000622276 001__ 622276
000622276 005__ 20251124184213.0
000622276 0247_ $$2doi$$a10.1140/epja/s10050-024-01282-x
000622276 0247_ $$2ISSN$$a1434-6001
000622276 0247_ $$2ISSN$$a1434-601X
000622276 0247_ $$2WOS$$aWOS:001325234200001
000622276 0247_ $$2openalex$$aopenalex:W4402231801
000622276 0247_ $$2arXiv$$aarXiv:2306.09360
000622276 037__ $$aPUBDB-2025-00314
000622276 041__ $$aEnglish
000622276 082__ $$a530
000622276 088__ $$2arXiv$$aarXiv:2306.09360
000622276 088__ $$2Other$$aJLAB-PHY-23-3840
000622276 1001_ $$aAccardi, A.$$b0
000622276 245__ $$aStrong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab
000622276 260__ $$aHeidelberg$$bSpringer$$c2024
000622276 3367_ $$2DRIVER$$aarticle
000622276 3367_ $$2DataCite$$aOutput Types/Journal article
000622276 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763987980_2130733
000622276 3367_ $$2BibTeX$$aARTICLE
000622276 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000622276 3367_ $$00$$2EndNote$$aJournal Article
000622276 500__ $$aUpdates to the list of authors; Preprint number changed from theory to experiment; Updates to sections 4 and 6, including additional figures Waiting for fulltext
000622276 520__ $$aThis document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena.
000622276 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000622276 542__ $$2Crossref$$i2024-09-04$$uhttps://www.springernature.com/gp/researchers/text-and-data-mining
000622276 542__ $$2Crossref$$i2024-09-04$$uhttps://www.springernature.com/gp/researchers/text-and-data-mining
000622276 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000622276 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000622276 7001_ $$aAchenbach, P.$$b1
000622276 7001_ $$aAdhikari, D.$$b2
000622276 7001_ $$aAfanasev, A.$$b3
000622276 7001_ $$aAkondi, C. S.$$b4
000622276 7001_ $$aAkopov, N.$$b5
000622276 7001_ $$aAlbaladejo, M.$$b6
000622276 7001_ $$aAlbataineh, H.$$b7
000622276 7001_ $$aAlbrecht, M.$$b8
000622276 7001_ $$aAlmeida-Zamora, B.$$b9
000622276 7001_ $$aAmaryan, M.$$b10
000622276 7001_ $$aAndroić, D.$$b11
000622276 7001_ $$aArmstrong, W.$$b12
000622276 7001_ $$aArmstrong, D. S.$$b13
000622276 7001_ $$aArratia, M.$$b14
000622276 7001_ $$aArrington, J.$$b15
000622276 7001_ $$aAsaturyan, A.$$b16
000622276 7001_ $$aAustregesilo, A.$$b17
000622276 7001_ $$aAvakian, H.$$b18
000622276 7001_ $$aAverett, T.$$b19
000622276 7001_ $$aGayoso, C. Ayerbe$$b20
000622276 7001_ $$aBacchetta, A.$$b21
000622276 7001_ $$aBalantekin, A. B.$$b22
000622276 7001_ $$aBaltzell, N.$$b23
000622276 7001_ $$0P:(DE-HGF)0$$aBarion, L.$$b24
000622276 7001_ $$aBarry, P. C.$$b25
000622276 7001_ $$aBashir, A.$$b26
000622276 7001_ $$aBattaglieri, M.$$b27
000622276 7001_ $$aBellini, V.$$b28
000622276 7001_ $$aBelov, I.$$b29
000622276 7001_ $$aBenhar, O.$$b30
000622276 7001_ $$aBenkel, B.$$b31
000622276 7001_ $$aBenmokhtar, F.$$b32
000622276 7001_ $$aBentz, W.$$b33
000622276 7001_ $$aBertone, V.$$b34
000622276 7001_ $$aBhatt, H.$$b35
000622276 7001_ $$aBianconi, A.$$b36
000622276 7001_ $$aBibrzycki, L.$$b37
000622276 7001_ $$aBijker, R.$$b38
000622276 7001_ $$aBinosi, D.$$b39
000622276 7001_ $$aBiswas, D.$$b40
000622276 7001_ $$aBoër, M.$$b41
000622276 7001_ $$aBoeglin, W.$$b42
000622276 7001_ $$aBogacz, S. A.$$b43
000622276 7001_ $$aBoglione, M.$$b44
000622276 7001_ $$aBondí, M.$$b45
000622276 7001_ $$aBoos, E. E.$$b46
000622276 7001_ $$aBosted, P.$$b47
000622276 7001_ $$aBozzi, G.$$b48
000622276 7001_ $$aBrash, E. J.$$b49
000622276 7001_ $$aBriceño, R. A.$$b50
000622276 7001_ $$aBrindza, P. D.$$b51
000622276 7001_ $$aBriscoe, W. J.$$b52
000622276 7001_ $$aBrodsky, S. J.$$b53
000622276 7001_ $$aBrooks, W. K.$$b54
000622276 7001_ $$aBurkert, V. D.$$b55
000622276 7001_ $$aCamsonne, A.$$b56
000622276 7001_ $$aCao, T.$$b57
000622276 7001_ $$aCardman, L. S.$$b58
000622276 7001_ $$aCarman, D. S.$$b59
000622276 7001_ $$aCarpinelli, M.$$b60
000622276 7001_ $$aCates, G. D.$$b61
000622276 7001_ $$aCaylor, J.$$b62
000622276 7001_ $$aCelentano, A.$$b63
000622276 7001_ $$aCeliberto, F. G.$$b64
000622276 7001_ $$aCerutti, M.$$b65
000622276 7001_ $$aChang, L.$$b66
000622276 7001_ $$aChatagnon, P.$$b67
000622276 7001_ $$aChen, C.$$b68
000622276 7001_ $$aChen, J.-P.$$b69
000622276 7001_ $$aChetry, T.$$b70
000622276 7001_ $$aChristopher, A.$$b71
000622276 7001_ $$aChristy, E.$$b72
000622276 7001_ $$aChudakov, E.$$b73
000622276 7001_ $$aCisbani, E.$$b74
000622276 7001_ $$aCloët, I. C.$$b75
000622276 7001_ $$aCobos-Martinez, J. J.$$b76
000622276 7001_ $$aCohen, E. O.$$b77
000622276 7001_ $$aColangelo, P.$$b78
000622276 7001_ $$aCole, P. L.$$b79
000622276 7001_ $$aConstantinou, M.$$b80
000622276 7001_ $$aContalbrigo, M.$$b81
000622276 7001_ $$aCostantini, G.$$b82
000622276 7001_ $$aCosyn, W.$$b83
000622276 7001_ $$aCotton, C.$$b84
000622276 7001_ $$aCourtoy, A.$$b85
000622276 7001_ $$aDusa, S. Covrig$$b86
000622276 7001_ $$aCrede, V.$$b87
000622276 7001_ $$aCui, Z.-F.$$b88
000622276 7001_ $$aD’Angelo, A.$$b89
000622276 7001_ $$aDöring, M.$$b90
000622276 7001_ $$aDalton, M. M.$$b91
000622276 7001_ $$aDanilkin, I.$$b92
000622276 7001_ $$aDavydov, M.$$b93
000622276 7001_ $$aDay, D.$$b94
000622276 7001_ $$aDe Fazio, F.$$b95
000622276 7001_ $$aDe Napoli, M.$$b96
000622276 7001_ $$aDe Vita, R.$$b97
000622276 7001_ $$aDean, D. J.$$b98
000622276 7001_ $$aDefurne, M.$$b99
000622276 7001_ $$ade Paula, W.$$b100
000622276 7001_ $$ade Téramond, G. F.$$b101
000622276 7001_ $$aDeur, A.$$b102
000622276 7001_ $$aDevkota, B.$$b103
000622276 7001_ $$aDhital, S.$$b104
000622276 7001_ $$aDi Nezza, P.$$b105
000622276 7001_ $$aDiefenthaler, M.$$b106
000622276 7001_ $$aDiehl, S.$$b107
000622276 7001_ $$aDilks, C.$$b108
000622276 7001_ $$aDing, M.$$b109
000622276 7001_ $$aDjalali, C.$$b110
000622276 7001_ $$aDobbs, S.$$b111
000622276 7001_ $$aDupré, R.$$b112
000622276 7001_ $$aDutta, D.$$b113
000622276 7001_ $$aEdwards, R. G.$$b114
000622276 7001_ $$aEgiyan, H.$$b115
000622276 7001_ $$aEhinger, L.$$b116
000622276 7001_ $$aEichmann, G.$$b117
000622276 7001_ $$aElaasar, M.$$b118
000622276 7001_ $$aElouadrhiri, L.$$b119
000622276 7001_ $$aAlaoui, A. El$$b120
000622276 7001_ $$aFassi, L. El$$b121
000622276 7001_ $$aEmmert, A.$$b122
000622276 7001_ $$aEngelhardt, M.$$b123
000622276 7001_ $$aEnt, R.$$b124
000622276 7001_ $$aErnst, D. J.$$b125
000622276 7001_ $$aEugenio, P.$$b126
000622276 7001_ $$aEvans, G.$$b127
000622276 7001_ $$aFanelli, C.$$b128
000622276 7001_ $$aFegan, S.$$b129
000622276 7001_ $$aFernández-Ramírez, C.$$b130
000622276 7001_ $$aFernandez, L. A.$$b131
000622276 7001_ $$aFernando, I. P.$$b132
000622276 7001_ $$aFilippi, A.$$b133
000622276 7001_ $$aFischer, C. S.$$b134
000622276 7001_ $$aFogler, C.$$b135
000622276 7001_ $$aFomin, N.$$b136
000622276 7001_ $$aFrankfurt, L.$$b137
000622276 7001_ $$aFrederico, T.$$b138
000622276 7001_ $$aFreese, A.$$b139
000622276 7001_ $$aFu, Y.$$b140
000622276 7001_ $$aGamberg, L.$$b141
000622276 7001_ $$aGan, L.$$b142
000622276 7001_ $$aGao, F.$$b143
000622276 7001_ $$aGarcia-Tecocoatzi, H.$$b144
000622276 7001_ $$aGaskell, D.$$b145
000622276 7001_ $$aGasparian, A.$$b146
000622276 7001_ $$aGates, K.$$b147
000622276 7001_ $$aGavalian, G.$$b148
000622276 7001_ $$aGhoshal, P. K.$$b149
000622276 7001_ $$aGiachino, A.$$b150
000622276 7001_ $$aGiacosa, F.$$b151
000622276 7001_ $$aGiannuzzi, F.$$b152
000622276 7001_ $$aGilfoyle, G.-P.$$b153
000622276 7001_ $$aGirod, F.-X.$$b154
000622276 7001_ $$aGlazier, D. I.$$b155
000622276 7001_ $$aGleason, C.$$b156
000622276 7001_ $$aGodfrey, S.$$b157
000622276 7001_ $$aGoity, J. L.$$b158
000622276 7001_ $$aGolubenko, A. A.$$b159
000622276 7001_ $$aGonzàlez-Solís, S.$$b160
000622276 7001_ $$aGothe, R. W.$$b161
000622276 7001_ $$aGotra, Y.$$b162
000622276 7001_ $$aGriffioen, K.$$b163
000622276 7001_ $$0P:(DE-H253)PIP1097931$$aGrocholski, Oskar$$b164
000622276 7001_ $$aGrube, B.$$b165
000622276 7001_ $$aGuèye, P.$$b166
000622276 7001_ $$aGuo, F.-K.$$b167
000622276 7001_ $$aGuo, Y.$$b168
000622276 7001_ $$aGuo, L.$$b169
000622276 7001_ $$aHague, T. J.$$b170
000622276 7001_ $$aHammoud, N.$$b171
000622276 7001_ $$aHansen, J.-O.$$b172
000622276 7001_ $$aHattawy, M.$$b173
000622276 7001_ $$aHauenstein, F.$$b174
000622276 7001_ $$aHayward, T.$$b175
000622276 7001_ $$aHeddle, D.$$b176
000622276 7001_ $$aHeinrich, N.$$b177
000622276 7001_ $$aHen, O.$$b178
000622276 7001_ $$aHiginbotham, D. W.$$b179
000622276 7001_ $$aHiguera-Angulo, I. M.$$b180
000622276 7001_ $$aHiller Blin, A. N.$$b181
000622276 7001_ $$aHobart, A.$$b182
000622276 7001_ $$aHobbs, T.$$b183
000622276 7001_ $$aHolmberg, D. E.$$b184
000622276 7001_ $$aHorn, T.$$b185
000622276 7001_ $$aHoyer, P.$$b186
000622276 7001_ $$aHuber, G. M.$$b187
000622276 7001_ $$aHurck, P.$$b188
000622276 7001_ $$aHutauruk, P. T. P.$$b189
000622276 7001_ $$aIlieva, Y.$$b190
000622276 7001_ $$aIllari, I.$$b191
000622276 7001_ $$aIreland, D. G.$$b192
000622276 7001_ $$aIsupov, E. L.$$b193
000622276 7001_ $$aItaliano, A.$$b194
000622276 7001_ $$aJaegle, I.$$b195
000622276 7001_ $$aJarvis, N. S.$$b196
000622276 7001_ $$aJenkins, D. J.$$b197
000622276 7001_ $$aJeschonnek, S.$$b198
000622276 7001_ $$aJi, C.-R.$$b199
000622276 7001_ $$aJo, H. S.$$b200
000622276 7001_ $$aJones, M.$$b201
000622276 7001_ $$aJones, R. T.$$b202
000622276 7001_ $$aJones, D. C.$$b203
000622276 7001_ $$aJoo, K.$$b204
000622276 7001_ $$aJunaid, M.$$b205
000622276 7001_ $$aKageya, T.$$b206
000622276 7001_ $$aKalantarians, N.$$b207
000622276 7001_ $$aKarki, A.$$b208
000622276 7001_ $$aKaryan, G.$$b209
000622276 7001_ $$aKatramatou, A. T.$$b210
000622276 7001_ $$aKay, S. J. D.$$b211
000622276 7001_ $$aKazimi, R.$$b212
000622276 7001_ $$aKeith, C. D.$$b213
000622276 7001_ $$aKeppel, C.$$b214
000622276 7001_ $$aKerbizi, A.$$b215
000622276 7001_ $$aKhachatryan, V.$$b216
000622276 7001_ $$aKhanal, A.$$b217
000622276 7001_ $$aKhandaker, M.$$b218
000622276 7001_ $$aKim, A.$$b219
000622276 7001_ $$aKinney, E. R.$$b220
000622276 7001_ $$aKohl, M.$$b221
000622276 7001_ $$aKotzinian, A.$$b222
000622276 7001_ $$aKriesten, B. T.$$b223
000622276 7001_ $$aKubarovsky, V.$$b224
000622276 7001_ $$aKubis, B.$$b225
000622276 7001_ $$aKuhn, S. E.$$b226
000622276 7001_ $$aKumar, V.$$b227
000622276 7001_ $$aKutz, T.$$b228
000622276 7001_ $$aLeali, M.$$b229
000622276 7001_ $$aLebed, R. F.$$b230
000622276 7001_ $$aLenisa, P.$$b231
000622276 7001_ $$aLeskovec, L.$$b232
000622276 7001_ $$aLi, S.$$b233
000622276 7001_ $$aLi, X.$$b234
000622276 7001_ $$aLiao, J.$$b235
000622276 7001_ $$aLin, H.-W.$$b236
000622276 7001_ $$aLiu, L.$$b237
000622276 7001_ $$aLiuti, S.$$b238
000622276 7001_ $$aLiyanage, N.$$b239
000622276 7001_ $$aLu, Y.$$b240
000622276 7001_ $$aMacGregor, I. J. D.$$b241
000622276 7001_ $$aMack, D. J.$$b242
000622276 7001_ $$aMaiani, L.$$b243
000622276 7001_ $$aMamo, K. A.$$b244
000622276 7001_ $$aMandaglio, G.$$b245
000622276 7001_ $$aMariani, C.$$b246
000622276 7001_ $$aMarkowitz, P.$$b247
000622276 7001_ $$aMarukyan, H.$$b248
000622276 7001_ $$aMascagna, V.$$b249
000622276 7001_ $$aMathieu, V.$$b250
000622276 7001_ $$aMaxwell, J.$$b251
000622276 7001_ $$aMazouz, M.$$b252
000622276 7001_ $$aMcCaughan, M.$$b253
000622276 7001_ $$aMcKeown, R. D.$$b254
000622276 7001_ $$aMcKinnon, B.$$b255
000622276 7001_ $$aMeekins, D.$$b256
000622276 7001_ $$aMelnitchouk, W.$$b257
000622276 7001_ $$aMetz, A.$$b258
000622276 7001_ $$aMeyer, C. A.$$b259
000622276 7001_ $$aMeziani, Z.-E.$$b260
000622276 7001_ $$aMezrag, C.$$b261
000622276 7001_ $$aMichaels, R.$$b262
000622276 7001_ $$aMiller, G. A.$$b263
000622276 7001_ $$aMineeva, T.$$b264
000622276 7001_ $$aMiramontes, A. S.$$b265
000622276 7001_ $$aMirazita, M.$$b266
000622276 7001_ $$aMizutani, K.$$b267
000622276 7001_ $$aMkrtchyan, A.$$b268
000622276 7001_ $$aMkrtchyan, H.$$b269
000622276 7001_ $$aMoffit, B.$$b270
000622276 7001_ $$aMohanmurthy, P.$$b271
000622276 7001_ $$aMokeev, V. I.$$b272
000622276 7001_ $$aMonaghan, P.$$b273
000622276 7001_ $$aMontaña, G.$$b274
000622276 7001_ $$aMontgomery, R.$$b275
000622276 7001_ $$aMoretti, A.$$b276
000622276 7001_ $$aChàvez, J. M. Morgado$$b277
000622276 7001_ $$aMosel, U.$$b278
000622276 7001_ $$aMovsisyan, A.$$b279
000622276 7001_ $$aMusico, P.$$b280
000622276 7001_ $$aNadeeshani, S. A.$$b281
000622276 7001_ $$aNadolsky, P. M.$$b282
000622276 7001_ $$aNakamura, S. X.$$b283
000622276 7001_ $$aNazeer, J.$$b284
000622276 7001_ $$aNefediev, A. V.$$b285
000622276 7001_ $$aNeupane, K.$$b286
000622276 7001_ $$aNguyen, D.$$b287
000622276 7001_ $$aNiccolai, S.$$b288
000622276 7001_ $$aNiculescu, I.$$b289
000622276 7001_ $$aNiculescu, G.$$b290
000622276 7001_ $$aNocera, E. R.$$b291
000622276 7001_ $$aNycz, M.$$b292
000622276 7001_ $$aOlness, F. I.$$b293
000622276 7001_ $$aOrtega, P. G.$$b294
000622276 7001_ $$aOsipenko, M.$$b295
000622276 7001_ $$aPace, E.$$b296
000622276 7001_ $$aPandey, B.$$b297
000622276 7001_ $$aPandey, P.$$b298
000622276 7001_ $$aPapandreou, Z.$$b299
000622276 7001_ $$aPapavassiliou, J.$$b300
000622276 7001_ $$aPappalardo, L. L.$$b301
000622276 7001_ $$aParedes-Torres, G.$$b302
000622276 7001_ $$aParemuzyan, R.$$b303
000622276 7001_ $$aPark, S.$$b304
000622276 7001_ $$aParsamyan, B.$$b305
000622276 7001_ $$aPaschke, K. D.$$b306
000622276 7001_ $$aPasquini, B.$$b307
000622276 7001_ $$aPassemar, E.$$b308
000622276 7001_ $$aPasyuk, E.$$b309
000622276 7001_ $$aPatel, T.$$b310
000622276 7001_ $$aPaudel, C.$$b311
000622276 7001_ $$aPaul, S. J.$$b312
000622276 7001_ $$aPeng, J.-C.$$b313
000622276 7001_ $$aPentchev, L.$$b314
000622276 7001_ $$aPerrino, R.$$b315
000622276 7001_ $$aPerry, R. J.$$b316
000622276 7001_ $$aPeters, K.$$b317
000622276 7001_ $$aPetratos, G. G.$$b318
000622276 7001_ $$aPhelps, W.$$b319
000622276 7001_ $$aPiasetzky, E.$$b320
000622276 7001_ $$aPilloni, A.$$b321
000622276 7001_ $$aPire, B.$$b322
000622276 7001_ $$aPitonyak, D.$$b323
000622276 7001_ $$aPitt, M. L.$$b324
000622276 7001_ $$aPolosa, A. D.$$b325
000622276 7001_ $$aPospelov, M.$$b326
000622276 7001_ $$aPostuma, A. C.$$b327
000622276 7001_ $$aPoudel, J.$$b328
000622276 7001_ $$aPreet, L.$$b329
000622276 7001_ $$aPrelovsek, S.$$b330
000622276 7001_ $$aPrice, J. W.$$b331
000622276 7001_ $$aProkudin, A.$$b332
000622276 7001_ $$aPuckett, A. J. R.$$b333
000622276 7001_ $$aPybus, J. R.$$b334
000622276 7001_ $$aQin, S.-X.$$b335
000622276 7001_ $$aQiu, J.-W.$$b336
000622276 7001_ $$aRadici, M.$$b337
000622276 7001_ $$aRashidi, H.$$b338
000622276 7001_ $$aRathnayake, A. D.$$b339
000622276 7001_ $$aRaue, B. A.$$b340
000622276 7001_ $$aReed, T.$$b341
000622276 7001_ $$aReimer, P. E.$$b342
000622276 7001_ $$aReinhold, J.$$b343
000622276 7001_ $$aRichard, J.-M.$$b344
000622276 7001_ $$aRinaldi, M.$$b345
000622276 7001_ $$aRinger, F.$$b346
000622276 7001_ $$aRipani, M.$$b347
000622276 7001_ $$aRitman, J.$$b348
000622276 7001_ $$aWest, J. Rittenhouse$$b349
000622276 7001_ $$aRivero-Acosta, A.$$b350
000622276 7001_ $$aRoberts, C. D.$$b351
000622276 7001_ $$aRodas, A.$$b352
000622276 7001_ $$0P:(DE-H253)PIP1098620$$aRodini, S.$$b353
000622276 7001_ $$aRodríguez-Quintero, J.$$b354
000622276 7001_ $$aRogers, T. C.$$b355
000622276 7001_ $$0P:(DE-HGF)0$$aRojo, J.$$b356
000622276 7001_ $$0P:(DE-HGF)0$$aRossi, P.$$b357$$eCorresponding author
000622276 7001_ $$aRossi, G. C.$$b358
000622276 7001_ $$aSalmè, G.$$b359
000622276 7001_ $$aSantiesteban, S. N.$$b360
000622276 7001_ $$aSantopinto, E.$$b361
000622276 7001_ $$aSargsian, M.$$b362
000622276 7001_ $$aSato, N.$$b363
000622276 7001_ $$aSchadmand, S.$$b364
000622276 7001_ $$aSchmidt, A.$$b365
000622276 7001_ $$aSchmidt, S. M.$$b366
000622276 7001_ $$aSchnell, G.$$b367
000622276 7001_ $$aSchumacher, R. A.$$b368
000622276 7001_ $$aSchweitzer, P.$$b369
000622276 7001_ $$aScimemi, I.$$b370
000622276 7001_ $$aScott, K. C.$$b371
000622276 7001_ $$aSeay, D. A.$$b372
000622276 7001_ $$aSegovia, J.$$b373
000622276 7001_ $$aSemenov-Tian-Shansky, K.$$b374
000622276 7001_ $$aSeryi, A.$$b375
000622276 7001_ $$aSharda, A. S.$$b376
000622276 7001_ $$aShepherd, M. R.$$b377
000622276 7001_ $$aShirokov, E. V.$$b378
000622276 7001_ $$aShrestha, S.$$b379
000622276 7001_ $$aShrestha, U.$$b380
000622276 7001_ $$aShvedunov, V. I.$$b381
000622276 7001_ $$aSignori, A.$$b382
000622276 7001_ $$aSlifer, K. J.$$b383
000622276 7001_ $$aSmith, W. A.$$b384
000622276 7001_ $$aSomov, A.$$b385
000622276 7001_ $$aSouder, P.$$b386
000622276 7001_ $$aSparveris, N.$$b387
000622276 7001_ $$aSpizzo, F.$$b388
000622276 7001_ $$aSpreafico, M.$$b389
000622276 7001_ $$aStepanyan, S.$$b390
000622276 7001_ $$aStevens, J. R.$$b391
000622276 7001_ $$aStrakovsky, I. I.$$b392
000622276 7001_ $$aStrauch, S.$$b393
000622276 7001_ $$aStrikman, M.$$b394
000622276 7001_ $$aSu, S.$$b395
000622276 7001_ $$aSumner, B. C. L.$$b396
000622276 7001_ $$aSun, E.$$b397
000622276 7001_ $$aSuresh, M.$$b398
000622276 7001_ $$aSutera, C.$$b399
000622276 7001_ $$aSwanson, E. S.$$b400
000622276 7001_ $$aSzczepaniak, A. P.$$b401
000622276 7001_ $$aSznajder, P.$$b402
000622276 7001_ $$aSzumila-Vance, H.$$b403
000622276 7001_ $$aSzymanowski, L.$$b404
000622276 7001_ $$aTadepalli, A.-S.$$b405
000622276 7001_ $$aTadevosyan, V.$$b406
000622276 7001_ $$aTamang, B.$$b407
000622276 7001_ $$aTarasov, V. V.$$b408
000622276 7001_ $$aThiel, A.$$b409
000622276 7001_ $$aTong, X.-B.$$b410
000622276 7001_ $$aTyson, R.$$b411
000622276 7001_ $$aUngaro, M.$$b412
000622276 7001_ $$aUrciuoli, G. M.$$b413
000622276 7001_ $$aUsman, A.$$b414
000622276 7001_ $$aValcarce, A.$$b415
000622276 7001_ $$aVallarino, S.$$b416
000622276 7001_ $$aVaquera-Araujo, C. A.$$b417
000622276 7001_ $$aVenturelli, L.$$b418
000622276 7001_ $$aVera, F.$$b419
000622276 7001_ $$aVladimirov, A.$$b420
000622276 7001_ $$aVossen, A.$$b421
000622276 7001_ $$aWagner, J.$$b422
000622276 7001_ $$aWei, X.$$b423
000622276 7001_ $$aWeinstein, L. B.$$b424
000622276 7001_ $$aWeiss, C.$$b425
000622276 7001_ $$aWilliams, R.$$b426
000622276 7001_ $$aWinney, D.$$b427
000622276 7001_ $$aWojtsekhowski, B.$$b428
000622276 7001_ $$aWood, M. H.$$b429
000622276 7001_ $$aXiao, T.$$b430
000622276 7001_ $$aXu, S.-S.$$b431
000622276 7001_ $$aYe, Z.$$b432
000622276 7001_ $$aYero, C.$$b433
000622276 7001_ $$0P:(DE-H253)PIP1103338$$aYuan, C.-P.$$b434
000622276 7001_ $$aYurov, M.$$b435
000622276 7001_ $$aZachariou, N.$$b436
000622276 7001_ $$aZhang, Z.$$b437
000622276 7001_ $$aZhao, Y.$$b438
000622276 7001_ $$aZhao, Z. W.$$b439
000622276 7001_ $$aZheng, X.$$b440
000622276 7001_ $$aZhou, X.$$b441
000622276 7001_ $$aZiegler, V.$$b442
000622276 7001_ $$aZihlmann, B.$$b443
000622276 77318 $$2Crossref$$3journal-article$$a10.1140/epja/s10050-024-01282-x$$bSpringer Science and Business Media LLC$$d2024-09-04$$n9$$p173$$tThe European Physical Journal A$$v60$$x1434-601X$$y2024
