions. Phys. Rev. Lett. 117(7), 071803 (2016). https://doi.org/10.1103/PhysRevLett.117.071803. arXiv:1604.07411$$v117$$y2016
000622276 999C5 $$1S Tulin$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2017.11.004$$p1 -$$tPhys. Rept.$$uS. Tulin, H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure. Phys. Rept. 730, 1–57 (2018). https://doi.org/10.1016/j.physrep.2017.11.004. arXiv:1705.02358$$v730$$y2018
000622276 999C5 $$1S Tulin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.111301$$tPhys. Rev. Lett.$$uS. Tulin, H.-B. Yu, K.M. Zurek, Resonant Dark Forces and Small Scale Structure. Phys. Rev. Lett. 110(11), 111301 (2013). https://doi.org/10.1103/PhysRevLett.110.111301. arXiv:1210.0900$$v110$$y2013
000622276 999C5 $$1S Tulin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.87.115007$$tPhys. Rev. D$$uS. Tulin, H.-B. Yu, K.M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure. Phys. Rev. D 87(11), 115007 (2013). https://doi.org/10.1103/PhysRevD.87.115007. arXiv:1302.3898$$v87$$y2013
000622276 999C5 $$1D Aloni$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.031803$$tPhys. Rev. Lett.$$uD. Aloni, Y. Soreq, M. Williams, Coupling QCD-Scale Axionlike Particles to Gluons. Phys. Rev. Lett. 123(3), 031803 (2019). https://doi.org/10.1103/PhysRevLett.123.031803. arXiv:1811.03474$$v123$$y2019
000622276 999C5 $$1D Aloni$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.071801$$tPhys. Rev. Lett.$$uD. Aloni, C. Fanelli, Y. Soreq, M. Williams, Photoproduction of Axionlike Particles. Phys. Rev. Lett. 123(7), 071801 (2019). https://doi.org/10.1103/PhysRevLett.123.071801. arXiv:1903.03586$$v123$$y2019
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2017)094$$uM. J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer, K. Schmidt-Hoberg, Revised constraints and Belle II sensitivity for visible and invisible axion-like particles, JHEP 12 (2017) 094, [Erratum: JHEP 03, 190 (2021)]. https://doi.org/10.1007/JHEP12(2017)094. arXiv:1709.00009
000622276 999C5 $$1JD Bjorken$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.38.3375$$p3375 -$$tPhys. Rev. D$$uJ.D. Bjorken, S. Ecklund, W.R. Nelson, A. Abashian, C. Church, B. Lu, L.W. Mo, T.A. Nunamaker, P. Rassmann, Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump. Phys. Rev. D 38, 3375 (1988). https://doi.org/10.1103/PhysRevD.38.3375$$v38$$y1988
000622276 999C5 $$1G Abbiendi$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2002-01074-5$$p331 -$$tEur. Phys. J. C$$uG. Abbiendi et al., Multiphoton production in e+ e- collisions at s**(1/2) = 181-GeV to 209-GeV. Eur. Phys. J. C 26, 331–344 (2003). https://doi.org/10.1140/epjc/s2002-01074-5. arXiv:hep-ex/0210016$$v26$$y2003
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.118.171801$$uS. Knapen, T. Lin, H.K. Lou, T. Melia, Searching for Axionlike Particles with Ultraperipheral Heavy-Ion Collisions. Phys. Rev. Lett. 118(17), 171801 (2017). https://doi.org/10.1103/PhysRevLett.118.171801. arXiv:1607.06083
000622276 999C5 $$1J Blumlein$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X9200171X$$p3835 -$$tInt. J. Mod. Phys. A$$uJ. Blumlein et al., Limits on the mass of light (pseudo)scalar particles from Bethe-Heitler e+ e- and mu+ mu- pair production in a proton - iron beam dump experiment. Int. J. Mod. Phys. A 7, 3835–3850 (1992). https://doi.org/10.1142/S0217751X9200171X$$v7$$y1992
000622276 999C5 $$2Crossref$$uP. A. Souder, P. E. Reimer, X. Zheng, Precision Measurement of Parity-violation in Deep Inelastic Scattering Over a Broad Kinematic Range, Jefferson Lab Experiment E12-10-007, 2010 with 2022 update
000622276 999C5 $$1D Akimov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.129.081801$$tPhys. Rev. Lett.$$uD. Akimov et al., Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENT. Phys. Rev. Lett. 129(8), 081801 (2022). https://doi.org/10.1103/PhysRevLett.129.081801. arXiv:2110.07730$$v129$$y2022
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2172/1322154$$uM. Battaglieri, et al., Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab (7 2016). arXiv:1607.01390
000622276 999C5 $$1L Marsicano$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.115022$$tPhys. Rev. D$$uL. Marsicano, M. Battaglieri, A. Celentano, R. De Vita, Y.-M. Zhong, Probing Leptophilic Dark Sectors at Electron Beam-Dump Facilities. Phys. Rev. D 98(11), 115022 (2018). https://doi.org/10.1103/PhysRevD.98.115022. arXiv:1812.03829$$v98$$y2018
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.072011$$uM. Battaglieri et al., Dark matter search with the BDX-MINI experiment. Phys. Rev. D 106(7), 072011 (2022). https://doi.org/10.1103/PhysRevD.106.072011. arXiv:2208.01387
000622276 999C5 $$1A Bartnik$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.044803$$tPhys. Rev. Lett.$$uA. Bartnik et al., CBETA: First Multipass Superconducting Linear Accelerator with Energy Recovery. Phys. Rev. Lett. 125(4), 044803 (2020). https://doi.org/10.1103/PhysRevLett.125.044803$$v125$$y2020
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.18429/JACoW-IPAC2021-MOPAB216$$uS. Bogacz, et al., 20-24 GeV FFA CEBAF Energy Upgrade, Proc. IPAC’21, Campinas, Brazil, May 2021 (2023) 715–718 https://doi.org/10.18429/JACoW-IPAC2021-MOPAB216
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.18429/JACoW-IPAC2022-THPOTK011$$uS. Brooks, S. Bogacz, Permanent Magnets forthe CEBAF 24GeV Upgrade, Proc. IPAC’22, Bangkok, Thailand, Jun. 2022 (2022) 2792–2795 https://doi.org/10.18429/JACoW-IPAC2022-THPOTK011
000622276 999C5 $$2Crossref$$uS. Brooks, et al., Open-Midplane Gradient Permanent Magnet with 1.53 T Peak Field, Proc. IPAC’23, Venice, Italy, May 2023 (2023)