000622276 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/s10050-024-01282-x$$gVol. 60, no. 9, p. 173$$n9$$p173$$tThe European physical journal / A$$v60$$x1434-601X$$y2024
000622276 7870_ $$0PUBDB-2025-05139$$aAccardi, A. et.al.$$d2024$$iIsParent$$rarXiv:2306.09360 ; JLAB-PHY-23-3840$$tStrong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab
000622276 8564_ $$uhttps://bib-pubdb1.desy.de/record/622276/files/s10050-024-01282-x.pdf$$yRestricted
000622276 8564_ $$uhttps://bib-pubdb1.desy.de/record/622276/files/s10050-024-01282-x.pdf?subformat=pdfa$$xpdfa$$yRestricted
000622276 909CO $$ooai:bib-pubdb1.desy.de:622276$$pVDB
000622276 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1097931$$aDeutsches Elektronen-Synchrotron$$b164$$kDESY
000622276 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1098620$$aDeutsches Elektronen-Synchrotron$$b353$$kDESY
000622276 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1103338$$aDeutsches Elektronen-Synchrotron$$b434$$kDESY
000622276 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000622276 9141_ $$y2024
000622276 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-21$$wger
000622276 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-21$$wger
000622276 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-21
000622276 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-21
000622276 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000622276 980__ $$ajournal
000622276 980__ $$aVDB
000622276 980__ $$aUNRESTRICTED
000622276 980__ $$aI:(DE-H253)T-20120731
000622276 999C5 $$1J Arrington$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2022.103985$$tProg. Part. Nucl. Phys.$$uJ. Arrington et al., Physics with CEBAF at 12 GeV and future opportunities. Prog. Part. Nucl. Phys. 127, 103985 (2022). https://doi.org/10.1016/j.ppnp.2022.103985. arXiv:2112.00060$$v127$$y2022
000622276 999C5 $$2Crossref$$uJ. Bulava, et al., Hadron Spectroscopy with Lattice QCD, in: Snowmass 2021, (2022). arXiv:2203.03230
000622276 999C5 $$1CA Meyer$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2015.03.001$$p21 -$$tProg. Part. Nucl. Phys.$$uC.A. Meyer, E.S. Swanson, Hybrid Mesons. Prog. Part. Nucl. Phys. 82, 21–58 (2015). https://doi.org/10.1016/j.ppnp.2015.03.001. arXiv:1502.07276$$v82$$y2015
000622276 999C5 $$1A Rodas$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.042002$$tPhys. Rev. Lett.$$uA. Rodas et al., Determination of the pole position of the lightest hybrid meson candidate. Phys. Rev. Lett. 122(4), 042002 (2019). https://doi.org/10.1103/PhysRevLett.122.042002. arXiv:1810.04171$$v122$$y2019
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.129.192002$$uM. Ablikim, et al., Observation of an Isoscalar Resonance with Exotic JPC=1-+ Quantum Numbers in $$\text{J}/\psi \rightarrow \gamma \eta \eta $$’, Phys. Rev. Lett. 129 (19) (2022) 192002, [Erratum: Phys.Rev.Lett. 130, 159901 (2023)]. arXiv:2202.00621, https://doi.org/10.1103/PhysRevLett.129.192002
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.90.015003$$uS.L. Olsen, T. Skwarnicki, D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence. Rev. Mod. Phys. 90(1), 015003 (2018). https://doi.org/10.1103/RevModPhys.90.015003. arXiv:1708.04012
000622276 999C5 $$1RF Lebed$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2016.11.003$$p143 -$$tProg. Part. Nucl. Phys.$$uR.F. Lebed, R.E. Mitchell, E.S. Swanson, Heavy-Quark QCD Exotica. Prog. Part. Nucl. Phys. 93, 143–194 (2017). https://doi.org/10.1016/j.ppnp.2016.11.003. arXiv:1610.04528$$v93$$y2017
000622276 999C5 $$1RA Briceno$$2Crossref$$9-- missing cx lookup --$$a10.1088/1674-1137/40/4/042001$$tChin. Phys. C$$uR.A. Briceno et al., Issues and Opportunities in Exotic Hadrons. Chin. Phys. C 40(4), 042001 (2016). https://doi.org/10.1088/1674-1137/40/4/042001. arXiv:1511.06779$$v40$$y2016
000622276 999C5 $$1M Ablikim$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.252001$$tPhys. Rev. Lett.$$uM. Ablikim et al., Observation of a Charged Charmoniumlike Structure in $$e^+e^- \rightarrow \pi ^+\pi ^- J/\psi $$ at $$\sqrt{s}$$ =4.26 GeV. Phys. Rev. Lett. 110, 252001 (2013). https://doi.org/10.1103/PhysRevLett.110.252001. arXiv:1303.5949$$v110$$y2013
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.252002$$uZ. Q. Liu, et al., Study of $$e^+e^- \rightarrow \pi ^+ \pi ^- J/\psi $$ and Observation of a Charged Charmoniumlike State at Belle, Phys. Rev. Lett. 110 (2013) 252002, [Erratum: Phys.Rev.Lett. 111, 019901 (2013)]. arXiv:1304.0121, https://doi.org/10.1103/PhysRevLett.110.252002
000622276 999C5 $$1A Bondar$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.122001$$tPhys. Rev. Lett.$$uA. Bondar et al., Observation of two charged bottomonium-like resonances in Y(5S) decays. Phys. Rev. Lett. 108, 122001 (2012). https://doi.org/10.1103/PhysRevLett.108.122001. arXiv:1110.2251$$v108$$y2012
000622276 999C5 $$1M Ablikim$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.242001$$tPhys. Rev. Lett.$$uM. Ablikim et al., Observation of a Charged Charmoniumlike Structure $$Z_c$$(4020) and Search for the $$Z_c$$(3900) in $$e^+e^- \rightarrow \pi ^+\pi ^- h_c$$. Phys. Rev. Lett. 111(24), 242001 (2013). https://doi.org/10.1103/PhysRevLett.111.242001. arXiv:1309.1896$$v111$$y2013
000622276 999C5 $$1VD Burkert$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2020.163419$$tNucl. Instrum. Meth. A$$uV.D. Burkert et al., The CLAS12 Spectrometer at Jefferson Laboratory. Nucl. Instrum. Meth. A 959, 163419 (2020). https://doi.org/10.1016/j.nima.2020.163419$$v959$$y2020
000622276 999C5 $$1S Adhikari$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2020.164807$$tNucl. Instrum. Meth. A$$uS. Adhikari et al., The GLUEX beamline and detector. Nucl. Instrum. Meth. A 987, 164807 (2021). https://doi.org/10.1016/j.nima.2020.164807. arXiv:2005.14272$$v987$$y2021
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.L091102$$uR. Aaij et al., Observation of excited $$\Omega _c^0$$ baryons in $$\Omega _b^- \rightarrow \Xi _c^+ K^-\pi ^-$$decays. Phys. Rev. D 104(9), L091102 (2021). https://doi.org/10.1103/PhysRevD.104.L091102. arXiv:2107.03419
000622276 999C5 $$1R Aaij$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.222002$$tPhys. Rev. Lett.$$uR. Aaij et al., Observation of the resonant character of the $$Z(4430)^-$$ state. Phys. Rev. Lett. 112(22), 222002 (2014). https://doi.org/10.1103/PhysRevLett.112.222002. arXiv:1404.1903$$v112$$y2014
000622276 999C5 $$1K Chilikin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.90.112009$$tPhys. Rev. D$$uK. Chilikin et al., Observation of a new charged charmoniumlike state in $${\bar{B}}^0 \rightarrow J/\psi K^- \pi ^+$$ decays. Phys. Rev. D 90(11), 112009 (2014). https://doi.org/10.1103/PhysRevD.90.112009. arXiv:1408.6457$$v90$$y2014
000622276 999C5 $$1H-X Chen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2016.05.004$$p1 -$$tPhys. Rept.$$uH.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, The hidden-charm pentaquark and tetraquark states. Phys. Rept. 639, 1–121 (2016). https://doi.org/10.1016/j.physrep.2016.05.004. arXiv:1601.02092$$v639$$y2016
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2020.05.001$$uN. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C.E. Thomas, A. Vairo, C.-Z. Yuan, The $$XYZ$$ states: experimental and theoretical status and perspectives. Phys. Rept. 873, 1–154 (2020). https://doi.org/10.1016/j.physrep.2020.05.001. arXiv:1907.07583
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.90.015004$$uF.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Hadronic molecules, Rev. Mod. Phys. 90 (1) (2018) 015004, [Erratum: Rev.Mod.Phys. 94, 029901 (2022)]. https://doi.org/10.1103/RevModPhys.90.015004. arXiv:1705.00141
000622276 999C5 $$2Crossref$$uS. Adhikari, et al., Measurement of the J/$$\psi $$ photoproduction cross section over the full near-threshold kinematic region (4 2023). arXiv:2304.03845
000622276 999C5 $$1AN Hiller Blin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.034002$$tPhys. Rev. D$$uA.N. Hiller Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V.I. Mokeev, A. Pilloni, A.P. Szczepaniak, Studying the $$\text{ P}_c$$(4450) resonance in J/$$\psi $$ photoproduction off protons. Phys. Rev. D 94(3), 034002 (2016). https://doi.org/10.1103/PhysRevD.94.034002. arXiv:1606.08912$$v94$$y2016
000622276 999C5 $$1D Winney$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.094009$$tPhys. Rev. D$$uD. Winney, A. Pilloni, V. Mathieu, A.N. Hiller Blin, M. Albaladejo, W.A. Smith, A. Szczepaniak, XYZ spectroscopy at electron-hadron facilities. II. Semi-inclusive processes with pion exchange. Phys. Rev. D 106(9), 094009 (2022). https://doi.org/10.1103/PhysRevD.106.094009. arXiv:2209.05882$$v106$$y2022
000622276 999C5 $$1RL Workman$$2Crossref$$uR.L. Workman et al., Review of Particle Physics. PTEP 2022, 083C01 (2022)$$y2022
000622276 999C5 $$1F-K Guo$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2016-16318-4$$p318 -$$tEur. Phys. J. A$$uF.-K. Guo, U.G. Meißner, J. Nieves, Z. Yang, Remarks on the $$P_c$$ structures and triangle singularities. Eur. Phys. J. A 52(10), 318 (2016). https://doi.org/10.1140/epja/i2016-16318-4. arXiv:1605.05113$$v52$$y2016
000622276 999C5 $$1M Bayar$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.074039$$tPhys. Rev. D$$uM. Bayar, F. Aceti, F.-K. Guo, E. Oset, A Discussion on Triangle Singularities in the $$\Lambda _b \rightarrow J/\psi K^{-} p$$ Reaction. Phys. Rev. D 94(7), 074039 (2016). https://doi.org/10.1103/PhysRevD.94.074039. arXiv:1609.04133$$v94$$y2016
000622276 999C5 $$1SX Nakamura$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.L111503$$tPhys. Rev. D$$uS.X. Nakamura, $$P_c(4312)^+$$, $$P_c(4380)^+$$, and $$P_c(4457)^+$$ as double triangle cusps. Phys. Rev. D 103, 111503 (2021). https://doi.org/10.1103/PhysRevD.103.L111503. arXiv:2103.06817$$v103$$y2021
000622276 999C5 $$1F-K Guo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2020.103757$$tProg. Part. Nucl. Phys.$$uF.-K. Guo, X.-H. Liu, S. Sakai, Threshold cusps and triangle singularities in hadronic reactions. Prog. Part. Nucl. Phys. 112, 103757 (2020). https://doi.org/10.1016/j.ppnp.2020.103757. arXiv:1912.07030$$v112$$y2020
000622276 999C5 $$1A Pilloni$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2017.06.030$$p200 -$$tPhys. Lett. B$$uA. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, A.P. Szczepaniak, Amplitude analysis and the nature of the $$\text{ Z}_c$$(3900). Phys. Lett. B 772, 200–209 (2017). https://doi.org/10.1016/j.physletb.2017.06.030. arXiv:1612.06490$$v772$$y2017
000622276 999C5 $$1SK Choi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.91.262001$$tPhys. Rev. Lett.$$uS.K. Choi et al., Observation of a narrow charmonium-like state in exclusive $$B^\pm \rightarrow K^\pm \pi ^+ \pi ^- J/\psi $$ decays. Phys. Rev. Lett. 91, 262001 (2003). https://doi.org/10.1103/PhysRevLett.91.262001. arXiv:hep-ex/0309032$$v91$$y2003
000622276 999C5 $$1R Aaij$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.222001$$tPhys. Rev. Lett.$$uR. Aaij et al., Determination of the X(3872) meson quantum numbers. Phys. Rev. Lett. 110, 222001 (2013). https://doi.org/10.1103/PhysRevLett.110.222001. arXiv:1302.6269$$v110$$y2013
000622276 999C5 $$1M Aghasyan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2018.07.008$$p334 -$$tPhys. Lett. B$$uM. Aghasyan et al., Search for muoproduction of $$X (3872)$$ at COMPASS and indication of a new state $${\widetilde{X}}(3872)$$. Phys. Lett. B 783, 334–340 (2018). https://doi.org/10.1016/j.physletb.2018.07.008. arXiv:1707.01796$$v783$$y2018
000622276 999C5 $$1RL Workman$$2Crossref$$9-- missing cx lookup --$$a10.1093/ptep/ptac097$$p083C01 -$$tPTEP$$uR.L. Workman et al., Review of Particle Physics. PTEP 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097$$v2022$$y2022
000622276 999C5 $$1R Aaij$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.072001$$tPhys. Rev. Lett.$$uR. Aaij et al., Observation of $$J/\psi p$$ Resonances Consistent with Pentaquark States in $$\Lambda _b^0 \rightarrow J/\psi K^- p$$ Decays. Phys. Rev. Lett. 115, 072001 (2015). https://doi.org/10.1103/PhysRevLett.115.072001. arXiv:1507.03414$$v115$$y2015
000622276 999C5 $$1R Aaij$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.222001$$tPhys. Rev. Lett.$$uR. Aaij et al., Observation of a narrow pentaquark state, $$P_c(4312)^+$$, and of two-peak structure of the $$P_c(4450)^+$$. Phys. Rev. Lett. 122(22), 222001 (2019). https://doi.org/10.1103/PhysRevLett.122.222001. arXiv:1904.03947$$v122$$y2019
000622276 999C5 $$2Crossref$$uD. Winney, et al., Dynamics in near-threshold $$J/\psi $$ photoproduction (5 2023). arXiv:2305.01449
000622276 999C5 $$1GKC Cheung$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2017)033$$p033 -$$tJHEP$$uG.K.C. Cheung, C.E. Thomas, J.J. Dudek, R.G. Edwards, Tetraquark operators in lattice QCD and exotic flavour states in the charm sector. JHEP 11, 033 (2017). https://doi.org/10.1007/JHEP11(2017)033. arXiv:1709.01417$$v11$$y2017
000622276 999C5 $$2Crossref$$uY. Lyu, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, J. Meng, Doubly charmed tetraquark $$T^+_{cc}$$ from Lattice QCD near Physical Point (2 2023). arXiv:2302.04505
000622276 999C5 $$1M Padmanath$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.129.032002$$tPhys. Rev. Lett.$$uM. Padmanath, S. Prelovsek, Signature of a Doubly Charm Tetraquark Pole in DD* Scattering on the Lattice. Phys. Rev. Lett. 129(3), 032002 (2022). https://doi.org/10.1103/PhysRevLett.129.032002. arXiv:2202.10110$$v129$$y2022
000622276 999C5 $$1A Francis$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.054505$$tPhys. Rev. D$$uA. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Evidence for charm-bottom tetraquarks and the mass dependence of heavy-light tetraquark states from lattice QCD. Phys. Rev. D 99(5), 054505 (2019). https://doi.org/10.1103/PhysRevD.99.054505. arXiv:1810.10550$$v99$$y2019
000622276 999C5 $$1J Pumplin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.65.014013$$tPhys. Rev. D$$uJ. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk, H.L. Lai, W.K. Tung, Uncertainties of predictions from parton distribution functions. 2. The Hessian method. Phys. Rev. D 65, 014013 (2001). https://doi.org/10.1103/PhysRevD.65.014013. arXiv:hep-ph/0101032$$v65$$y2001
000622276 999C5 $$1PM Nadolsky$$2Crossref$$uP.M. Nadolsky, Z. Sullivan, PDF Uncertainties in WH Production at Tevatron. eConf C010630, P510 (2001). arXiv:hep-ph/0110378$$y2001
000622276 999C5 $$1PM Nadolsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.78.013004$$tPhys. Rev. D$$uP.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, C.P. Yuan, Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). https://doi.org/10.1103/PhysRevD.78.013004. arXiv:0802.0007$$v78$$y2008
000622276 999C5 $$1W-C Chang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.252002$$tPhys. Rev. Lett.$$uW.-C. Chang, J.-C. Peng, Flavor Asymmetry of the Nucleon Sea and the Five-Quark Components of the Nucleons. Phys. Rev. Lett. 106, 252002 (2011). https://doi.org/10.1103/PhysRevLett.106.252002. arXiv:1102.5631$$v106$$y2011
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(80)90364-0$$p451 -$$tPhys. Lett. B$$uS.J. Brodsky, P. Hoyer, C. Peterson, N. Sakai, The Intrinsic Charm of the Proton. Phys. Lett. B 93, 451–455 (1980). https://doi.org/10.1016/0370-2693(80)90364-0$$v93$$y1980
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-021-03282-z 10.1038/s41586-022-04707-z$$uJ. Dove, et al., Publisher Correction: The asymmetry of antimatter in the proton [https://doi.org/10.1038/s41586-021-03282-z], Nature 590 (7847) (2021) 561–565. arXiv:2103.04024, https://doi.org/10.1038/s41586-022-04707-z
000622276 999C5 $$1RS Towell$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.64.052002$$tPhys. Rev. D$$uR.S. Towell et al., Improved measurement of the dbar/ubar asymmetry in the nucleon sea. Phys. Rev. D 64, 052002 (2001). https://doi.org/10.1103/PhysRevD.64.052002$$v64$$y2001
000622276 999C5 $$1K Ackerstaff$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.5519$$p5519 -$$tPhys. Rev. Lett.$$uK. Ackerstaff et al., The Flavor asymmetry of the light quark sea from semiinclusive deep inelastic scattering. Phys. Rev. Lett. 81, 5519–5523 (1998). https://doi.org/10.1103/PhysRevLett.81.5519. arXiv:hep-ex/9807013$$v81$$y1998
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.247.0005$$uA. M. Cooper-Sarkar, HERA Collider Results, PoS DIS2015 (2015) 005https://doi.org/10.22323/1.247.0005. arXiv:1507.03849
000622276 999C5 $$1AO Bazarko$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01571875$$p189 -$$tZ. Phys. C$$uA.O. Bazarko et al., Determination of the strange quark content of the nucleon from a next-to-leading order QCD analysis of neutrino charm production. Z. Phys. C 65, 189–198 (1995). https://doi.org/10.1007/BF01571875. arXiv:hep-ex/9406007$$v65$$y1995
000622276 999C5 $$1D Mason$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.192001$$tPhys. Rev. Lett.$$uD. Mason et al., Measurement of the Nucleon Strange-Antistrange Asymmetry at Next-to-Leading Order in QCD from NuTeV Dimuon Data. Phys. Rev. Lett. 99, 192001 (2007). https://doi.org/10.1103/PhysRevLett.99.192001$$v99$$y2007
000622276 999C5 $$1A Kayis-Topaksu$$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/13/9/093002$$tNew J. Phys.$$uA. Kayis-Topaksu et al., Measurement of charm production in neutrino charged-current interactions. New J. Phys. 13, 093002 (2011). https://doi.org/10.1088/1367-2630/13/9/093002. arXiv:1107.0613$$v13$$y2011
000622276 999C5 $$1O Samoylov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2013.08.021$$p339 -$$tNucl. Phys. B$$uO. Samoylov et al., A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment. Nucl. Phys. B 876, 339–375 (2013). https://doi.org/10.1016/j.nuclphysb.2013.08.021. arXiv:1308.4750$$v876$$y2013
000622276 999C5 $$1N Kalantarians$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.96.032201$$tPhys. Rev. C$$uN. Kalantarians, C. Keppel, M.E. Christy, Comparison of the Structure Function F2 as Measured by Charged Lepton and Neutrino Scattering from Iron Targets. Phys. Rev. C 96(3), 032201 (2017). https://doi.org/10.1103/PhysRevC.96.032201. arXiv:1706.02002$$v96$$y2017
000622276 999C5 $$1A Accardi$$2Crossref$$9-- missing cx lookup --$$a10.1393/ncr/i2009-10048-0$$p439 -$$tRiv. Nuovo Cim.$$uA. Accardi, F. Arleo, W.K. Brooks, D. D’Enterria, V. Muccifora, Parton Propagation and Fragmentation in QCD Matter. Riv. Nuovo Cim. 32(9–10), 439–554 (2009). https://doi.org/10.1393/ncr/i2009-10048-0. arXiv:0907.3534$$v32$$y2009
000622276 999C5 $$1A Majumder$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2010.09.001$$p41 -$$tProg. Part. Nucl. Phys.$$uA. Majumder, M. Van Leeuwen, The Theory and Phenomenology of Perturbative QCD Based Jet Quenching. Prog. Part. Nucl. Phys. 66, 41–92 (2011). https://doi.org/10.1016/j.ppnp.2010.09.001. arXiv:1002.2206$$v66$$y2011
000622276 999C5 $$1G Aad$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.012001$$tPhys. Rev. Lett.$$uG. Aad et al., Determination of the strange quark density of the proton from ATLAS measurements of the $$W \rightarrow \ell \nu $$ and $$Z \rightarrow \ell \ell $$ cross sections. Phys. Rev. Lett. 109, 012001 (2012). https://doi.org/10.1103/PhysRevLett.109.012001. arXiv:1203.4051$$v109$$y2012
000622276 999C5 $$1M Aaboud$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-017-4911-9$$p367 -$$tEur. Phys. J. C$$uM. Aaboud et al., Precision measurement and interpretation of inclusive $$W^+$$, $$W^-$$ and $$Z/\gamma ^*$$ production cross sections with the ATLAS detector. Eur. Phys. J. C 77(6), 367 (2017). https://doi.org/10.1140/epjc/s10052-017-4911-9. arXiv:1612.03016$$v77$$y2017
000622276 999C5 $$1EA Hawker$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.3715$$p3715 -$$tPhys. Rev. Lett.$$uE.A. Hawker et al., Measurement of the light anti-quark flavor asymmetry in the nucleon sea. Phys. Rev. Lett. 80, 3715–3718 (1998). https://doi.org/10.1103/PhysRevLett.80.3715. arXiv:hep-ex/9803011$$v80$$y1998
000622276 999C5 $$1RS Towell$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.64.052002$$tPhys. Rev. D$$uR.S. Towell et al., Improved measurement of the anti-d / anti-u asymmetry in the nucleon sea. Phys. Rev. D 64, 052002 (2001). https://doi.org/10.1103/PhysRevD.64.052002. arXiv:hep-ex/0103030$$v64$$y2001
000622276 999C5 $$1S Alekhin$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2009.04.033$$p433 -$$tPhys. Lett. B$$uS. Alekhin, S.A. Kulagin, R. Petti, Determination of Strange Sea Distributions from Neutrino-Nucleon Deep Inelastic Scattering. Phys. Lett. B 675, 433–440 (2009). https://doi.org/10.1016/j.physletb.2009.04.033. arXiv:0812.4448$$v675$$y2009
000622276 999C5 $$1S Alekhin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.094002$$tPhys. Rev. D$$uS. Alekhin, J. Blumlein, L. Caminada, K. Lipka, K. Lohwasser, S. Moch, R. Petti, R. Placakyte, Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data. Phys. Rev. D 91(9), 094002 (2015). https://doi.org/10.1103/PhysRevD.91.094002. arXiv:1404.6469$$v91$$y2015
000622276 999C5 $$1S Alekhin$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2017.12.024$$p134 -$$tPhys. Lett. B$$uS. Alekhin, J. Blümlein, S. Moch, Strange sea determination from collider data. Phys. Lett. B 777, 134–140 (2018). https://doi.org/10.1016/j.physletb.2017.12.024. arXiv:1708.01067$$v777$$y2018
000622276 999C5 $$1S Alekhin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.96.014011$$tPhys. Rev. D$$uS. Alekhin, J. Blümlein, S. Moch, R. Placakyte, Parton distribution functions, $$\alpha _s$$, and heavy-quark masses for LHC Run II. Phys. Rev. D 96(1), 014011 (2017). https://doi.org/10.1103/PhysRevD.96.014011. arXiv:1701.05838$$v96$$y2017
000622276 999C5 $$1AM Cooper-Sarkar$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.014027$$tPhys. Rev. D$$uA.M. Cooper-Sarkar, K. Wichmann, QCD analysis of the ATLAS and CMS $$W^{\pm }$$ and $$Z$$ cross-section measurements and implications for the strange sea density. Phys. Rev. D 98(1), 014027 (2018). https://doi.org/10.1103/PhysRevD.98.014027. arXiv:1803.00968$$v98$$y2018
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2008.07.090$$p446 -$$tPhys. Lett. B$$uA. Airapetian et al., Measurement of Parton Distributions of Strange Quarks in the Nucleon from Charged-Kaon Production in Deep-Inelastic Scattering on the Deuteron. Phys. Lett. B 666, 446–450 (2008). https://doi.org/10.1016/j.physletb.2008.07.090. arXiv:0803.2993$$v666$$y2008
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.89.097101$$tPhys. Rev. D$$uA. Airapetian et al., Reevaluation of the parton distribution of strange quarks in the nucleon. Phys. Rev. D 89(9), 097101 (2014). https://doi.org/10.1103/PhysRevD.89.097101. arXiv:1312.7028$$v89$$y2014
000622276 999C5 $$1E Leader$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.82.114018$$tPhys. Rev. D$$uE. Leader, A.V. Sidorov, D.B. Stamenov, Determination of Polarized PDFs from a QCD Analysis of Inclusive and Semi-inclusive Deep Inelastic Scattering Data. Phys. Rev. D 82, 114018 (2010). https://doi.org/10.1103/PhysRevD.82.114018. arXiv:1010.0574$$v82$$y2010
000622276 999C5 $$1E Leader$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.014002$$tPhys. Rev. D$$uE. Leader, A.V. Sidorov, D.B. Stamenov, A Possible Resolution of the Strange Quark Polarization Puzzle? Phys. Rev. D 84, 014002 (2011). https://doi.org/10.1103/PhysRevD.84.014002. arXiv:1103.5979$$v84$$y2011
000622276 999C5 $$1N Sato$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.114004$$tPhys. Rev. D$$uN. Sato, J.J. Ethier, W. Melnitchouk, M. Hirai, S. Kumano, A. Accardi, First Monte Carlo analysis of fragmentation functions from single-inclusive $$e^+ e^-$$ annihilation. Phys. Rev. D 94(11), 114004 (2016). https://doi.org/10.1103/PhysRevD.94.114004. arXiv:1609.00899$$v94$$y2016
000622276 999C5 $$1EC Aschenauer$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.098102$$tPhys. Rev. D$$uE.C. Aschenauer, H.E. Jackson, S. Joosten, K. Rith, G. Schnell, C. Van Hulse, Reply to Comment on Reevaluation of the parton distribution of strange quarks in the nucleon. Phys. Rev. D 92(9), 098102 (2015). https://doi.org/10.1103/PhysRevD.92.098102. arXiv:1508.04020$$v92$$y2015
000622276 999C5 $$1I Borsa$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.96.094020$$tPhys. Rev. D$$uI. Borsa, R. Sassot, M. Stratmann, Probing the Sea Quark Content of the Proton with One-Particle-Inclusive Processes. Phys. Rev. D 96(9), 094020 (2017). https://doi.org/10.1103/PhysRevD.96.094020$$v96$$y2017
000622276 999C5 $$1N Sato$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.074020$$tPhys. Rev. D$$uN. Sato, C. Andres, J.J. Ethier, W. Melnitchouk, Strange quark suppression from a simultaneous Monte Carlo analysis of parton distributions and fragmentation functions. Phys. Rev. D 101(7), 074020 (2020). https://doi.org/10.1103/PhysRevD.101.074020. arXiv:1905.03788$$v101$$y2020
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.074008$$uL. T. Brady, A. Accardi, T. J. Hobbs, W. Melnitchouk, Next-to leading order analysis of target mass corrections to structure functions and asymmetries, Phys. Rev. D 84 (2011) 074008, [Erratum: Phys.Rev.D 85, 039902 (2012)]. arXiv:1108.4734, https://doi.org/10.1103/PhysRevD.84.074008
000622276 999C5 $$1T Hobbs$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.77.114023$$tPhys. Rev. D$$uT. Hobbs, W. Melnitchouk, Finite-Q**2 corrections to parity-violating DIS. Phys. Rev. D 77, 114023 (2008). https://doi.org/10.1103/PhysRevD.77.114023. arXiv:0801.4791$$v77$$y2008
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.076018$$uT.-J. Hou, H.-W. Lin, M. Yan, C. P. Yuan, Impact of Lattice Strangeness Asymmetry Data in the CTEQ-TEA Global Analysis (11 2022). arXiv:2211.11064
000622276 999C5 $$1T Liu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.094033$$tPhys. Rev. D$$uT. Liu, W. Melnitchouk, J.-W. Qiu, N. Sato, Factorized approach to radiative corrections for inelastic lepton-hadron collisions. Phys. Rev. D 104(9), 094033 (2021). https://doi.org/10.1103/PhysRevD.104.094033. arXiv:2008.02895$$v104$$y2021
000622276 999C5 $$1C Cocuzza$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.L031502$$pL031502 -$$tPhys. Rev. D$$uC. Cocuzza, W. Melnitchouk, A. Metz, N. Sato, Polarized antimatter in the proton from a global QCD analysis. Phys. Rev. D 106(3), L031502 (2022). https://doi.org/10.1103/PhysRevD.106.L031502. arXiv:2202.03372$$v106$$y2022
000622276 999C5 $$1RD Ball$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-016-4469-y$$p647 -$$tEur. Phys. J. C$$uR.D. Ball, V. Bertone, M. Bonvini, S. Carrazza, S. Forte, A. Guffanti, N.P. Hartland, J. Rojo, L. Rottoli, A Determination of the Charm Content of the Proton. Eur. Phys. J. C 76(11), 647 (2016). https://doi.org/10.1140/epjc/s10052-016-4469-y. arXiv:1605.06515$$v76$$y2016
000622276 999C5 $$1RD Ball$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-022-04998-2$$p483 -$$tNature$$uR.D. Ball, A. Candido, J. Cruz-Martinez, S. Forte, T. Giani, F. Hekhorn, K. Kudashkin, G. Magni, J. Rojo, Evidence for intrinsic charm quarks in the proton. Nature 608(7923), 483–487 (2022). https://doi.org/10.1038/s41586-022-04998-2. arXiv:2208.08372$$v608$$y2022
000622276 999C5 $$1RD Ball$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10328-7$$p428 -$$tEur. Phys. J. C$$uR.D. Ball et al., The path to proton structure at 1% accuracy. Eur. Phys. J. C 82(5), 428 (2022). https://doi.org/10.1140/epjc/s10052-022-10328-7. arXiv:2109.02653$$v82$$y2022
000622276 999C5 $$1TJ Hobbs$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.89.074008$$tPhys. Rev. D$$uT.J. Hobbs, J.T. Londergan, W. Melnitchouk, Phenomenology of nonperturbative charm in the nucleon. Phys. Rev. D 89(7), 074008 (2014). https://doi.org/10.1103/PhysRevD.89.074008. arXiv:1311.1578$$v89$$y2014
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2023.137975$$uM. Guzzi, T. J. Hobbs, K. Xie, J. Huston, P. Nadolsky, C. P. Yuan, The persistent nonperturbative charm enigma (11 2022). arXiv:2211.01387
000622276 999C5 $$1M Kelsey$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.054002$$tPhys. Rev. D$$uM. Kelsey, R. Cruz-Torres, X. Dong, Y. Ji, S. Radhakrishnan, E. Sichtermann, Constraints on gluon distribution functions in the nucleon and nucleus from open charm hadron production at the Electron-Ion Collider. Phys. Rev. D 104(5), 054002 (2021). https://doi.org/10.1103/PhysRevD.104.054002. arXiv:2107.05632$$v104$$y2021
000622276 999C5 $$1R Abdul Khalek$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2022.122447$$tNucl. Phys. A$$uR. Abdul Khalek et al., Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report. Nucl. Phys. A 1026, 122447 (2022). https://doi.org/10.1016/j.nuclphysa.2022.122447. arXiv:2103.05419$$v1026$$y2022
000622276 999C5 $$1J Gao$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.L011503$$pL011503 -$$tPhys. Rev. D$$uJ. Gao, T.J. Hobbs, P.M. Nadolsky, C. Sun, C.P. Yuan, General heavy-flavor mass scheme for charged-current DIS at NNLO and beyond. Phys. Rev. D 105(1), L011503 (2022). https://doi.org/10.1103/PhysRevD.105.L011503. arXiv:2107.00460$$v105$$y2022
000622276 999C5 $$1R Gauld$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2015)009$$p009 -$$tJHEP$$uR. Gauld, J. Rojo, L. Rottoli, J. Talbert, Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy. JHEP 11, 009 (2015). https://doi.org/10.1007/JHEP11(2015)009. arXiv:1506.08025$$v11$$y2015
000622276 999C5 $$1J Gao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2018.03.002$$p1 -$$tPhys. Rept.$$uJ. Gao, L. Harland-Lang, J. Rojo, The Structure of the Proton in the LHC Precision Era. Phys. Rept. 742, 1–121 (2018). https://doi.org/10.1016/j.physrep.2018.03.002. arXiv:1709.04922$$v742$$y2018
000622276 999C5 $$1RD Ball$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6471/ac7216$$tJ. Phys. G$$uR.D. Ball et al., The PDF4LHC21 combination of global PDF fits for the LHC Run III. J. Phys. G 49(8), 080501 (2022). https://doi.org/10.1088/1361-6471/ac7216. arXiv:2203.05506$$v49$$y2022
000622276 999C5 $$1T-J Hou$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.014013$$tPhys. Rev. D$$uT.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Phys. Rev. D 103(1), 014013 (2021). https://doi.org/10.1103/PhysRevD.103.014013. arXiv:1912.10053$$v103$$y2021
000622276 999C5 $$1S Bailey$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-021-09057-0$$p341 -$$tEur. Phys. J. C$$uS. Bailey, T. Cridge, L.A. Harland-Lang, A.D. Martin, R.S. Thorne, Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs. Eur. Phys. J. C 81(4), 341 (2021). https://doi.org/10.1140/epjc/s10052-021-09057-0. arXiv:2012.04684$$v81$$y2021
000622276 999C5 $$1JC Collins$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.16.2219$$p2219 -$$tPhys. Rev. D$$uJ.C. Collins, D.E. Soper, Angular Distribution of Dileptons in High-Energy Hadron Collisions. Phys. Rev. D 16, 2219 (1977). https://doi.org/10.1103/PhysRevD.16.2219$$v16$$y1977
000622276 999C5 $$1RD Ball$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-11133-y$$p1160 -$$tEur. Phys. J. C$$uR.D. Ball, A. Candido, S. Forte, F. Hekhorn, E.R. Nocera, J. Rojo, C. Schwan, Parton distributions and new physics searches: the Drell-Yan forward-backward asymmetry as a case study. Eur. Phys. J. C 82(12), 1160 (2022). https://doi.org/10.1140/epjc/s10052-022-11133-y. arXiv:2209.08115$$v82$$y2022
000622276 999C5 $$1A Greljo$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2021)122$$p122 -$$tJHEP$$uA. Greljo, S. Iranipour, Z. Kassabov, M. Madigan, J. Moore, J. Rojo, M. Ubiali, C. Voisey, Parton distributions in the SMEFT from high-energy Drell-Yan tails. JHEP 07, 122 (2021). https://doi.org/10.1007/JHEP07(2021)122. arXiv:2104.02723$$v07$$y2021
000622276 999C5 $$1J Gao$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2023)003$$p003 -$$tJHEP$$uJ. Gao, M. Gao, T.J. Hobbs, D. Liu, X. Shen, Simultaneous CTEQ-TEA extraction of PDFs and SMEFT parameters from jet and $$ t{\overline{t}} $$ data. JHEP 05, 003 (2023). https://doi.org/10.1007/JHEP05(2023)003. arXiv:2211.01094$$v05$$y2023
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2172/1865357$$uL. A. Ruso, et al., Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators (3 2022). arXiv:2203.09030
000622276 999C5 $$1T Liu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.082003$$tPhys. Rev. Lett.$$uT. Liu, R.S. Sufian, G.F. de Téramond, H.G. Dosch, S.J. Brodsky, A. Deur, Unified description of polarized and unpolarized quark distributions in the proton. Phys. Rev. Lett. 124, 082003 (2020). https://doi.org/10.1103/PhysRevLett.124.082003$$v124$$y2020
000622276 999C5 $$1A Deur$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2016.04.003$$p1 -$$tNucl. Phys.$$uA. Deur, S.J. Brodsky, G.F. de Teramond, The QCD Running Coupling. Nucl. Phys. 90, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.04.003. arXiv:1604.08082$$v90$$y2016
000622276 999C5 $$1PA Zyla$$2Crossref$$9-- missing cx lookup --$$a10.1093/ptep/ptaa104$$p083C01 -$$tPTEP$$uP.A. Zyla et al., Review of Particle Physics. PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104$$v2020$$y2020
000622276 999C5 $$2Crossref$$uD. d’Enterria, et al., The strong coupling constant: State of the art and the decade ahead (3 2022). arXiv:2203.08271
000622276 999C5 $$1JD Bjorken$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.148.1467$$p1467 -$$tPhys. Rev.$$uJ.D. Bjorken, Applications of the Chiral U(6) x (6) Algebra of Current Densities. Phys. Rev. 148, 1467–1478 (1966). https://doi.org/10.1103/PhysRev.148.1467$$v148$$y1966
000622276 999C5 $$2Crossref$$uS. Kuhn, et al., The Longitudinal Spin Structure of the Nucleon Jlab experiment E12-06-109 ”. (2006). https://misportal.jlab.org/mis/physics/experiments/viewProposal.cfm?paperId=688
000622276 999C5 $$1AL Kataev$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.50.R5469$$pR5469 -$$tPhys. Rev. D$$uA.L. Kataev, The Ellis-Jaffe sum rule: The Estimates of the next to next-to-leading order QCD corrections. Phys. Rev. D 50, R5469–R5472 (1994). https://doi.org/10.1103/PhysRevD.50.R5469. arXiv:hep-ph/9408248$$v50$$y1994
000622276 999C5 $$2Crossref$$uA. L. Kataev, private communication in S. Incerti, Ph. D dissertation “Mesure de la fonction de structure polarisée $$g_1^n$$ du neutron par l’experience e154 au slac”. (Jan. 1998). https://www.slac.stanford.edu/exp/e154/incerti_thesis.pdf
000622276 999C5 $$1A Deur$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.90.012009$$tPhys. Rev. D$$uA. Deur, Y. Prok, V. Burkert, D. Crabb, F.X. Girod, K.A. Griffioen, N. Guler, S.E. Kuhn, N. Kvaltine, High precision determination of the $$Q^2$$ evolution of the Bjorken Sum. Phys. Rev. D 90(1), 012009 (2014). https://doi.org/10.1103/PhysRevD.90.012009. arXiv:1405.7854$$v90$$y2014
000622276 999C5 $$1BA Kniehl$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.042001$$tPhys. Rev. Lett.$$uB.A. Kniehl, A.V. Kotikov, A.I. Onishchenko, O.L. Veretin, Strong-coupling constant with flavor thresholds at five loops in the anti-MS scheme. Phys. Rev. Lett. 97, 042001 (2006). https://doi.org/10.1103/PhysRevLett.97.042001. arXiv:hep-ph/0607202$$v97$$y2006
000622276 999C5 $$1A Deur$$2Crossref$$9-- missing cx lookup --$$a10.3390/particles5020015$$p171 -$$tParticles$$uA. Deur, V. Burkert, J.P. Chen, W. Korsch, Experimental determination of the QCD effective charge $$\alpha _{g_1}(Q)$$. Particles 5, 171 (2022). https://doi.org/10.3390/particles5020015. arXiv:2205.01169$$v5$$y2022
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.81.096010$$tPhys. Rev. D$$uS.J. Brodsky, G.F. de Teramond, A. Deur, Nonperturbative QCD Coupling and its $$\beta $$-function from Light-Front Holography. Phys. Rev. D 81, 096010 (2010). https://doi.org/10.1103/PhysRevD.81.096010. arXiv:1002.3948$$v81$$y2010
000622276 999C5 $$1Z-F Cui$$2Crossref$$9-- missing cx lookup --$$a10.1088/1674-1137/44/8/083102$$tChin. Phys. C$$uZ.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, S. Zafeiropoulos, Effective charge from lattice QCD. Chin. Phys. C 44(8), 083102 (2020). https://doi.org/10.1088/1674-1137/44/8/083102. arXiv:1912.08232$$v44$$y2020
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.L091504$$uP. C. Barry, L. Gamberg, W. Melnitchouk, E. Moffat, D. Pitonyak, A. Prokudin, N. Sato, Tomography of pions and protons via transverse momentum dependent distributions (2 2023). arXiv:2302.01192
000622276 999C5 $$1NY Cao$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.114014$$tPhys. Rev. D$$uN.Y. Cao, P.C. Barry, N. Sato, W. Melnitchouk, Towards the three-dimensional parton structure of the pion: Integrating transverse momentum data into global QCD analysis. Phys. Rev. D 103(11), 114014 (2021). https://doi.org/10.1103/PhysRevD.103.114014. arXiv:2103.02159$$v103$$y2021
000622276 999C5 $$2Crossref$$uC. E. Keppel, et al., C12-15-006 JLab experiment: Measurement of tagged deep inelastic scattering (2015)
000622276 999C5 $$2Crossref$$uK. Park, et al., C12-15-006A JLab run group: Measurement of kaon structure through tagged deep inelastic scattering (2017)
000622276 999C5 $$1B Betev$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01550243$$p9 -$$tZ. Phys. C$$uB. Betev et al., Differential Cross-section of High Mass Muon Pairs Produced by a 194-GeV/$$c \pi ^-$$ Beam on a Tungsten Target. Z. Phys. C 28, 9 (1985). https://doi.org/10.1007/BF01550243$$v28$$y1985
000622276 999C5 $$1JS Conway$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.39.92$$p92 -$$tPhys. Rev. D$$uJ.S. Conway et al., Experimental Study of Muon Pairs Produced by 252-GeV Pions on Tungsten. Phys. Rev. D 39, 92–122 (1989). https://doi.org/10.1103/PhysRevD.39.92$$v39$$y1989
000622276 999C5 $$1FD Aaron$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-010-1369-4$$p381 -$$tEur. Phys. J. C$$uF.D. Aaron et al., Measurement of Leading Neutron Production in Deep-Inelastic Scattering at HERA. Eur. Phys. J. C 68, 381–399 (2010). https://doi.org/10.1140/epjc/s10052-010-1369-4. arXiv:1001.0532$$v68$$y2010
000622276 999C5 $$1S Chekanov$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(02)00439-X$$p3 -$$tNucl. Phys. B$$uS. Chekanov et al., Leading neutron production in e+ p collisions at HERA. Nucl. Phys. B 637, 3–56 (2002). https://doi.org/10.1016/S0550-3213(02)00439-X. arXiv:hep-ex/0205076$$v637$$y2002
000622276 999C5 $$1J Arrington$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6471/abf5c3$$tJ. Phys. G$$uJ. Arrington et al., Revealing the Structure of Light Pseudoscalar Mesons at the Electron-Ion Collider. J. Phys. G 48, 075106 (2021)$$v48$$y2021
000622276 999C5 $$1A Bacchetta$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/02/093$$p093 -$$tJHEP$$uA. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders, M. Schlegel, Semi-inclusive deep inelastic scattering at small transverse momentum. JHEP 02, 093 (2007). https://doi.org/10.1088/1126-6708/2007/02/093. arXiv:hep-ph/0611265$$v02$$y2007
000622276 999C5 $$1J Gonzalez-Hernandez$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.114005$$tPhys. Rev. D$$uJ. Gonzalez-Hernandez, T. Rogers, N. Sato, B. Wang, Challenges with Large Transverse Momentum in Semi-Inclusive Deeply Inelastic Scattering. Phys. Rev. D 98(11), 114005 (2018). https://doi.org/10.1103/PhysRevD.98.114005. arXiv:1808.04396$$v98$$y2018
000622276 999C5 $$1B Wang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.094029$$tPhys. Rev. D$$uB. Wang, J.O. Gonzalez-Hernandez, T.C. Rogers, N. Sato, Large Transverse Momentum in Semi-Inclusive Deeply Inelastic Scattering Beyond Lowest Order. Phys. Rev. D 99(9), 094029 (2019). https://doi.org/10.1103/PhysRevD.99.094029. arXiv:1903.01529$$v99$$y2019
000622276 999C5 $$1M Boglione$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2017.01.021$$p245 -$$tPhys. Lett. B$$uM. Boglione, J. Collins, L. Gamberg, J.O. Gonzalez-Hernandez, T.C. Rogers, N. Sato, Kinematics of Current Region Fragmentation in Semi-Inclusive Deeply Inelastic Scattering. Phys. Lett. B 766, 245–253 (2017). https://doi.org/10.1016/j.physletb.2017.01.021. arXiv:1611.10329$$v766$$y2017
000622276 999C5 $$1J Collins$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.034014$$tPhys. Rev. D$$uJ. Collins, L. Gamberg, A. Prokudin, T.C. Rogers, N. Sato, B. Wang, Relating Transverse Momentum Dependent and Collinear Factorization Theorems in a Generalized Formalism. Phys. Rev. D 94(3), 034014 (2016). https://doi.org/10.1103/PhysRevD.94.034014. arXiv:1605.00671$$v94$$y2016
000622276 999C5 $$1M Boglione$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2019)122$$p122 -$$tJHEP$$uM. Boglione, A. Dotson, L. Gamberg, S. Gordon, J. Gonzalez-Hernandez, A. Prokudin, T. Rogers, N. Sato, Mapping the Kinematical Regimes of Semi-Inclusive Deep Inelastic Scattering. JHEP 10, 122 (2019). https://doi.org/10.1007/JHEP10(2019)122. arXiv:1904.12882$$v10$$y2019
000622276 999C5 $$1H Avakian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.262002$$tPhys. Rev. Lett.$$uH. Avakian et al., Measurement of Single and Double Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target. Phys. Rev. Lett. 105, 262002 (2010). https://doi.org/10.1103/PhysRevLett.105.262002. arXiv:1003.4549$$v105$$y2010
000622276 999C5 $$1S Jawalkar$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2018.06.014$$p662 -$$tPhys. Lett. B$$uS. Jawalkar et al., Semi-Inclusive $$\pi _0$$ target and beam-target asymmetries from 6 GeV electron scattering with CLAS. Phys. Lett. B 782, 662–667 (2018). https://doi.org/10.1016/j.physletb.2018.06.014. arXiv:1709.10054$$v782$$y2018
000622276 999C5 $$1BU Musch$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.83.094507$$tPhys. Rev. D$$uB.U. Musch, P. Hagler, J.W. Negele, A. Schafer, Exploring quark transverse momentum distributions with lattice QCD. Phys. Rev. D 83, 094507 (2011). https://doi.org/10.1103/PhysRevD.83.094507. arXiv:1011.1213$$v83$$y2011
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.352.0265$$uH. Avakian, Hadronization of quarks and correlated di-hadron production in hard scattering, PoS DIS2019 (2019) 265. https://doi.org/10.22323/1.352.0265
000622276 999C5 $$1CJ Bebek$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.34.759$$p759 -$$tPhys. Rev. Lett.$$uC.J. Bebek, C.N. Brown, M. Herzlinger, S.D. Holmes, C.A. Lichtenstein, F.M. Pipkin, S. Raither, L.K. Sisterson, Scaling Behavior of Inclusive Pion Electroproduction. Phys. Rev. Lett. 34, 759 (1975). https://doi.org/10.1103/PhysRevLett.34.759$$v34$$y1975
000622276 999C5 $$1CJ Bebek$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.37.1525$$p1525 -$$tPhys. Rev. Lett.$$uC.J. Bebek, A. Browman, C.N. Brown, K.M. Hanson, R.V. Kline, D. Larson, F.M. Pipkin, S.W. Raither, A. Silverman, L.K. Sisterson, Charged Pion Electroproduction from Protons Up to Q**2 = 9.5-GeV**2. Phys. Rev. Lett. 37, 1525–1528 (1976). https://doi.org/10.1103/PhysRevLett.37.1525$$v37$$y1976
000622276 999C5 $$1CJ Bebek$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.15.3085$$p3085 -$$tPhys. Rev. D$$uC.J. Bebek, C.N. Brown, M.S. Herzlinger, S.D. Holmes, C.A. Lichtenstein, F.M. Pipkin, S.W. Raither, L.K. Sisterson, Inclusive Charged Pion Electroproduction. Phys. Rev. D 15, 3085 (1977). https://doi.org/10.1103/PhysRevD.15.3085$$v15$$y1977
000622276 999C5 $$1A Bacchetta$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2008/08/023$$p023 -$$tJHEP$$uA. Bacchetta, D. Boer, M. Diehl, P.J. Mulders, Matches and mismatches in the descriptions of semi-inclusive processes at low and high transverse momentum. JHEP 08, 023 (2008). https://doi.org/10.1088/1126-6708/2008/08/023. arXiv:0803.0227$$v08$$y2008
000622276 999C5 $$1M Anselmino$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.71.074006$$tPhys. Rev. D$$uM. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin, The Role of Cahn and sivers effects in deep inelastic scattering. Phys. Rev. D 71, 074006 (2005). https://doi.org/10.1103/PhysRevD.71.074006. arXiv:hep-ph/0501196$$v71$$y2005
000622276 999C5 $$1A Bacchetta$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2022)127$$p127 -$$tJHEP$$uA. Bacchetta, V. Bertone, C. Bissolotti, G. Bozzi, M. Cerutti, F. Piacenza, M. Radici, A. Signori, Unpolarized transverse momentum distributions from a global fit of Drell-Yan and semi-inclusive deep-inelastic scattering data. JHEP 10, 127 (2022). https://doi.org/10.1007/JHEP10(2022)127. arXiv:2206.07598$$v10$$y2022
000622276 999C5 $$1C Adolph$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2014.07.019$$p1046 -$$tNucl. Phys. B$$uC. Adolph et al., Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons. Nucl. Phys. B 886, 1046–1077 (2014). https://doi.org/10.1016/j.nuclphysb.2014.07.019. arXiv:1401.6284$$v886$$y2014
000622276 999C5 $$1A Moretti$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhysProc.8.144$$p144 -$$tSciPost Phys. Proc.$$uA. Moretti, TMD observables in unpolarised Semi-Inclusive DIS at COMPASS. SciPost Phys. Proc. 8, 144 (2022). https://doi.org/10.21468/SciPostPhysProc.8.144. arXiv:2107.10740$$v8$$y2022
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.87.012010$$tPhys. Rev. D$$uA. Airapetian et al., Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons. Phys. Rev. D 87(1), 012010 (2013). https://doi.org/10.1103/PhysRevD.87.012010. arXiv:1204.4161$$v87$$y2013
000622276 999C5 $$1M Osipenko$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.80.032004$$tPhys. Rev. D$$uM. Osipenko et al., Measurement of unpolarized semi-inclusive pi+ electroproduction off the proton. Phys. Rev. D 80, 032004 (2009). https://doi.org/10.1103/PhysRevD.80.032004. arXiv:0809.1153$$v80$$y2009
000622276 999C5 $$2Crossref$$uS. Diehl, et al., First multidimensional, high precision measurements of semi-inclusive $$\pi ^+$$ beam single spin asymmetries from the proton over a wide range of kinematics (1 2021). arXiv:2101.03544
000622276 999C5 $$1JC Collins$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(93)90262-N$$p161 -$$tNucl. Phys. B$$uJ.C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions. Nucl. Phys. B 396, 161–182 (1993). https://doi.org/10.1016/0550-3213(93)90262-N. arXiv:hep-ph/9208213$$v396$$y1993
000622276 999C5 $$1A Kerbizi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.97.074010$$tPhys. Rev. D$$uA. Kerbizi, X. Artru, Z. Belghobsi, F. Bradamante, A. Martin, Recursive model for the fragmentation of polarized quarks. Phys. Rev. D 97(7), 074010 (2018). https://doi.org/10.1103/PhysRevD.97.074010. arXiv:1802.00962$$v97$$y2018
000622276 999C5 $$1HH Matevosyan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.014021$$tPhys. Rev. D$$uH.H. Matevosyan, A. Kotzinian, A.W. Thomas, Monte Carlo Implementation of Polarized Hadronization. Phys. Rev. D 95(1), 014021 (2017). https://doi.org/10.1103/PhysRevD.95.014021. arXiv:1610.05624$$v95$$y2017
000622276 999C5 $$1A Kerbizi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2021.108234$$tComput. Phys. Commun.$$uA. Kerbizi, L. Lönnblad, StringSpinner - adding spin to the PYTHIA string fragmentation. Comput. Phys. Commun. 272, 108234 (2022). https://doi.org/10.1016/j.cpc.2021.108234. arXiv:2105.09730$$v272$$y2022
000622276 999C5 $$1T Sjöstrand$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2015.01.024$$p159 -$$tComput. Phys. Commun.$$uT. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). https://doi.org/10.1016/j.cpc.2015.01.024. arXiv:1410.3012$$v191$$y2015
000622276 999C5 $$1TB Hayward$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.126.152501$$tPhys. Rev. Lett.$$uT.B. Hayward et al., Observation of Beam Spin Asymmetries in the Process $$ep\rightarrow {e}^{^{\prime }}{\pi }^{+}{\pi }^{-}X$$ with CLAS12. Phys. Rev. Lett. 126, 152501 (2021). https://doi.org/10.1103/PhysRevLett.126.152501. arXiv:2101.04842$$v126$$y2021
000622276 999C5 $$1A Kerbizi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.114038$$tPhys. Rev. D$$uA. Kerbizi, X. Artru, A. Martin, Production of vector mesons in the String+$$ ^3P_0$$ model of polarized quark fragmentation. Phys. Rev. D 104(11), 114038 (2021). https://doi.org/10.1103/PhysRevD.104.114038. arXiv:2109.06124$$v104$$y2021
000622276 999C5 $$1A Bacchetta$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.62.114004$$tPhys. Rev. D$$uA. Bacchetta, P.J. Mulders, Deep inelastic leptoproduction of spin-one hadrons. Phys. Rev. D 62, 114004 (2000). https://doi.org/10.1103/PhysRevD.62.114004. arXiv:hep-ph/0007120$$v62$$y2000
000622276 999C5 $$2Crossref$$uT. C. Collaboration, Collins and Sivers transverse-spin asymmetries in inclusive muoproduction of $$\rho ^0$$ mesons, CERN-EP-2022-234 (10 2022). arXiv:2211.00093
000622276 999C5 $$1C Adolph$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2015.03.056$$p250 -$$tPhys. Lett. B$$uC. Adolph et al., Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons. Phys. Lett. B 744, 250–259 (2015). https://doi.org/10.1016/j.physletb.2015.03.056. arXiv:1408.4405$$v744$$y2015
000622276 999C5 $$1L Trentadue$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(94)90292-5$$p201 -$$tPhys. Lett. B$$uL. Trentadue, G. Veneziano, Fracture functions: An Improved description of inclusive hard processes in QCD. Phys. Lett. B 323, 201–211 (1994). https://doi.org/10.1016/0370-2693(94)90292-5$$v323$$y1994
000622276 999C5 $$1M Anselmino$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2011.03.067$$p108 -$$tPhys. Lett. B$$uM. Anselmino, V. Barone, A. Kotzinian, SIDIS in the target fragmentation region: Polarized and transverse momentum dependent fracture functions. Phys. Lett. B 699, 108–118 (2011). https://doi.org/10.1016/j.physletb.2011.03.067. arXiv:1102.4214$$v699$$y2011
000622276 999C5 $$1H Avakian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.130.022501$$tPhys. Rev. Lett.$$uH. Avakian et al., Observation of Correlations between Spin and Transverse Momenta in Back-to-Back Dihadron Production at CLAS12. Phys. Rev. Lett. 130(2), 022501 (2023). https://doi.org/10.1103/PhysRevLett.130.022501. arXiv:2208.05086$$v130$$y2023
000622276 999C5 $$1P Schweitzer$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2013)163$$p163 -$$tJHEP$$uP. Schweitzer, M. Strikman, C. Weiss, Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking. JHEP 01, 163 (2013). https://doi.org/10.1007/JHEP01(2013)163. arXiv:1210.1267$$v01$$y2013
000622276 999C5 $$1M Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2006.05.091$$p223 -$$tPhys. Lett. B$$uM. Sargsian, M. Strikman, Model independent method for determination of the DIS structure of free neutron. Phys. Lett. B 639, 223–231 (2006). https://doi.org/10.1016/j.physletb.2006.05.091. arXiv:hep-ph/0511054$$v639$$y2006
000622276 999C5 $$1W Cosyn$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.102.065204$$tPhys. Rev. C$$uW. Cosyn, C. Weiss, Polarized electron-deuteron deep-inelastic scattering with spectator nucleon tagging. Phys. Rev. C 102, 065204 (2020). https://doi.org/10.1103/PhysRevC.102.065204. arXiv:2006.03033$$v102$$y2020
000622276 999C5 $$2Crossref$$uS. Bueltmann, M. Christy, H. Fenker, K. Griffioen, C. Keppel, S. Kuhn, W. Melnitchouk, V. s. Tvaskis, The Structure of the Free Neutron at Large x-Bjorken; http://www.jlab.org/exp_prog/12GEV_EXP/E1206113.html JLab Experiment E1206113 (2006)
000622276 999C5 $$2Crossref$$uW. Armstrong, et al., Partonic Structure of Light Nuclei (2017). arXiv:1708.00888
000622276 999C5 $$1JT Londergan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.54.3154$$p3154 -$$tPhys. Rev. D$$uJ.T. Londergan, A. Pang, A.W. Thomas, Probing charge symmetry violating quark distributions in semiinclusive leptoproduction of hadrons. Phys. Rev. D 54, 3154–3161 (1996). https://doi.org/10.1103/PhysRevD.54.3154. arXiv:hep-ph/9604446$$v54$$y1996
000622276 999C5 $$1AD Martin$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2004-01825-2$$p325 -$$tEur. Phys. J. C$$uA.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Uncertainties of predictions from parton distributions. 2. Theoretical errors. Eur. Phys. J. C 35, 325–348 (2004). https://doi.org/10.1140/epjc/s2004-01825-2. arXiv:hep-ph/0308087$$v35$$y2004
000622276 999C5 $$1D de Florian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.75.114010$$tPhys. Rev. D$$uD. de Florian, R. Sassot, M. Stratmann, Global analysis of fragmentation functions for pions and kaons and their uncertainties. Phys. Rev. D 75, 114010 (2007). https://doi.org/10.1103/PhysRevD.75.114010. arXiv:hep-ph/0703242$$v75$$y2007
000622276 999C5 $$1I Scimemi$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2020)137$$p137 -$$tJHEP$$uI. Scimemi, A. Vladimirov, Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum. JHEP 06, 137 (2020). https://doi.org/10.1007/JHEP06(2020)137. arXiv:1912.06532$$v06$$y2020
000622276 999C5 $$1M Bury$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2022)118$$p118 -$$tJHEP$$uM. Bury, F. Hautmann, S. Leal-Gomez, I. Scimemi, A. Vladimirov, P. Zurita, PDF bias and flavor dependence in TMD distributions. JHEP 10, 118 (2022). https://doi.org/10.1007/JHEP10(2022)118. arXiv:2201.07114$$v10$$y2022
000622276 999C5 $$1A Bermudez Martinez$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.L091501$$pL091501 -$$tPhys. Rev. D$$uA. Bermudez Martinez, A. Vladimirov, Determination of the Collins-Soper kernel from cross-sections ratios. Phys. Rev. D 106(9), L091501 (2022). https://doi.org/10.1103/PhysRevD.106.L091501. arXiv:2206.01105$$v106$$y2022
000622276 999C5 $$1M Boglione$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2015)095$$p095 -$$tJHEP$$uM. Boglione, J.O. Gonzalez Hernandez, S. Melis, A. Prokudin, A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes. JHEP 02, 095 (2015). https://doi.org/10.1007/JHEP02(2015)095. arXiv:1412.1383$$v02$$y2015
000622276 999C5 $$1B Yoon$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.96.094508$$tPhys. Rev. D$$uB. Yoon, M. Engelhardt, R. Gupta, T. Bhattacharya, J.R. Green, B.U. Musch, J.W. Negele, A.V. Pochinsky, A. Schäfer, S.N. Syritsyn, Nucleon Transverse Momentum-dependent Parton Distributions in Lattice QCD: Renormalization Patterns and Discretization Effects. Phys. Rev. D 96(9), 094508 (2017). https://doi.org/10.1103/PhysRevD.96.094508. arXiv:1706.03406$$v96$$y2017
000622276 999C5 $$1X Ji$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.262002$$tPhys. Rev. Lett.$$uX. Ji, Parton Physics on a Euclidean Lattice. Phys. Rev. Lett. 110, 262002 (2013). https://doi.org/10.1103/PhysRevLett.110.262002. arXiv:1305.1539$$v110$$y2013
000622276 999C5 $$1X Ji$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.93.035005$$tRev. Mod. Phys.$$uX. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, Y. Zhao, Large-momentum effective theory. Rev. Mod. Phys. 93(3), 035005 (2021). https://doi.org/10.1103/RevModPhys.93.035005. arXiv:2004.03543$$v93$$y2021
000622276 999C5 $$1MA Ebert$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.034505$$tPhys. Rev. D$$uM.A. Ebert, I.W. Stewart, Y. Zhao, Determining the Nonperturbative Collins-Soper Kernel From Lattice QCD. Phys. Rev. D 99(3), 034505 (2019). https://doi.org/10.1103/PhysRevD.99.034505. arXiv:1811.00026$$v99$$y2019
000622276 999C5 $$1X Ji$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2020.135946$$tPhys. Lett. B$$uX. Ji, Y. Liu, Y.-S. Liu, Transverse-momentum-dependent parton distribution functions from large-momentum effective theory. Phys. Lett. B 811, 135946 (2020). https://doi.org/10.1016/j.physletb.2020.135946. arXiv:1911.03840$$v811$$y2020
000622276 999C5 $$1P Shanahan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.102.014511$$tPhys. Rev. D$$uP. Shanahan, M. Wagman, Y. Zhao, Collins-Soper kernel for TMD evolution from lattice QCD. Phys. Rev. D 102(1), 014511 (2020). https://doi.org/10.1103/PhysRevD.102.014511. arXiv:2003.06063$$v102$$y2020
000622276 999C5 $$1Q.-A. Zhang$$2Crossref$$9-- missing cx lookup --$$a10.22323/1.396.0477$$p192001 -$$tPhys. Rev. Lett.$$uQ..-A.. Zhang et al., Lattice-QCD Calculations of TMD Soft Function Through Large-Momentum Effective Theory. Phys. Rev. Lett. 125(19), 192001 (2020). https://doi.org/10.22323/1.396.0477. arXiv:2005.14572$$v125$$y2020
000622276 999C5 $$1M Schlemmer$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2021)004$$p004 -$$tJHEP$$uM. Schlemmer, A. Vladimirov, C. Zimmermann, M. Engelhardt, A. Schäfer, Determination of the Collins-Soper Kernel from Lattice QCD. JHEP 08, 004 (2021). https://doi.org/10.1007/JHEP08(2021)004. arXiv:2103.16991$$v08$$y2021
000622276 999C5 $$1M-H Chu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.034509$$tPhys. Rev. D$$uM.-H. Chu et al., Nonperturbative determination of the Collins-Soper kernel from quasitransverse-momentum-dependent wave functions. Phys. Rev. D 106(3), 034509 (2022). https://doi.org/10.1103/PhysRevD.106.034509. arXiv:2204.00200$$v106$$y2022
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.074519$$uH.-T. Shu, M. Schlemmer, T. Sizmann, A. Vladimirov, L. Walter, M. Engelhardt, A. Schäfer, Y.-B. Yang, Universality of the Collins-Soper kernel in lattice calculations (2 2023). arXiv:2302.06502
000622276 999C5 $$2Crossref$$uJ.-C. He, M.-H. Chu, J. Hua, X. Ji, A. Schäfer, Y. Su, W. Wang, Y. Yang, J.-H. Zhang, Q.-A. Zhang, Unpolarized Transverse-Momentum-Dependent Parton Distributions of the Nucleon from Lattice QCD (11 2022). arXiv:2211.02340
000622276 999C5 $$1Y Zhou$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.074022$$tPhys. Rev. D$$uY. Zhou, N. Sato, W. Melnitchouk, How well do we know the gluon polarization in the proton? Phys. Rev. D 105(7), 074022 (2022). https://doi.org/10.1103/PhysRevD.105.074022. arXiv:2201.02075$$v105$$y2022
000622276 999C5 $$1M Alberg$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.100.035205$$tPhys. Rev. C$$uM. Alberg, G.A. Miller, Chiral Light Front Perturbation Theory and the Flavor Dependence of the Light-Quark Nucleon Sea. Phys. Rev. C 100(3), 035205 (2019). https://doi.org/10.1103/PhysRevC.100.035205. arXiv:1712.05814$$v100$$y2019
000622276 999C5 $$1P Amaudruz$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.66.2712$$p2712 -$$tPhys. Rev. Lett.$$uP. Amaudruz et al., The Gottfried sum from the ratio F2(n) / F2(p). Phys. Rev. Lett. 66, 2712–2715 (1991). https://doi.org/10.1103/PhysRevLett.66.2712$$v66$$y1991
000622276 999C5 $$1GT Garvey$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0146-6410(01)00155-7$$p203 -$$tProg. Part. Nucl. Phys.$$uG.T. Garvey, J.-C. Peng, Flavor asymmetry of light quarks in the nucleon sea. Prog. Part. Nucl. Phys. 47, 203–243 (2001). https://doi.org/10.1016/S0146-6410(01)00155-7. arXiv:nucl-ex/0109010$$v47$$y2001
000622276 999C5 $$1K Nagai$$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSCP.13.020051$$tJPS Conf. Proc.$$uK. Nagai, Measurement of Antiquark Flavor Asymmetry in the Proton by the Drell-Yan Experiment SeaQuest at Fermilab. JPS Conf. Proc. 13, 020051 (2017). https://doi.org/10.7566/JPSCP.13.020051$$v13$$y2017
000622276 999C5 $$1CA Aidala$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.85.655$$p655 -$$tRev. Mod. Phys.$$uC.A. Aidala, S.D. Bass, D. Hasch, G.K. Mallot, The Spin Structure of the Nucleon. Rev. Mod. Phys. 85, 655–691 (2013). https://doi.org/10.1103/RevModPhys.85.655. arXiv:1209.2803$$v85$$y2013
000622276 999C5 $$1L Adamczyk$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.092002$$tPhys. Rev. Lett.$$uL. Adamczyk et al., Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $$\sqrt{s}=200$$ GeV. Phys. Rev. Lett. 115(9), 092002 (2015). https://doi.org/10.1103/PhysRevLett.115.092002. arXiv:1405.5134$$v115$$y2015
000622276 999C5 $$1J Adam$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.052005$$tPhys. Rev. D$$uJ. Adam et al., Longitudinal double-spin asymmetry for inclusive jet and dijet production in pp collisions at $$\sqrt{s} = 510$$ GeV. Phys. Rev. D 100(5), 052005 (2019). https://doi.org/10.1103/PhysRevD.100.052005. arXiv:1906.02740$$v100$$y2019
000622276 999C5 $$1MS Abdallah$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.L091103$$pL091103 -$$tPhys. Rev. D$$uM.S. Abdallah et al., Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $$\sqrt{s}=200$$ GeV. Phys. Rev. D 103(9), L091103 (2021). https://doi.org/10.1103/PhysRevD.103.L091103. arXiv:2103.05571$$v103$$y2021
000622276 999C5 $$1MS Abdallah$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.092011$$tPhys. Rev. D$$uM.S. Abdallah et al., Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $$\sqrt{s}=510$$ GeV. Phys. Rev. D 105(9), 092011 (2022). https://doi.org/10.1103/PhysRevD.105.092011. arXiv:2110.11020$$v105$$y2022
000622276 999C5 $$1A Adare$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.012006$$tPhys. Rev. D$$uA. Adare et al., Event Structure and Double Helicity Asymmetry in Jet Production from Polarized $$p+p$$ Collisions at $$\sqrt{s} = 200$$ GeV. Phys. Rev. D 84, 012006 (2011). https://doi.org/10.1103/PhysRevD.84.012006. arXiv:1009.4921$$v84$$y2011
000622276 999C5 $$1SD Bass$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2010.01.008$$p216 -$$tPhys. Lett. B$$uS.D. Bass, A.W. Thomas, The Nucleon’s octet axial-charge g(A)**(8) with chiral corrections. Phys. Lett. B 684, 216–220 (2010). https://doi.org/10.1016/j.physletb.2010.01.008. arXiv:0912.1765$$v684$$y2010
000622276 999C5 $$1JJ Ethier$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.132001$$tPhys. Rev. Lett.$$uJ.J. Ethier, N. Sato, W. Melnitchouk, First simultaneous extraction of spin-dependent parton distributions and fragmentation functions from a global QCD analysis. Phys. Rev. Lett. 119(13), 132001 (2017). https://doi.org/10.1103/PhysRevLett.119.132001. arXiv:1705.05889$$v119$$y2017
000622276 999C5 $$1A Candido$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2020)129$$p129 -$$tJHEP$$uA. Candido, S. Forte, F. Hekhorn, Can $$ \overline{\rm MS } $$ parton distributions be negative? JHEP 11, 129 (2020). https://doi.org/10.1007/JHEP11(2020)129. arXiv:2006.07377$$v11$$y2020
000622276 999C5 $$1J Collins$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.076010$$tPhys. Rev. D$$uJ. Collins, T.C. Rogers, N. Sato, Positivity and renormalization of parton densities. Phys. Rev. D 105(7), 076010 (2022). https://doi.org/10.1103/PhysRevD.105.076010. arXiv:2111.01170$$v105$$y2022
000622276 999C5 $$1B Jager$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.121803$$tPhys. Rev. Lett.$$uB. Jager, M. Stratmann, S. Kretzer, W. Vogelsang, QCD hard scattering and the sign of the spin asymmetry A**pi(LL). Phys. Rev. Lett. 92, 121803 (2004). https://doi.org/10.1103/PhysRevLett.92.121803. arXiv:hep-ph/0310197$$v92$$y2004
000622276 999C5 $$1A Adare$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.011501$$tPhys. Rev. D$$uA. Adare et al., Inclusive cross section and double-helicity asymmetry for $$\pi ^{0}$$ production at midrapidity in $$p+p$$ collisions at $$\sqrt{s}=510$$ GeV. Phys. Rev. D 93(1), 011501 (2016). https://doi.org/10.1103/PhysRevD.93.011501. arXiv:1510.02317$$v93$$y2016
000622276 999C5 $$1A Adare$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.032001$$tPhys. Rev. D$$uA. Adare et al., Charged-pion cross sections and double-helicity asymmetries in polarized p+p collisions at $$\sqrt{s}$$=200 GeV. Phys. Rev. D 91(3), 032001 (2015). https://doi.org/10.1103/PhysRevD.91.032001. arXiv:1409.1907$$v91$$y2015
000622276 999C5 $$1UA Acharya$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.102.032001$$tPhys. Rev. D$$uU.A. Acharya et al., Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized $$p+p$$ collisions at $$\sqrt{s}$$ = 510 GeV. Phys. Rev. D 102(3), 032001 (2020). https://doi.org/10.1103/PhysRevD.102.032001. arXiv:2004.02681$$v102$$y2020
000622276 999C5 $$1RM Whitehill$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.034033$$tPhys. Rev. D$$uR.M. Whitehill, Y. Zhou, N. Sato, W. Melnitchouk, Accessing gluon polarization with high-PT hadrons in SIDIS. Phys. Rev. D 107(3), 034033 (2023). https://doi.org/10.1103/PhysRevD.107.034033. arXiv:2210.12295$$v107$$y2023
000622276 999C5 $$1MV Polyakov$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X18300259$$p1830025 -$$tInt. J. Mod. Phys. A$$uM.V. Polyakov, P. Schweitzer, Forces inside hadrons: pressure, surface tension, mechanical radius, and all that. Int. J. Mod. Phys. A 33(26), 1830025 (2018). https://doi.org/10.1142/S0217751X18300259. arXiv:1805.06596$$v33$$y2018
000622276 999C5 $$1C Lorcé$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-019-6572-3$$p89 -$$tEur. Phys. J. C$$uC. Lorcé, H. Moutarde, A.P. Trawiński, Revisiting the mechanical properties of the nucleon. Eur. Phys. J. C 79(1), 89 (2019). https://doi.org/10.1140/epjc/s10052-019-6572-3. arXiv:1810.09837$$v79$$y2019
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-018-5561-2$$uC. Lorcé, On the hadron mass decomposition. Eur. Phys. J. C 78(2), 120 (2018). https://doi.org/10.1140/epjc/s10052-018-5561-2. arXiv:1706.05853
000622276 999C5 $$1Y Hatta$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2018)008$$p008 -$$tJHEP$$uY. Hatta, A. Rajan, K. Tanaka, Quark and gluon contributions to the QCD trace anomaly. JHEP 12, 008 (2018). https://doi.org/10.1007/JHEP12(2018)008. arXiv:1810.05116$$v12$$y2018
000622276 999C5 $$1A Metz$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.102.114042$$tPhys. Rev. D$$uA. Metz, B. Pasquini, S. Rodini, Revisiting the proton mass decomposition. Phys. Rev. D 102(11), 114042 (2021). https://doi.org/10.1103/PhysRevD.102.114042. arXiv:2006.11171$$v102$$y2021
000622276 999C5 $$1K Goeke$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0146-6410(01)00158-2$$p401 -$$tProg. Part. Nucl. Phys.$$uK. Goeke, M.V. Polyakov, M. Vanderhaeghen, Hard exclusive reactions and the structure of hadrons. Prog. Part. Nucl. Phys. 47, 401–515 (2001). https://doi.org/10.1016/S0146-6410(01)00158-2. arXiv:hep-ph/0106012$$v47$$y2001
000622276 999C5 $$1M Diehl$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2003.08.002$$p41 -$$tGeneralized parton distributions. Phys. Rept.$$uM. Diehl, Generalized parton distributions. Phys. Rept. 388, 41–277 (2003). https://doi.org/10.1016/j.physrep.2003.08.002. arXiv:hep-ph/0307382$$v388$$y2003
000622276 999C5 $$1AV Belitsky$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2005.06.002$$p1 -$$tPhys. Rept.$$uA.V. Belitsky, A.V. Radyushkin, Unraveling hadron structure with generalized parton distributions. Phys. Rept. 418, 1–387 (2005). https://doi.org/10.1016/j.physrep.2005.06.002. arXiv:hep-ph/0504030$$v418$$y2005
000622276 999C5 $$1X-D Ji$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.74.1071$$p1071 -$$tPhys. Rev. Lett.$$uX.-D. Ji, A QCD analysis of the mass structure of the nucleon. Phys. Rev. Lett. 74, 1071–1074 (1995). https://doi.org/10.1103/PhysRevLett.74.1071. arXiv:hep-ph/9410274$$v74$$y1995
000622276 999C5 $$1X-D Ji$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.52.271$$p271 -$$tPhys. Rev. D$$uX.-D. Ji, Breakup of hadron masses and energy - momentum tensor of QCD. Phys. Rev. D 52, 271–281 (1995). arXiv:hep-ph/9502213$$v52$$y1995
000622276 999C5 $$1D Kharzeev$$2Crossref$$9-- missing cx lookup --$$a10.1007/s100529900047$$p459 -$$tEur. Phys. J. C$$uD. Kharzeev, H. Satz, A. Syamtomov, G. Zinovjev, $$J/\psi $$ photoproduction and the gluon structure of the nucleon. Eur. Phys. J. C 9, 459–462 (1999). https://doi.org/10.1007/s100529900047. arXiv:hep-ph/9901375$$v9$$y1999
000622276 999C5 $$1O Gryniuk$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.074001$$tPhys. Rev. D$$uO. Gryniuk, M. Vanderhaeghen, Accessing the real part of the forward $$J/\psi $$-p scattering amplitude from $$J/\psi $$ photoproduction on protons around threshold. Phys. Rev. D 94(7), 074001 (2016). https://doi.org/10.1103/PhysRevD.94.074001. arXiv:1608.08205$$v94$$y2016
000622276 999C5 $$1KA Mamo$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.086003$$tPhys. Rev. D$$uK.A. Mamo, I. Zahed, Diffractive photoproduction of $$J/\psi $$ and $$\Upsilon $$ using holographic QCD: gravitational form factors and GPD of gluons in the proton. Phys. Rev. D 101(8), 086003 (2020). https://doi.org/10.1103/PhysRevD.101.086003. arXiv:1910.04707$$v101$$y2020
000622276 999C5 $$1KA Mamo$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.086004$$tPhys. Rev. D$$uK.A. Mamo, I. Zahed, J/$$\psi $$ near threshold in holographic QCD: A and D gravitational form factors. Phys. Rev. D 106(8), 086004 (2022). https://doi.org/10.1103/PhysRevD.106.086004. arXiv:2204.08857$$v106$$y2022
000622276 999C5 $$1Y Guo$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.096010$$tPhys. Rev. D$$uY. Guo, X. Ji, Y. Liu, QCD Analysis of Near-Threshold Photon-Proton Production of Heavy Quarkonium. Phys. Rev. D 103(9), 096010 (2021). https://doi.org/10.1103/PhysRevD.103.096010. arXiv:2103.11506$$v103$$y2021
000622276 999C5 $$1B Duran$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-023-05730-4$$p813 -$$tNature$$uB. Duran et al., Determining the gluonic gravitational form factors of the proton. Nature 615(7954), 813–816 (2023). https://doi.org/10.1038/s41586-023-05730-4. arXiv:2207.05212$$v615$$y2023
000622276 999C5 $$1DA Pefkou$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.054509$$tPhys. Rev. D$$uD.A. Pefkou, D.C. Hackett, P.E. Shanahan, Gluon gravitational structure of hadrons of different spin. Phys. Rev. D 105(5), 054509 (2022). https://doi.org/10.1103/PhysRevD.105.054509. arXiv:2107.10368$$v105$$y2022
000622276 999C5 $$2Crossref$$uJ. P. Chen, H. Gao, T. K. Hemmick, Z. E. Meziani, P. A. Souder, A White Paper on SoLID (Solenoidal Large Intensity Device) (9 2014). arXiv:1409.7741
000622276 999C5 $$1MV Polyakov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.60.114017$$tPhys. Rev. D$$uM.V. Polyakov, C. Weiss, Skewed and double distributions in pion and nucleon. Phys. Rev. D 60, 114017 (1999). https://doi.org/10.1103/PhysRevD.60.114017. arXiv:hep-ph/9902451$$v60$$y1999
000622276 999C5 $$1MV Polyakov$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(03)00036-4$$p57 -$$tPhys. Lett. B$$uM.V. Polyakov, Generalized parton distributions and strong forces inside nucleons and nuclei. Phys. Lett. B 555, 57–62 (2003). https://doi.org/10.1016/S0370-2693(03)00036-4. arXiv:hep-ph/0210165$$v555$$y2003
000622276 999C5 $$1VD Burkert$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0060-z$$p396 -$$tNature$$uV.D. Burkert, L. Elouadrhiri, F.X. Girod, The pressure distribution inside the proton. Nature 557(7705), 396–399 (2018). https://doi.org/10.1038/s41586-018-0060-z$$v557$$y2018
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.95.041002$$uV. D. Burkert, L. Elouadrhiri, F. X. Girod, C. Lorcé, P. Schweitzer, P. E. Shanahan, Colloquium: Gravitational Form Factors of the Proton (3 2023). arXiv:2303.08347
000622276 999C5 $$1K Kumerički$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-019-1211-6$$pE1 -$$tNature$$uK. Kumerički, Measurability of pressure inside the proton. Nature 570(7759), E1–E2 (2019). https://doi.org/10.1038/s41586-019-1211-6$$v570$$y2019
000622276 999C5 $$1H Moutarde$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-019-7117-5$$p614 -$$tEur. Phys. J. C$$uH. Moutarde, P. Sznajder, J. Wagner, Unbiased determination of DVCS Compton Form Factors. Eur. Phys. J. C 79(7), 614 (2019). https://doi.org/10.1140/epjc/s10052-019-7117-5. arXiv:1905.02089$$v79$$y2019
000622276 999C5 $$2Crossref$$uG. Christiaens, et al., First CLAS12 measurement of DVCS beam-spin asymmetries in the extended valence region (11 2022). arXiv:2211.11274
000622276 999C5 $$1X-D Ji$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.78.610$$p610 -$$tPhys. Rev. Lett.$$uX.-D. Ji, Gauge-Invariant Decomposition of Nucleon Spin. Phys. Rev. Lett. 78, 610–613 (1997). https://doi.org/10.1103/PhysRevLett.78.610. arXiv:hep-ph/9603249$$v78$$y1997
000622276 999C5 $$1A Radyushkin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.56.5524$$p5524 -$$tPhys. Rev. D$$uA. Radyushkin, Nonforward parton distributions. Phys. Rev. D 56, 5524–5557 (1997). https://doi.org/10.1103/PhysRevD.56.5524. arXiv:hep-ph/9704207$$v56$$y1997
000622276 999C5 $$1K Kumericki$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2016-16157-3$$p157 -$$tEur. Phys. J. A$$uK. Kumericki, S. Liuti, H. Moutarde, GPD phenomenology and DVCS fitting: Entering the high-precision era. Eur. Phys. J. A 52(6), 157 (2016). https://doi.org/10.1140/epja/i2016-16157-3. arXiv:1602.02763$$v52$$y2016
000622276 999C5 $$1DE Soper$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.15.1141$$p1141 -$$tPhys. Rev. D$$uD.E. Soper, The Parton Model and the Bethe-Salpeter Wave Function. Phys. Rev. D 15, 1141 (1977). https://doi.org/10.1103/PhysRevD.15.1141$$v15$$y1977
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.62.071503$$uM. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for zeta —$${>}$$ 0, Phys. Rev. D 62 (2000) 071503, [Erratum: Phys.Rev.D 66, 119903 (2002)]. arXiv:hep-ph/0005108, https://doi.org/10.1103/PhysRevD.62.071503
000622276 999C5 $$1AV Belitsky$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(02)00144-X$$p323 -$$tNucl. Phys. B$$uA.V. Belitsky, D. Mueller, A. Kirchner, Theory of deeply virtual Compton scattering on the nucleon. Nucl. Phys. B 629, 323–392 (2002). https://doi.org/10.1016/S0550-3213(02)00144-X. arXiv:hep-ph/0112108$$v629$$y2002
000622276 999C5 $$1AV Belitsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.82.074010$$tPhys. Rev. D$$uA.V. Belitsky, D. Mueller, Exclusive electroproduction revisited: treating kinematical effects. Phys. Rev. D 82, 074010 (2010). https://doi.org/10.1103/PhysRevD.82.074010. arXiv:1005.5209$$v82$$y2010
000622276 999C5 $$1B Kriesten$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2022.137051$$tPhys. Lett. B$$uB. Kriesten, S. Liuti, A. Meyer, Novel Rosenbluth extraction framework for Compton form factors from deeply virtual exclusive experiments. Phys. Lett. B 829, 137051 (2022). https://doi.org/10.1016/j.physletb.2022.137051. arXiv:2011.04484$$v829$$y2022
000622276 999C5 $$1B Kriesten$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.016015$$tPhys. Rev. D$$uB. Kriesten, S. Liuti, Theory of deeply virtual Compton scattering off the unpolarized proton. Phys. Rev. D 105(1), 016015 (2022). https://doi.org/10.1103/PhysRevD.105.016015. arXiv:2004.08890$$v105$$y2022
000622276 999C5 $$1B Kriesten$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.054021$$tPhys. Rev. D$$uB. Kriesten, S. Liuti, L. Calero-Diaz, D. Keller, A. Meyer, G.R. Goldstein, J. Osvaldo Gonzalez-Hernandez, Extraction of generalized parton distribution observables from deeply virtual electron proton scattering experiments. Phys. Rev. D 101(5), 054021 (2020). https://doi.org/10.1103/PhysRevD.101.054021. arXiv:1903.05742$$v101$$y2020
000622276 999C5 $$1B Kriesten$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.056022$$tPhys. Rev. D$$uB. Kriesten, P. Velie, E. Yeats, F.Y. Lopez, S. Liuti, Parametrization of quark and gluon generalized parton distributions in a dynamical framework. Phys. Rev. D 105(5), 056022 (2022). https://doi.org/10.1103/PhysRevD.105.056022. arXiv:2101.01826$$v105$$y2022
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1142/9789811214950_0005$$uK. Kumerički, Extraction of DVCS form factors with uncertainties, in: Probing Nucleons and Nuclei in High Energy Collisions: Dedicated to the Physics of the Electron Ion Collider, 2020, pp. 25–29. https://doi.org/10.1142/9789811214950_0005arXiv:1910.04806
000622276 999C5 $$1J Grigsby$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.016001$$tPhys. Rev. D$$uJ. Grigsby, B. Kriesten, J. Hoskins, S. Liuti, P. Alonzi, M. Burkardt, Deep learning analysis of deeply virtual exclusive photoproduction. Phys. Rev. D 104(1), 016001 (2021). https://doi.org/10.1103/PhysRevD.104.016001. arXiv:2012.04801$$v104$$y2021
000622276 999C5 $$1M Čuić$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.232005$$tPhys. Rev. Lett.$$uM. Čuić, K. Kumerički, A. Schäfer, Separation of Quark Flavors Using Deeply Virtual Compton Scattering Data. Phys. Rev. Lett. 125(23), 232005 (2020). https://doi.org/10.1103/PhysRevLett.125.232005. arXiv:2007.00029$$v125$$y2020
000622276 999C5 $$2Crossref$$uM. Almaeen, J. Grigsby, J. Hoskins, B. Kriesten, Y. Li, H.-W. Lin, S. Liuti, Benchmarks for a Global Extraction of Information from Deeply Virtual Exclusive Scattering (7 2022). arXiv:2207.10766
000622276 999C5 $$1M Guidal$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.012001$$tPhys. Rev. Lett.$$uM. Guidal, M. Vanderhaeghen, Double deeply virtual Compton scattering off the nucleon. Phys. Rev. Lett. 90, 012001 (2003). https://doi.org/10.1103/PhysRevLett.90.012001. arXiv:hep-ph/0208275$$v90$$y2003
000622276 999C5 $$1AV Belitsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.022001$$tPhys. Rev. Lett.$$uA.V. Belitsky, D. Mueller, Exclusive electroproduction of lepton pairs as a probe of nucleon structure. Phys. Rev. Lett. 90, 022001 (2003). https://doi.org/10.1103/PhysRevLett.90.022001. arXiv:hep-ph/0210313$$v90$$y2003
000622276 999C5 $$1S Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/s10050-021-00551-3$$p240 -$$tEur. Phys. J. A$$uS. Zhao, A. Camsonne, D. Marchand, M. Mazouz, N. Sparveris, S. Stepanyan, E. Voutier, Z.W. Zhao, Double deeply virtual Compton scattering with positron beams at SoLID. Eur. Phys. J. A 57(7), 240 (2021). https://doi.org/10.1140/epja/s10050-021-00551-3. arXiv:2103.12773$$v57$$y2021
000622276 999C5 $$1DY Ivanov$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(02)02856-3$$p65 -$$tPhys. Lett. B$$uD.Y. Ivanov, B. Pire, L. Szymanowski, O.V. Teryaev, Probing chiral odd GPD’s in diffractive electroproduction of two vector mesons. Phys. Lett. B 550, 65–76 (2002). https://doi.org/10.1016/S0370-2693(02)02856-3. arXiv:hep-ph/0209300$$v550$$y2002
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2017)054$$uR. Boussarie, B. Pire, L. Szymanowski, S. Wallon, Exclusive photoproduction of a $$\gamma \,\rho $$ pair with a large invariant mass, JHEP 02 (2017) 054, [Erratum: JHEP 10, 029 (2018)]. arXiv:hep-ph/1609.03830, https://doi.org/10.1007/JHEP02(2017)054
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2023)241$$uG. Duplančić, S. Nabeebaccus, K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon, Probing chiral-even and chiral-odd leading twist quark generalised parton distributions through the exclusive photoproduction of a $$ \gamma \rho $$ pair (2 2023). arXiv:2302.12026
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.96.074008$$uA. Pedrak, B. Pire, L. Szymanowski, J. Wagner, Hard photoproduction of a diphoton with a large invariant mass, Phys. Rev. D 96 (7) (2017) 074008, [Erratum: Phys.Rev.D 100, 039901 (2019)]. arXiv:hep-ph/1708.01043, https://doi.org/10.1103/PhysRevD.96.074008
000622276 999C5 $$1O Grocholski$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.094025$$tPhys. Rev. D$$uO. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner, Phenomenology of diphoton photoproduction at next-to-leading order. Phys. Rev. D 105(9), 094025 (2022). https://doi.org/10.1103/PhysRevD.105.094025. arXiv:2204.00396$$v105$$y2022
000622276 999C5 $$1O Grocholski$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.114006$$tPhys. Rev. D$$uO. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner, Collinear factorization of diphoton photoproduction at next to leading order. Phys. Rev. D 104(11), 114006 (2021). https://doi.org/10.1103/PhysRevD.104.114006. arXiv:2110.00048$$v104$$y2021
000622276 999C5 $$1J-W Qiu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.014007$$tPhys. Rev. D$$uJ.-W. Qiu, Z. Yu, Single diffractive hard exclusive processes for the study of generalized parton distributions. Phys. Rev. D 107(1), 014007 (2023). https://doi.org/10.1103/PhysRevD.107.014007. arXiv:2210.07995$$v107$$y2023
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2014-14146-2$$uS. V. Goloskokov, P. Kroll, The pion pole in hard exclusive vector-meson leptoproduction, The European Physical Journal A 50 (9) (sep 2014). https://doi.org/10.1140/epja/i2014-14146-2.https://doi.org/10.1140%2Fepja%2Fi2014-14146-2
000622276 999C5 $$1C Mezrag$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.88.014001$$tPhys. Rev. D$$uC. Mezrag, H. Moutarde, F. Sabatié, Test of two new parametrizations of the generalized parton distribution H. Phys. Rev. D 88(1), 014001 (2013). https://doi.org/10.1103/PhysRevD.88.014001. arXiv:1304.7645$$v88$$y2013
000622276 999C5 $$1A Pedrak$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.114027$$tPhys. Rev. D$$uA. Pedrak, B. Pire, L. Szymanowski, J. Wagner, Electroproduction of a large invariant mass photon pair. Phys. Rev. D 101(11), 114027 (2020). https://doi.org/10.1103/PhysRevD.101.114027. arXiv:hep-ph/2003.03263$$v101$$y2020
000622276 999C5 $$1B Berthou$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-018-5948-0$$p478 -$$tEur. Phys. J. C$$uB. Berthou et al., PARTONS: PARtonic Tomography Of Nucleon Software: A computing framework for the phenomenology of Generalized Parton Distributions. Eur. Phys. J. C 78(6), 478 (2018). https://doi.org/10.1140/epjc/s10052-018-5948-0. arXiv:hep-ph/1512.06174$$v78$$y2018
000622276 999C5 $$1EC Aschenauer$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10651-z$$p819 -$$tEur. Phys. J. C$$uE.C. Aschenauer, V. Batozskaya, S. Fazio, K. Gates, H. Moutarde, D. Sokhan, H. Spiesberger, P. Sznajder, K. Tezgin, EpIC: novel Monte Carlo generator for exclusive processes. Eur. Phys. J. C 82(9), 819 (2022). https://doi.org/10.1140/epjc/s10052-022-10651-z. arXiv:2205.01762$$v82$$y2022
000622276 999C5 $$1J-W Qiu$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2022)103$$p103 -$$tJHEP$$uJ.-W. Qiu, Z. Yu, Exclusive production of a pair of high transverse momentum photons in pion-nucleon collisions for extracting generalized parton distributions. JHEP 08, 103 (2022). https://doi.org/10.1007/JHEP08(2022)103. arXiv:2205.07846$$v08$$y2022
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.131.161902$$uJ.-W. Qiu, Z. Yu, Extraction of the $$x$$-dependence of generalized parton distributions from exclusive photoproduction (5 2023). arXiv:2305.15397
000622276 999C5 $$1SV Goloskokov$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2005-02298-5$$p281 -$$tEur. Phys. J. C$$uS.V. Goloskokov, P. Kroll, Vector meson electroproduction at small Bjorken-x and generalized parton distributions. Eur. Phys. J. C 42, 281–301 (2005). https://doi.org/10.1140/epjc/s2005-02298-5. arXiv:hep-ph/0501242$$v42$$y2005
000622276 999C5 $$1S Goloskokov$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-007-0466-5$$p367 -$$tEur. Phys. J. C$$uS. Goloskokov, P. Kroll, The Role of the quark and gluon GPDs in hard vector-meson electroproduction. Eur. Phys. J. C 53, 367–384 (2008). https://doi.org/10.1140/epjc/s10052-007-0466-5. arXiv:0708.3569$$v53$$y2008
000622276 999C5 $$1SV Goloskokov$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-009-1178-9$$p137 -$$tEur. Phys. J. C$$uS.V. Goloskokov, P. Kroll, An Attempt to understand exclusive pi+ electroproduction. Eur. Phys. J. C 65, 137–151 (2010). https://doi.org/10.1140/epjc/s10052-009-1178-9. arXiv:0906.0460$$v65$$y2010
000622276 999C5 $$1P Kroll$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-013-2278-0$$p2278 -$$tEur. Phys. J. C$$uP. Kroll, H. Moutarde, F. Sabatie, From hard exclusive meson electroproduction to deeply virtual Compton scattering. Eur. Phys. J. C 73(1), 2278 (2013). https://doi.org/10.1140/epjc/s10052-013-2278-0. arXiv:1210.6975$$v73$$y2013
000622276 999C5 $$1V Bertone$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.114019$$tPhys. Rev. D$$uV. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, P. Sznajder, Deconvolution problem of deeply virtual Compton scattering. Phys. Rev. D 103(11), 114019 (2021). https://doi.org/10.1103/PhysRevD.103.114019. arXiv:2104.03836$$v103$$y2021
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.036027$$uE. Moffat, A. Freese, I. Cloët, T. Donohoe, L. Gamberg, W. Melnitchouk, A. Metz, A. Prokudin, N. Sato, Shedding light on shadow generalized parton distributions (3 2023). arXiv:2303.12006
000622276 999C5 $$1P Kroll$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.054009$$tPhys. Rev. D$$uP. Kroll, K. Passek-Kumerički, Transition GPDs and exclusive electroproduction of $$\pi $$-$$\Delta (1232)$$ final states. Phys. Rev. D 107(5), 054009 (2023). https://doi.org/10.1103/PhysRevD.107.054009. arXiv:2211.09474$$v107$$y2023
000622276 999C5 $$1PAM Guichon$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.68.034018$$tPhys. Rev. D$$uP.A.M. Guichon, L. Mossé, M. Vanderhaeghen, Pion production in deeply virtual Compton scattering. Phys. Rev. D 68, 034018 (2003). https://doi.org/10.1103/PhysRevD.68.034018. arXiv:hep-ph/0305231$$v68$$y2003
000622276 999C5 $$2Crossref$$uK. M. Semenov-Tian-Shansky, M. Vanderhaeghen, Deeply-Virtual Compton Process $$e^- N \rightarrow e^- \gamma \pi N$$ to Study Nucleon to Resonance Transitions - arXiv:2303.00119 [hep-ph] (2023). arXiv:2303.00119
000622276 999C5 $$1HF Jones$$2Crossref$$9-- missing cx lookup --$$a10.1016/0003-4916(73)90476-4$$p1 -$$tAnnals Phys.$$uH.F. Jones, M.D. Scadron, Multipole $$\gamma N$$-$$\Delta $$ form factors and resonant photoproduction and electroproduction. Annals Phys. 81, 1–14 (1973). https://doi.org/10.1016/0003-4916(73)90476-4$$v81$$y1973
000622276 999C5 $$1SL Adler$$2Crossref$$9-- missing cx lookup --$$a10.1016/0003-4916(68)90278-9$$p189 -$$tAnnals Phys.$$uS.L. Adler, Photoproduction, electroproduction and weak single pion production in the (3,3) resonance region. Annals Phys. 50, 189–311 (1968). https://doi.org/10.1016/0003-4916(68)90278-9$$v50$$y1968
000622276 999C5 $$1SL Adler$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.12.2644$$p2644 -$$tPhys. Rev. D$$uS.L. Adler, Application of Current Algebra Techniques to Soft Pion Production by the Weak Neutral Current: V, a Case. Phys. Rev. D 12, 2644 (1975). https://doi.org/10.1103/PhysRevD.12.2644$$v12$$y1975
000622276 999C5 $$1J-Y Kim$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2022.137442$$tPhys. Lett. B$$uJ.-Y. Kim, Parametrization of transition energy-momentum tensor form factors. Phys. Lett. B 834, 137442 (2022). https://doi.org/10.1016/j.physletb.2022.137442. arXiv:2206.10202$$v834$$y2022
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2023.138083$$uJ.-Y. Kim, H.-Y. Won, J. L. Goity, C. Weiss, QCD angular momentum in $$N \rightarrow \Delta $$ transitions (4 2023). arXiv:2304.08575
000622276 999C5 $$2Crossref$$uV. Pascalutsa, M. Vanderhaeghen, New large-N(c) relations among the nucleon and nucleon-to-Delta GPDs (11 2006). arXiv:hep-ph/0611050
000622276 999C5 $$1P Schweitzer$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.94.045202$$tPhys. Rev. C$$uP. Schweitzer, C. Weiss, Spin-flavor structure of chiral-odd generalized parton distributions in the large- $$\text{ N}_c$$ limit. Phys. Rev. C 94(4), 045202 (2016). https://doi.org/10.1103/PhysRevC.94.045202. arXiv:1606.08388$$v94$$y2016
000622276 999C5 $$1S Diehl$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.131.021901$$tPhys. Rev. Lett.$$uS. Diehl et al., First Measurement of Hard Exclusive $$\pi ^{-}\Delta ^{++}$$ Electroproduction Beam-Spin Asymmetries off the Proton. Phys. Rev. Lett. 131(2), 021901 (2023). https://doi.org/10.1103/PhysRevLett.131.021901. arXiv:2303.11762$$v131$$y2023
000622276 999C5 $$1S Diehl$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2023.137761$$tPhys. Lett. B$$uS. Diehl et al., A multidimensional study of the structure function ratio $$\sigma $$LT’/$$\sigma $$0 from hard exclusive $$\pi $$+ electro-production off protons in the GPD regime. Phys. Lett. B 839, 137761 (2023). https://doi.org/10.1016/j.physletb.2023.137761. arXiv:2210.14557$$v839$$y2023
000622276 999C5 $$1A Kim$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2024.138459$$tPhys. Lett. B$$uA. Kim et al., Beam spin asymmetry measurements of deeply virtual $$\pi $$0 production with CLAS12. Phys. Lett. B 849, 138459 (2024). https://doi.org/10.1016/j.physletb.2024.138459. arXiv:2307.07874$$v849$$y2024
000622276 999C5 $$1CA Gayoso$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/s10050-021-00625-2$$p342 -$$tEur. Phys. J. A$$uC.A. Gayoso et al., Progress and opportunities in backward angle (u-channel) physics. Eur. Phys. J. A 57(12), 342 (2021). https://doi.org/10.1140/epja/s10050-021-00625-2. arXiv:2107.06748$$v57$$y2021
000622276 999C5 $$1LL Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.60.014010$$tPhys. Rev. D$$uL.L. Frankfurt, P.V. Pobylitsa, M.V. Polyakov, M. Strikman, Hard exclusive pseudoscalar meson electroproduction and spin structure of a nucleon. Phys. Rev. D 60, 014010 (1999). https://doi.org/10.1103/PhysRevD.60.014010. arXiv:hep-ph/9901429$$v60$$y1999
000622276 999C5 $$1B Pire$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.71.111501$$tPhys. Rev. D$$uB. Pire, L. Szymanowski, Hadron annihilation into two photons and backward VCS in the scaling regime of QCD. Phys. Rev. D 71, 111501 (2005). https://doi.org/10.1103/PhysRevD.71.111501. arXiv:hep-ph/0411387$$v71$$y2005
000622276 999C5 $$1B Pire$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2021.09.002$$p1 -$$tPhys. Rept.$$uB. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Transition distribution amplitudes and hard exclusive reactions with baryon number transfer. Phys. Rept. 940, 1–121 (2021). https://doi.org/10.1016/j.physrep.2021.09.002. arXiv:2103.01079$$v940$$y2021
000622276 999C5 $$1K Park$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2018.03.026$$p340 -$$tPhys. Lett. B$$uK. Park et al., Hard exclusive pion electroproduction at backward angles with CLAS. Phys. Lett. B 780, 340–345 (2018). https://doi.org/10.1016/j.physletb.2018.03.026. arXiv:1711.08486$$v780$$y2018
000622276 999C5 $$1WB Li$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.182501$$tPhys. Rev. Lett.$$uW.B. Li et al., Unique Access to $$u$$-Channel Physics: Exclusive Backward-Angle Omega Meson Electroproduction. Phys. Rev. Lett. 123(18), 182501 (2019). https://doi.org/10.1103/PhysRevLett.123.182501. arXiv:1910.00464$$v123$$y2019
000622276 999C5 $$1S Diehl$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.182001$$tPhys. Rev. Lett.$$uS. Diehl et al., Extraction of Beam-Spin Asymmetries from the Hard Exclusive $$\pi ^+$$ Channel off Protons in a Wide Range of Kinematics. Phys. Rev. Lett. 125(18), 182001 (2020). https://doi.org/10.1103/PhysRevLett.125.182001. arXiv:2007.15677$$v125$$y2020
000622276 999C5 $$2Crossref$$uW. B. Li, et al., Backward-angle Exclusive pi0 Production above the Resonance Region (8 2020). arXiv:2008.10768
000622276 999C5 $$1B Pire$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.074014$$tPhys. Rev. D$$uB. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, $$\pi $$ N transition distribution amplitudes: their symmetries and constraints from chiral dynamics. Phys. Rev. D 84, 074014 (2011). https://doi.org/10.1103/PhysRevD.84.074014$$v84$$y2011
000622276 999C5 $$1JP Lansberg$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2006.10.014$$p16 -$$tNucl. Phys. A$$uJ.P. Lansberg, B. Pire, L. Szymanowski, Backward DVCS and Proton to Photon Transition Distribution Amplitudes. Nucl. Phys. A 782, 16–23 (2007). https://doi.org/10.1016/j.nuclphysa.2006.10.014. arXiv:hep-ph/0607130$$v782$$y2007
000622276 999C5 $$1B Pire$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10587-4$$p656 -$$tEur. Phys. J. C$$uB. Pire, K.M. Semenov-Tian-Shansky, A.A. Shaikhutdinova, L. Szymanowski, Backward timelike Compton scattering to decipher the photon content of the nucleon. Eur. Phys. J. C 82(7), 656 (2022). https://doi.org/10.1140/epjc/s10052-022-10587-4. arXiv:2201.12853$$v82$$y2022
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s43673-023-00094-3$$uB. Pire, K. M. Semenov-Tian-Shansky, A. A. Shaikhutdinova, L. Szymanowski, Pion and photon beam initiated backward charmonium or lepton pair production (12 2022). arXiv:2212.07688
000622276 999C5 $$2Crossref$$uS. Adhikari, et al., Measurement of the J/$$\psi $$ photoproduction cross section over the full near-threshold kinematic region (4 2023). arXiv:2304.03845
000622276 999C5 $$1P Jain$$2Crossref$$9-- missing cx lookup --$$a10.3390/physics4020038$$p578 -$$tMDPI Physics$$uP. Jain, B. Pire, J.P. Ralston, The Status and Future of Color Transparency and Nuclear Filtering. MDPI Physics 4(2), 578–589 (2022). https://doi.org/10.3390/physics4020038. arXiv:2203.02579$$v4$$y2022
000622276 999C5 $$1GM Huber$$2Crossref$$9-- missing cx lookup --$$a10.3390/physics4020030$$p451 -$$tMDPI Physics$$uG.M. Huber, W.B. Li, W. Cosyn, B. Pire, u-Channel Color Transparency Observables. MDPI Physics 4(2), 451–461 (2022). https://doi.org/10.3390/physics4020030. arXiv:2202.04470$$v4$$y2022
000622276 999C5 $$2Crossref$$uT. Horn, G. M. Huber, P. Markowitz, et al., Studies of the L/T Separated Kaon Electroproduction Cross Sections from 5-11 GeV, jefferson Lab 12 GeV Experiment E12-09-011. https://www.jlab.org/exp_prog/proposals/09/PR12-09-011.pdf
000622276 999C5 $$2Crossref$$uG. M. Huber, D. Gaskell, T. Horn, et al., Measurement of the Charged Pion Form Factor to High $$Q^{2}$$ and Scaling Study of the L/T-Separated Pion Electroproduction Cross Section at 11 GeV, jefferson Lab 12 GeV Experiment E12-19-006 (2019). https://www.jlab.org/exp_prog/proposals/19/E12-19-006.pdf
000622276 999C5 $$1MK Jones$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.84.1398$$p1398 -$$tPhys. Rev. Lett.$$uM.K. Jones et al., $$g_{Ep}/g_{Mp}$$ ratio by polarization transfer in $$\vec{e} p \rightarrow e \vec{p}$$. Phys. Rev. Lett. 84, 1398–1402 (2000). https://doi.org/10.1103/PhysRevLett.84.1398. arXiv:nucl-ex/9910005$$v84$$y2000
000622276 999C5 $$1O Gayou$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.092301$$tPhys. Rev. Lett.$$uO. Gayou et al., Measurement of $$G_{Ep}/G_{Mp}$$ in $$\vec{e} p \rightarrow e \vec{p}$$ to $$Q^2 = 5.6$$-$$\text{ GeV}^2$$. Phys. Rev. Lett. 88, 092301 (2002). https://doi.org/10.1103/PhysRevLett.88.092301. arXiv:nucl-ex/0111010$$v88$$y2002
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.242301$$uA. J. R. Puckett, et al., Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to $$Q^2$$ = 8.5 $$\text{ GeV}^2$$, Phys. Rev. Lett. 104 (2010) 242301. arXiv:1005.3419, https://doi.org/10.1103/PhysRevLett.104.242301
000622276 999C5 $$2Crossref$$uAmerican Physical Society 2017 Bonner Prize in Nuclear Physics Recipient Charles F. Perdrisat (College of William and Mary), https://www.aps.org/programs/honors/prizes/prizerecipient.cfm?last_nm=F&first_nm=C &year=2017[Webpage]
000622276 999C5 $$1MY Barabanov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2020.103835$$tProg. Part. Nucl. Phys.$$uM.Y. Barabanov et al., Diquark correlations in hadron physics: Origin, impact and evidence. Prog. Part. Nucl. Phys. 116, 103835 (2021). https://doi.org/10.1016/j.ppnp.2020.103835. arXiv:2008.07630$$v116$$y2021
000622276 999C5 $$2Crossref$$uF. Gross, et al., 50 Years of Quantum Chromodynamics (12 2022). arXiv:2212.11107
000622276 999C5 $$2Crossref$$uB. Schmookler, A. Pierre-Louis, A. Deshpande, D. Higinbotham, E. Long, A. J. R. Puckett, High $$Q^2$$ electron-proton elastic scattering at the future Electron-Ion Collider (7 2022). arXiv:2207.04378
000622276 999C5 $$1F Englert$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.86.843$$p843 -$$tRev. Mod. Phys.$$uF. Englert, Nobel Lecture: The BEH Mechanism and its Scalar Boson. Rev. Mod. Phys. 86, 843 (2014)$$v86$$y2014
000622276 999C5 $$1PW Higgs$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.86.851$$p851 -$$tRev. Mod. Phys.$$uP.W. Higgs, Nobel Lecture: Evading the Goldstone theorem. Rev. Mod. Phys. 86, 851 (2014)$$v86$$y2014
000622276 999C5 $$1CD Roberts$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2021.103883$$tProg. Part. Nucl. Phys.$$uC.D. Roberts, D.G. Richards, T. Horn, L. Chang, Insights into the Emergence of Mass from Studies of Pion and Kaon Structure. Prog. Part. Nucl. Phys. 120, 103883 (2021)$$v120$$y2021
000622276 999C5 $$1VV Flambaum$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00601-005-0123-1$$p31 -$$tFew Body Syst.$$uV.V. Flambaum et al., Sigma Terms of Light-Quark Hadrons. Few Body Syst. 38, 31 (2006)$$v38$$y2006
000622276 999C5 $$1J-H Huang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.054007$$tPhys. Rev. D$$uJ.-H. Huang, T.-T. Sun, H. Chen, Evaluation of pion-nucleon sigma term in Dyson-Schwinger equation approach of QCD. Phys. Rev. D 101(5), 054007 (2020). https://doi.org/10.1103/PhysRevD.101.054007. arXiv:1910.08298$$v101$$y2020
000622276 999C5 $$1J Ruiz de Elvira$$2Crossref$$uJ. Ruiz de Elvira, M. Hoferichter, B. Kubis, U.-G. Meißner, Extracting the $$\sigma $$-Term from Low-Energy Pion-Nucleon Scattering. J. Phys. G 45(2), 024001 (2018)$$y2018
000622276 999C5 $$1S Aoki$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-019-7354-7$$p113 -$$tEur. Phys. J. C$$uS. Aoki et al., FLAG Review 2019. Eur. Phys. J. C 80, 113 (2020)$$v80$$y2020
000622276 999C5 $$1D Binosi$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00601-022-01740-6$$p42 -$$tFew Body Syst.$$uD. Binosi, Emergent Hadron Mass in Strong Dynamics. Few Body Syst. 63(2), 42 (2022)$$v63$$y2022
000622276 999C5 $$1MN Ferreira$$2Crossref$$9-- missing cx lookup --$$a10.3390/particles6010017$$p312 -$$tParticles$$uM.N. Ferreira, J. Papavassiliou, Gauge Sector Dynamics in QCD. Particles 6(1), 312 (2023)$$v6$$y2023
000622276 999C5 $$1M Ding$$2Crossref$$9-- missing cx lookup --$$a10.3390/particles6010004$$p57 -$$tParticles$$uM. Ding, C.D. Roberts, S.M. Schmidt, Emergence of Hadron Mass and Structure. Particles 6(1), 57 (2023)$$v6$$y2023
000622276 999C5 $$1DS Carman$$2Crossref$$9-- missing cx lookup --$$a10.3390/particles6010023$$p416 -$$tParticles$$uD.S. Carman, R.W. Gothe, V.I. Mokeev, C.D. Roberts, Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass. Particles 6(1), 416 (2023)$$v6$$y2023
000622276 999C5 $$1MY Barabanov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2020.103835$$tProgress in Particle and Nuclear Physics$$uM.Y. Barabanov et al., Diquark Correlations in Hadron Physics: Origin, Impact and Evidence. Progress in Particle and Nuclear Physics 116, 103835 (2021)$$v116$$y2021
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0218301320300064$$p2030006 -$$tInt. J. Mod. Phys. E$$uS.J. Brodsky et al., Strong QCD from Hadron Structure Experiments: Newport News, VA, USA, November 4–8, 2019. Int. J. Mod. Phys. E 29(08), 2030006 (2020)$$v29$$y2020
000622276 999C5 $$1VD Burkert$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.91.011003$$tRev. Mod. Phys.$$uV.D. Burkert, C.D. Roberts, Colloquium?: Roper Resonance: Toward a Solution to the Fifty Year Puzzle. Rev. Mod. Phys. 91(1), 011003 (2019)$$v91$$y2019
000622276 999C5 $$1AC Aguilar$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2019-12885-0$$p190 -$$tEur. Phys. J. A$$uA.C. Aguilar et al., Pion and Kaon Structure at the Electron-Ion Collider. Eur. Phys. J. A 55, 190 (2019)$$v55$$y2019
000622276 999C5 $$1DP Anderle$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11467-021-1062-0$$p64701 -$$tFront. Phys. (Beijing)$$uD.P. Anderle et al., Electron-Ion Collider in China. Front. Phys. (Beijing) 16(6), 64701 (2021)$$v16$$y2021
000622276 999C5 $$1JS Schwinger$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.128.2425$$p2425 -$$tPhys. Rev.$$uJ.S. Schwinger, Gauge Invariance and Mass. 2. Phys. Rev. 128, 2425 (1962)$$v128$$y1962
000622276 999C5 $$1JM Cornwall$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.26.1453$$p1453 -$$tPhys. Rev. D$$uJ.M. Cornwall, Dynamical Mass Generation in Continuum QCD. Phys. Rev. D 26, 1453 (1982)$$v26$$y1982
000622276 999C5 $$1J Mandula$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(87)91541-3$$p127 -$$tPhys. Lett. B$$uJ. Mandula, M. Ogilvie, The Gluon Is Massive: A Lattice Calculation of the Gluon Propagator in the Landau Gauge. Phys. Lett. B 185, 127 (1987)$$v185$$y1987
000622276 999C5 $$1O Oliveira$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.094506$$tPhys. Rev. D$$uO. Oliveira, P.J. Silva, J.-I. Skullerud, A. Sternbeck, Quark Propagator with Two Flavors of $$O(a)$$-Improved Wilson Fermions. Phys. Rev. D 99(9), 094506 (2019)$$v99$$y2019
000622276 999C5 $$1N Suzuki$$2Crossref$$uN. Suzuki, B. Julia-Diaz, H. Kamano, T.S.H. Lee, A. Matsuyama, T. Sato, Disentangling the Dynamical Origin of P-11 Nucleon Resonances. Phys. Rev. Lett. 104, 042302 (2010)$$y2010
000622276 999C5 $$1MM Giannini$$2Crossref$$uM.M. Giannini, E. Santopinto, The Hypercentral Constituent Quark Model and its Application to Baryon Properties. Chin. J. Phys. 53, 020301 (2015)$$y2015
000622276 999C5 $$1S-X Qin$$2Crossref$$uS.-X. Qin, C.D. Roberts, Impressions of the Continuum Bound State Problem in QCD. Chin. Phys. Lett. 37(12), 121201 (2020)$$y2020
000622276 999C5 $$1F Gao$$2Crossref$$uF. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, P.C. Tandy, Exposing Strangeness: Projections for Kaon Electromagnetic Form Factors. Phys. Rev. D 96(3), 034024 (2017)$$y2017
000622276 999C5 $$1S-S Xu$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2019-12805-4$$p113 -$$tEur. Phys. J. A (Lett.)$$uS.-S. Xu, Z.-F. Cui, L. Chang, J. Papavassiliou, C.D. Roberts, H.-S. Zong, New Perspective on Hybrid Mesons. Eur. Phys. J. A (Lett.) 55, 113 (2019)$$v55$$y2019
000622276 999C5 $$1Q-W Wang$$2Crossref$$uQ.-W. Wang, S.-X. Qin, C.D. Roberts, S.M. Schmidt, Proton Tensor Charges from a Poincaré-Covariant Faddeev Equation. Phys. Rev. D 98, 054019 (2018)$$y2018
000622276 999C5 $$1M Chen$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.091505$$p091505(R) -$$tPhys. Rev. D$$uM. Chen, M. Ding, L. Chang, C.D. Roberts, Mass-Dependence of Pseudoscalar Meson Elastic Form Factors. Phys. Rev. D 98, 091505(R) (2018)$$v98$$y2018
000622276 999C5 $$1D Binosi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2019.01.033$$p257 -$$tPhys. Lett. B$$uD. Binosi, L. Chang, M. Ding, F. Gao, J. Papavassiliou, C.D. Roberts, Distribution Amplitudes of Heavy-Light Mesons. Phys. Lett. B 790, 257 (2019)$$v790$$y2019
000622276 999C5 $$1C Chen$$2Crossref$$uC. Chen, G.I. Krein, C.D. Roberts, S.M. Schmidt, J. Segovia, Spectrum and Structure of Octet and Decuplet Baryons and Their Positive-Parity Excitations. Phys. Rev. D 100, 054009 (2019)$$y2019
000622276 999C5 $$1S-X Qin$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00601-019-1488-x$$p26 -$$tFew Body Syst.$$uS.-X. Qin, C.D. Roberts, S.M. Schmidt, Spectrum of Light- and Heavy-Baryons. Few Body Syst. 60, 26 (2019)$$v60$$y2019
000622276 999C5 $$1Y Lu$$2Crossref$$uY. Lu, C. Chen, Z.-F. Cui, C.D. Roberts, S.M. Schmidt, J. Segovia, H.S. Zong, Transition Form Factors: $$\gamma ^* + p \rightarrow \Delta (1232)$$, $$\Delta (1600)$$. Phys. Rev. D 100(3), 034001 (2019)$$y2019
000622276 999C5 $$1EV Souza$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/s10050-020-00041-y$$p25 -$$tEur. Phys. J. A (Lett.)$$uE.V. Souza, M. Narciso Ferreira, A.C. Aguilar, J. Papavassiliou, C.D. Roberts, S.-S. Xu, Pseudoscalar Glueball Mass: A Window on Three-Gluon Interactions. Eur. Phys. J. A (Lett.) 56, 25 (2020)$$v56$$y2020
000622276 999C5 $$1K Raya$$2Crossref$$uK. Raya, Z.-F. Cui, L. Chang, J.-M. Morgado, C.D. Roberts, J. Rodríguez-Quintero, Revealing Pion and Kaon Structure via Generalised Parton Distributions. Chin. Phys. C 46(26), 013105 (2022)$$y2022
000622276 999C5 $$1ZF Cui$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/s10050-021-00658-7$$p10 -$$tEur. Phys. J. A$$uZ.F. Cui, M. Ding, J.M. Morgado, K. Raya, D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, Concerning Pion Parton Distributions. Eur. Phys. J. A 58(1), 10 (2022)$$v58$$y2022
000622276 999C5 $$1L Liu$$2Crossref$$uL. Liu, C. Chen, C.D. Roberts, Wave functions of $$(I, J^P)=(\tfrac{1}{2},\tfrac{3}{2}^{\mp })$$ baryons. Phys. Rev. D 107(1), 014002 (2023)$$y2023
000622276 999C5 $$2Crossref$$uV. D. Burkert, Nucleon Resonances and Transition Form Factors –arXiv:2212.08980 [hep-ph] (2022)
000622276 999C5 $$1IG Aznauryan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2011.08.001$$p1 -$$tProg. Part. Nucl. Phys.$$uI.G. Aznauryan, V.D. Burkert, Electroexcitation of Nucleon Resonances. Prog. Part. Nucl. Phys. 67, 1–54 (2012)$$v67$$y2012
000622276 999C5 $$1VI Mokeev$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00601-022-01760-2$$p59 -$$tFew Body Syst.$$uV.I. Mokeev, D.S. Carman, Photo- and Electrocouplings of Nucleon Resonances. Few Body Syst. 63(3), 59 (2022)$$v63$$y2022
000622276 999C5 $$1J Segovia$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.171801$$tPhys. Rev. Lett.$$uJ. Segovia, B. El-Bennich, E. Rojas, I.C. Cloet, C.D. Roberts, S.-S. Xu, H.-S. Zong, Completing the Picture of the Roper Resonance. Phys. Rev. Lett. 115(17), 171801 (2015)$$v115$$y2015
000622276 999C5 $$1DJ Wilson$$2Crossref$$uD.J. Wilson, I.C. Cloet, L. Chang, C.D. Roberts, Nucleon and Roper Electromagnetic Elastic and Transition Form Factors. Phys. Rev. C 85, 025205 (2012)$$y2012
000622276 999C5 $$1Z-F Cui$$2Crossref$$uZ.-F. Cui, C. Chen, D. Binosi, F. de Soto, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, J. Segovia, Nucleon Elastic Form Factors at Accessible Large Spacelike Momenta. Phys. Rev. D 102, 014043 (2020)$$y2020
000622276 999C5 $$1C Chen$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/s10050-022-00848-x$$p206 -$$tEur. Phys. J. A$$uC. Chen, C.D. Roberts, Nucleon Axial Form Factor at Large Momentum Transfers. Eur. Phys. J. A 58(10), 206 (2022)$$v58$$y2022
000622276 999C5 $$1M Ding$$2Crossref$$uM. Ding, K. Raya, A. Bashir, D. Binosi, L. Chang, M. Chen, C.D. Roberts, $$\gamma ^\ast \gamma \rightarrow \eta, \eta ^\prime $$ Transition Form Factors. Phys. Rev. D 99, 014014 (2019)$$y2019
000622276 999C5 $$1RG Edwards$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.074508$$tPhys. Rev. D$$uR.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Excited state baryon spectroscopy from lattice QCD. Phys. Rev. D 84, 074508 (2011). https://doi.org/10.1103/PhysRevD.84.074508. arXiv:1104.5152$$v84$$y2011
000622276 999C5 $$1JJ Dudek$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.85.054016$$tPhys. Rev. D$$uJ.J. Dudek, R.G. Edwards, Hybrid Baryons in QCD. Phys. Rev. D 85, 054016 (2012). https://doi.org/10.1103/PhysRevD.85.054016. arXiv:1201.2349$$v85$$y2012
000622276 999C5 $$1M Sun$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.054511$$tPhys. Rev. D$$uM. Sun et al., Roper State from Overlap Fermions. Phys. Rev. D 101(5), 054511 (2020). https://doi.org/10.1103/PhysRevD.101.054511. arXiv:1911.02635$$v101$$y2020
000622276 999C5 $$1CD Abell$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.094519$$tPhys. Rev. D$$uC.D. Abell, D.B. Leinweber, Z.-W. Liu, A.W. Thomas, J.-J. Wu, Low-lying odd-parity nucleon resonances as quark-model-like states. Phys. Rev. D 108(9), 094519 (2023). https://doi.org/10.1103/PhysRevD.108.094519. arXiv:2306.00337$$v108$$y2023
000622276 999C5 $$1H-W Lin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.78.114508$$tPhys. Rev. D$$uH.-W. Lin, S.D. Cohen, R.G. Edwards, D.G. Richards, First Lattice Study of the N - P(11)(1440) Transition Form Factors. Phys. Rev. D 78, 114508 (2008). https://doi.org/10.1103/PhysRevD.78.114508. arXiv:0803.3020$$v78$$y2008
000622276 999C5 $$1KS Egiyan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.68.014313$$tPhys. Rev. C$$uK.S. Egiyan et al., Observation of nuclear scaling in the $$a(e, e^{^{\prime }})$$ reaction at $${x}_{B}{>}1$$. Phys. Rev. C 68, 014313 (2003). https://doi.org/10.1103/PhysRevC.68.014313$$v68$$y2003
000622276 999C5 $$1KS Egiyan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.082501$$tPhys. Rev. Lett.$$uK.S. Egiyan et al., Measurement of two- and three-nucleon short-range correlation probabilities in nuclei. Phys. Rev. Lett. 96, 082501 (2006). https://doi.org/10.1103/PhysRevLett.96.082501$$v96$$y2006
000622276 999C5 $$1N Fomin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.092502$$tPhys. Rev. Lett.$$uN. Fomin et al., New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei. Phys. Rev. Lett. 108, 092502 (2012). https://doi.org/10.1103/PhysRevLett.108.092502$$v108$$y2012
000622276 999C5 $$1LL Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.48.2451$$p2451 -$$tPhys. Rev. C$$uL.L. Frankfurt, M.I. Strikman, D.B. Day, M. Sargsian, Evidence for short range correlations from high Q**2 (e, e-prime) reactions. Phys. Rev. C 48, 2451–2461 (1993). https://doi.org/10.1103/PhysRevC.48.2451$$v48$$y1993
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1142/s0217751x08041207$$p2991 -$$tInt. J. Mod. Phys. A$$uL. Frankfurt, M. Sargsian, M. Strikman, Recent observation of short range nucleon correlations in nuclei and their implications for the structure of nuclei and neutron stars. Int. J. Mod. Phys. A 23(20), 2991–3055 (2008). https://doi.org/10.1142/s0217751x08041207$$v23$$y2008
000622276 999C5 $$1E Piasetzky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.162504$$tPhys. Rev. Lett.$$uE. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, J.W. Watson, Evidence for strong dominance of proton-neutron correlations in nuclei. Phys. Rev. Lett. 97, 162504 (2006). https://doi.org/10.1103/PhysRevLett.97.162504$$v97$$y2006
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1156675$$uR. Subedi et al., Probing cold dense nuclear matter. Science 320(5882), 1476–1478 (2008). https://doi.org/10.1126/science.1156675https://science.sciencemag.org/content/320/5882/1476.full.pdf
000622276 999C5 $$1M Duer$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.172502$$tPhys. Rev. Lett.$$uM. Duer et al., Direct Observation of Proton-Neutron Short-Range Correlation Dominance in Heavy Nuclei. Phys. Rev. Lett. 122, 172502 (2019). https://doi.org/10.1103/PhysRevLett.122.172502$$v122$$y2019
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevc.71.044615$$uM. Sargsian, T. Abrahamyan, M. Strikman, L. Frankfurt, Exclusive electrodisintegration of $$^{3}{\rm He}$$ at high $${Q}^{2}$$. ii. decay function formalism, Phys. Rev. C 71 (4) (2005). https://doi.org/10.1103/physrevc.71.044615
000622276 999C5 $$1R Schiavilla$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.132501$$tPhys. Rev. Lett.$$uR. Schiavilla, R.B. Wiringa, S.C. Pieper, J. Carlson, Tensor Forces and the Ground-State Structure of Nuclei. Phys. Rev. Lett. 98, 132501 (2007). https://doi.org/10.1103/PhysRevLett.98.132501. arXiv:nucl-th/0611037$$v98$$y2007
000622276 999C5 $$1MM Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.89.034305$$tPhys. Rev. C$$uM.M. Sargsian, New properties of the high-momentum distribution of nucleons in asymmetric nuclei. Phys. Rev. C 89(3), 034305 (2014). https://doi.org/10.1103/PhysRevC.89.034305. arXiv:1210.3280$$v89$$y2014
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1256785$$uO. Hen, et al., Momentum sharing in imbalanced fermi systems, Science 346 (6209) (2014) 614–617. https://doi.org/10.1126/science.1256785arXiv:https://science.sciencemag.org/content/346/6209/614.full.pdf
000622276 999C5 $$1M Duer$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0400-z$$p617 -$$tNature$$uM. Duer et al., Probing the high-momentum protons and neutrons in neutron-rich nuclei. Nature 560, 617–621 (2018). https://doi.org/10.1038/s41586-018-0400-z$$v560$$y2018
000622276 999C5 $$1R Jastrow$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.81.165$$p165 -$$tPhys. Rev.$$uR. Jastrow, On the nucleon-nucleon interaction. Phys. Rev. 81, 165–170 (1951). https://doi.org/10.1103/PhysRev.81.165$$v81$$y1951
000622276 999C5 $$1RB Wiringa$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.51.38$$p38 -$$tPhys. Rev. C$$uR.B. Wiringa, V.G.J. Stoks, R. Schiavilla, An Accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 51, 38–51 (1995). https://doi.org/10.1103/PhysRevC.51.38. arXiv:nucl-th/9408016$$v51$$y1995
000622276 999C5 $$1E Epelbaum$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.81.1773$$p1773 -$$tRev. Mod. Phys.$$uE. Epelbaum, H.-W. Hammer, U.-G. Meissner, Modern Theory of Nuclear Forces. Rev. Mod. Phys. 81, 1773–1825 (2009). https://doi.org/10.1103/RevModPhys.81.1773. arXiv:0811.1338$$v81$$y2009
000622276 999C5 $$1M Harvey$$2Crossref$$9-- missing cx lookup --$$a10.1016/0375-9474(81)90413-9$$p326 -$$tNucl. Phys. A$$uM. Harvey, Effective nuclear forces in the quark model with delta and hidden-color channel coupling. Nucl. Phys. A 352(3), 326–342 (1981). https://doi.org/10.1016/0375-9474(81)90413-9$$v352$$y1981
000622276 999C5 $$1C Ji$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.34.1460$$p1460 -$$tPhys. Rev. D$$uC. Ji, S. Brodsky, Quantum-chromodynamic evolution of six-quark states. Phys. Rev. D 34, 1460–1473 (1986). https://doi.org/10.1103/PhysRevD.34.1460$$v34$$y1986
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(81)90129-0$$p215 -$$tPhys. Rept.$$uL. Frankfurt, M. Strikman, High-energy phenomena, short-range nuclear structure and QCD. Phys. Rept. 76(4), 215–347 (1981). https://doi.org/10.1016/0370-1573(81)90129-0$$v76$$y1981
000622276 999C5 $$1G Miller$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.89.045203$$tPhys. Rev. C$$uG. Miller, Pionic and hidden-color, six-quark contributions to the deuteron $${b}_{1}$$ structure function. Phys. Rev. C 89, 045203 (2014). https://doi.org/10.1103/PhysRevC.89.045203$$v89$$y2014
000622276 999C5 $$1J Rittenhouse$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2022.122563$$tNucl. Phys. A$$uJ. Rittenhouse, West, Diquark induced short-range nucleon-nucleon correlations & the EMC effect. Nucl. Phys. A 1029, 122563 (2023). https://doi.org/10.1016/j.nuclphysa.2022.122563. arXiv:2009.06968$$v1029$$y2023
000622276 999C5 $$1J Rittenhouse West$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2020.122134$$tNucl. Phys. A$$uJ. Rittenhouse West, S.J. Brodsky, G.F. de Teramond, A.S. Goldhaber, I. Schmidt, QCD hidden-color hexadiquark in the core of nuclei. Nucl. Phys. A 1007, 122134 (2021). https://doi.org/10.1016/j.nuclphysa.2020.122134. arXiv:2004.14659$$v1007$$y2021
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(88)90179-2$$p235 -$$tPhys. Rept.$$uL. Frankfurt, M. Strikman, Hard nuclear processes and microscopic nuclear structure. Phys. Rept. 160(5), 235–427 (1988). https://doi.org/10.1016/0370-1573(88)90179-2$$v160$$y1988
000622276 999C5 $$1MM Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2006.10.057$$p199 -$$tNucl. Phys. A$$uM.M. Sargsian, Superfast quarks in the nuclear medium. Nucl. Phys. A 782, 199–206 (2007). https://doi.org/10.1016/j.nuclphysa.2006.10.057$$v782$$y2007
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-015-3755-4$$uA. Freese, M. Sargsian, M. Strikman, Probing superfast quarks in nuclei through dijet production at the LHC, Eur. Phys. J. C 75 (11) (nov 2015). https://doi.org/10.1140/epjc/s10052-015-3755-4
000622276 999C5 $$1A Freese$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.114019$$tPhys. Rev. D$$uA. Freese, W. Cosyn, M. Sargsian, QCD evolution of superfast quarks. Phys. Rev. D 99, 114019 (2019). https://doi.org/10.1103/PhysRevD.99.114019$$v99$$y2019
000622276 999C5 $$1N Fomin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.212502$$tPhys. Rev. Lett.$$uN. Fomin et al., Scaling of the $${F}_{2}$$ structure function in nuclei and quark distributions at $$x {>} 1$$. Phys. Rev. Lett. 105, 212502 (2010). https://doi.org/10.1103/PhysRevLett.105.212502$$v105$$y2010
000622276 999C5 $$2Crossref$$uJ. Arrington, D. Day, N. Fomin, P. Solvignon, E12-06-105: Inclusive Scattering from Nuclei at $$x {>} 1$$ in the quasielastic and deeply inelastic regimes (2006). https://www.jlab.org/exp_prog/proposals/06/PR12-06-105.pdf
000622276 999C5 $$1C Yero$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.262501$$tPhys. Rev. Lett.$$uC. Yero et al., Probing the deuteron at very large internal momenta. Phys. Rev. Lett. 125, 262501 (2020). https://doi.org/10.1103/PhysRevLett.125.262501$$v125$$y2020
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevc.100.044320$$uM. Sargsian, D. Day, L. Frankfurt, M. Strikman, Searching for three-nucleon short-range correlations, Phys. Rev. C 100 (4) (2019). https://doi.org/10.1103/physrevc.100.044320
000622276 999C5 $$1D Day$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.107.014319$$tPhys. Rev. C$$uD. Day, L. Frankfurt, M. Sargsian, M. Strikman, Toward observation of three-nucleon short-range correlations in high-$${Q}^{2} a(e,{e}^{^{\prime }})x$$ reactions. Phys. Rev. C 107, 014319 (2023). https://doi.org/10.1103/PhysRevC.107.014319$$v107$$y2023
000622276 999C5 $$1C. Ciofi degli Atti$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2015.06.002$$p1 -$$tPhys. Rept.$$uC. Ciofi degli. Atti, In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances. Phys. Rept. 590, 1–85 (2015). https://doi.org/10.1016/j.physrep.2015.06.002$$v590$$y2015
000622276 999C5 $$1T Neff$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.92.024003$$tPhys. Rev. C$$uT. Neff, H. Feldmeier, W. Horiuchi, Short-range correlations in nuclei with similarity renormalization group transformations. Phys. Rev. C 92(2), 024003 (2015). https://doi.org/10.1103/PhysRevC.92.024003. arXiv:1506.02237$$v92$$y2015
000622276 999C5 $$1AJ Tropiano$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.104.034311$$tPhys. Rev. C$$uA.J. Tropiano, S.K. Bogner, R.J. Furnstahl, Short-range correlation physics at low renormalization group resolution. Phys. Rev. C 104(3), 034311 (2021). https://doi.org/10.1103/PhysRevC.104.034311. arXiv:2105.13936$$v104$$y2021
000622276 999C5 $$1RJ Furnstahl$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00601-021-01658-5$$p72 -$$tFew Body Syst.$$uR.J. Furnstahl, H.W. Hammer, A. Schwenk, Nuclear Structure at the Crossroads. Few Body Syst. 62(3), 72 (2021). https://doi.org/10.1007/s00601-021-01658-5. arXiv:2107.00413$$v62$$y2021
000622276 999C5 $$1JJ Aubert$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(83)90437-9$$p275 -$$tPhys. Lett. B$$uJ.J. Aubert et al., The ratio of the nucleon structure functions $$F2_n$$ for iron and deuterium. Phys. Lett. B 123, 275–278 (1983). https://doi.org/10.1016/0370-2693(83)90437-9$$v123$$y1983
000622276 999C5 $$1J Seely$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.202301$$tPhys. Rev. Lett.$$uJ. Seely et al., New measurements of the EMC effect in very light nuclei. Phys. Rev. Lett. 103, 202301 (2009). https://doi.org/10.1103/PhysRevLett.103.202301. arXiv:0904.4448$$v103$$y2009
000622276 999C5 $$1LB Weinstein$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.052301$$tPhys. Rev. Lett.$$uL.B. Weinstein, E. Piasetzky, D.W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Short Range Correlations and the EMC Effect. Phys. Rev. Lett. 106, 052301 (2011). https://doi.org/10.1103/PhysRevLett.106.052301. arXiv:1009.5666$$v106$$y2011
000622276 999C5 $$1B Schmookler$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-019-0925-9$$p354 -$$tNature$$uB. Schmookler et al., Modified structure of protons and neutrons in correlated pairs. Nature 566(7744), 354–358 (2019). https://doi.org/10.1038/s41586-019-0925-9. arXiv:2004.12065$$v566$$y2019
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2015.05.001$$p1 -$$tPhys. Rept.$$uS.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-Front Holographic QCD and Emerging Confinement. Phys. Rept. 584, 1–105 (2015). https://doi.org/10.1016/j.physrep.2015.05.001. arXiv:1407.8131$$v584$$y2015
000622276 999C5 $$1DN Kim$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.106.055202$$tPhys. Rev. C$$uD.N. Kim, G.A. Miller, Light-front holography model of the EMC effect. Phys. Rev. C 106(5), 055202 (2022). https://doi.org/10.1103/PhysRevC.106.055202. arXiv:2209.13753$$v106$$y2022
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2011.12.002$$p255 -$$tPhys. Rept.$$uL. Frankfurt, V. Guzey, M. Strikman, Leading Twist Nuclear Shadowing Phenomena in Hard Processes with Nuclei. Phys. Rept. 512, 255–393 (2012). https://doi.org/10.1016/j.physrep.2011.12.002. arXiv:1106.2091$$v512$$y2012
000622276 999C5 $$1GA Miller$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.64.022201$$tPhys. Rev. C$$uG.A. Miller, Revealing nuclear pions using electron scattering. Phys. Rev. C 64, 022201 (2001). https://doi.org/10.1103/PhysRevC.64.022201. arXiv:nucl-th/0104025$$v64$$y2001
000622276 999C5 $$1DM Alde$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.64.2479$$p2479 -$$tPhys. Rev. Lett.$$uD.M. Alde et al., Nuclear dependence of dimuon production at 800-GeV. FNAL-772 experiment. Phys. Rev. Lett. 64, 2479–2482 (1990). https://doi.org/10.1103/PhysRevLett.64.2479$$v64$$y1990
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2023.137935$$uM. Alvioli, M. Strikman, Hunting for an EMC-like effect for antiquarks (10 2022). arXiv:2210.12597
000622276 999C5 $$1P Kotko$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-017-4906-6$$p353 -$$tEur. Phys. J. C$$uP. Kotko, K. Kutak, S. Sapeta, A.M. Stasto, M. Strikman, Estimating nonlinear effects in forward dijet production in ultra-peripheral heavy ion collisions at the LHC. Eur. Phys. J. C 77(5), 353 (2017). https://doi.org/10.1140/epjc/s10052-017-4906-6. arXiv:1702.03063$$v77$$y2017
000622276 999C5 $$1LL Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.ns.44.120194.002441$$p501 -$$tAnn. Rev. Nucl. Part. Sci.$$uL.L. Frankfurt, G.A. Miller, M. Strikman, The Geometrical color optics of coherent high-energy processes. Ann. Rev. Nucl. Part. Sci. 44, 501–560 (1994). https://doi.org/10.1146/annurev.ns.44.120194.002441. arXiv:hep-ph/9407274$$v44$$y1994
000622276 999C5 $$1EM Aitala$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.86.4773$$p4773 -$$tPhys. Rev. Lett.$$uE.M. Aitala et al., Observation of color transparency in diffractive dissociation of pions. Phys. Rev. Lett. 86, 4773–4777 (2001). https://doi.org/10.1103/PhysRevLett.86.4773. arXiv:hep-ex/0010044$$v86$$y2001
000622276 999C5 $$1B Clasie$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.242502$$tPhys. Rev. Lett.$$uB. Clasie et al., Measurement of nuclear transparency for the A(e, e-prime’ pi+) reaction. Phys. Rev. Lett. 99, 242502 (2007). https://doi.org/10.1103/PhysRevLett.99.242502. arXiv:0707.1481$$v99$$y2007
000622276 999C5 $$1L El Fassi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2012.05.019$$p326 -$$tPhys. Lett. B$$uL. El Fassi et al., Evidence for the onset of color transparency in $$\rho ^0$$ electroproduction off nuclei. Phys. Lett. B 712, 326–330 (2012). https://doi.org/10.1016/j.physletb.2012.05.019. arXiv:1201.2735$$v712$$y2012
000622276 999C5 $$1L El Fassi$$2Crossref$$9-- missing cx lookup --$$a10.3390/physics4030064$$p970 -$$tPhysics$$uL. El Fassi, Chasing QCD Signatures in Nuclei Using Color Coherence Phenomena. Physics 4(3), 970–980 (2022). https://doi.org/10.3390/physics4030064$$v4$$y2022
000622276 999C5 $$1D Bhetuwal$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.126.082301$$tPhys. Rev. Lett.$$uD. Bhetuwal et al., Ruling out Color Transparency in Quasielastic $$^{12}$$C(e, e’p) up to $$Q^2$$ of 14.2 (GeV/c)$$^2$$. Phys. Rev. Lett. 126(8), 082301 (2021). https://doi.org/10.1103/PhysRevLett.126.082301. arXiv:2011.00703$$v126$$y2021
000622276 999C5 $$1O Caplow-Munro$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.104.L012201$$pL012201 -$$tPhys. Rev. C$$uO. Caplow-Munro, G.A. Miller, Color transparency and the proton form factor: Evidence for the Feynman mechanism. Phys. Rev. C 104(1), L012201 (2021). https://doi.org/10.1103/PhysRevC.104.L012201. arXiv:2104.11168$$v104$$y2021
000622276 999C5 $$1K Egiian$$2Crossref$$9-- missing cx lookup --$$a10.1016/0375-9474(94)90903-2$$p365 -$$tNucl. Phys. A$$uK. Egiian, L. Frankfurt, W.R. Greenberg, G.A. Miller, M. Sargsian, M. Strikman, Searching for color coherent effects at intermediate Q**2 via double scattering processes. Nucl. Phys. A 580, 365–382 (1994). https://doi.org/10.1016/0375-9474(94)90903-2. arXiv:nucl-th/9401002$$v580$$y1994
000622276 999C5 $$1LL Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01292764$$p97 -$$tZ. Phys. A$$uL.L. Frankfurt, W.R. Greenberg, G.A. Miller, M.M. Sargsian, M.I. Strikman, Color transparency effects in electron deuteron interactions at intermediate Q**2. Z. Phys. A 352, 97–113 (1995). https://doi.org/10.1007/BF01292764. arXiv:nucl-th/9501009$$v352$$y1995
000622276 999C5 $$1LL Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(95)01558-2$$p201 -$$tPhys. Lett. B$$uL.L. Frankfurt, W.R. Greenberg, G.A. Miller, M.M. Sargsian, M.I. Strikman, Color transparency and the vanishing deuterium shadow. Phys. Lett. B 369, 201–206 (1996). https://doi.org/10.1016/0370-2693(95)01558-2. arXiv:nucl-th/9412033$$v369$$y1996
000622276 999C5 $$1DJ Gross$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.30.1343$$p1343 -$$tPhys. Rev. Lett.$$uD.J. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973). https://doi.org/10.1103/PhysRevLett.30.1343$$v30$$y1973
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-94-010-0267-7_1$$uY. L. Dokshitzer, QCD phenomenology, 2003, pp. 1–33. arXiv:hep-ph/0306287
000622276 999C5 $$1B Andersson$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-8949/19/2/015$$p184 -$$tPhys. Scripta$$uB. Andersson, G. Gustafson, C. Peterson, Quark Jet Fragmentation. Phys. Scripta 19, 184–190 (1979). https://doi.org/10.1088/0031-8949/19/2/015$$v19$$y1979
000622276 999C5 $$1B Andersson$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(83)90080-7$$p31 -$$tPhys. Rept.$$uB. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Parton Fragmentation and String Dynamics. Phys. Rept. 97, 31–145 (1983). https://doi.org/10.1016/0370-1573(83)90080-7$$v97$$y1983
000622276 999C5 $$1LS Osborne$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.40.1624$$p1624 -$$tPhys. Rev. Lett.$$uL.S. Osborne, C. Bolon, R.L. Lanza, D. Luckey, D.G. Roth, J.F. Martin, G.J. Feldman, M.E.B. Franklin, G. Hanson, M.L. Perl, Electroproduction of Hadrons From Nuclei. Phys. Rev. Lett. 40, 1624 (1978). https://doi.org/10.1103/PhysRevLett.40.1624$$v40$$y1978
000622276 999C5 $$1J Ashman$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01412322$$p1 -$$tZ. Phys. C$$uJ. Ashman et al., Comparison of forward hadrons produced in muon interactions on nuclear targets and deuterium. Z. Phys. C 52, 1–12 (1991). https://doi.org/10.1007/BF01412322$$v52$$y1991
000622276 999C5 $$1A Arvidson$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(84)90045-2$$p381 -$$tNucl. Phys. B$$uA. Arvidson et al., Hadron production in 200-GeV $$\mu $$ - copper and $$\mu $$ - carbon deep inelastic interactions. Nucl. Phys. B 246, 381–407 (1984). https://doi.org/10.1016/0550-3213(84)90045-2$$v246$$y1984
000622276 999C5 $$1X Artru$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(74)90360-5$$p93 -$$tNucl. Phys. B$$uX. Artru, G. Mennessier, String model and multiproduction. Nucl. Phys. B 70, 93–115 (1974). https://doi.org/10.1016/0550-3213(74)90360-5$$v70$$y1974
000622276 999C5 $$1EV Shuryak$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(78)90370-2$$p150 -$$tPhotons and Psions. Phys. Lett. B$$uE.V. Shuryak, Quark-Gluon Plasma and Hadronic Production of Leptons. Photons and Psions. Phys. Lett. B 78, 150 (1978). https://doi.org/10.1016/0370-2693(78)90370-2$$v78$$y1978
000622276 999C5 $$1X-N Wang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2003.11.011$$p299 -$$tPhys. Lett. B$$uX.-N. Wang, Why the observed jet quenching at RHIC is due to parton energy loss. Phys. Lett. B 579, 299–308 (2004). https://doi.org/10.1016/j.physletb.2003.11.011$$v579$$y2004
000622276 999C5 $$1BZ Kopeliovich$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2004.04.110$$p211 -$$tNucl. Phys. A$$uB.Z. Kopeliovich, J. Nemchik, E. Predazzi, A. Hayashigaki, Nuclear hadronization: Within or without? Nucl. Phys. A 740, 211–245 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.110$$v740$$y2004
000622276 999C5 $$1WK Brooks$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2021.136171$$tPhys. Lett. B$$uW.K. Brooks, J.A. López, Estimating the color lifetime of energetic quarks. Phys. Lett. B 816, 136171 (2021). https://doi.org/10.1016/j.physletb.2021.136171$$v816$$y2021
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.60.1924$$p1924 -$$tPhys. Rev. Lett.$$uS.J. Brodsky, G.F. de Teramond, Spin Correlations, QCD Color Transparency and Heavy Quark Thresholds in Proton Proton Scattering. Phys. Rev. Lett. 60, 1924 (1988). https://doi.org/10.1103/PhysRevLett.60.1924$$v60$$y1988
000622276 999C5 $$1M Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1088/0954-3899/29/3/201$$pR1 -$$tJ. Phys. G: Nucl. Part. Phys.$$uM. Sargsian et al., Hadrons in the nuclear medium. J. Phys. G: Nucl. Part. Phys. 29(3), R1–R45 (2003). https://doi.org/10.1088/0954-3899/29/3/201$$v29$$y2003
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1016/0375-9474(93)90504-Q$$p752 -$$tNucl. Phys. A$$uL. Frankfurt, G.A. Miller, M. Strikman, Precocious dominance of point - like configurations in hadronic form-factors. Nucl. Phys. A 555, 752–764 (1993). https://doi.org/10.1016/0375-9474(93)90504-Q$$v555$$y1993
000622276 999C5 $$1J Arrington$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2012.04.002$$p898 -$$tProg. Part. Nucl. Phys.$$uJ. Arrington, D. Higinbotham, G. Rosner, M. Sargsian, Hard probes of short-range nucleon-nucleon correlations. Prog. Part. Nucl. Phys. 67(4), 898–938 (2012). https://doi.org/10.1016/j.ppnp.2012.04.002$$v67$$y2012
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-nucl-102020-022253$$uJ. Arrington, N. Fomin, A. Schmidt, Progress in understanding short-range structure in nuclei: an experimental perspective, Ann. Rev. Nucl. Part. Sci. (2022) 307 arXiv:2203.02608
000622276 999C5 $$1J Arrington$$2Crossref$$9-- missing cx lookup --$$a10.1556/APH.21.2004.2-4.30$$p295 -$$tActa Phys. Hung. A$$uJ. Arrington, Do ordinary nuclei contain exotic states of matter? Acta Phys. Hung. A 21, 295 (2004). https://doi.org/10.1556/APH.21.2004.2-4.30. arXiv:hep-ph/0304213$$v21$$y2004
000622276 999C5 $$1PJ Mulders$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.52.1199$$p1199 -$$tPhys. Rev. Lett.$$uP.J. Mulders, A.W. Thomas, The ‘Six Quark’ Component in the Deuteron From a Comparison of Electron and Neutrino / Anti-neutrinos Structure Functions. Phys. Rev. Lett. 52, 1199 (1984). https://doi.org/10.1103/PhysRevLett.52.1199$$v52$$y1984
000622276 999C5 $$1O Hen$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.89.045002$$tRev. Mod. Phys.$$uO. Hen, G. Miller, E. Piasetzky, L. Weinstein, Nucleon-Nucleon Correlations, Short-lived Excitations, and the Quarks Within. Rev. Mod. Phys. 89(4), 045002 (2017). https://doi.org/10.1103/RevModPhys.89.045002$$v89$$y2017
000622276 999C5 $$1I Niculescu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.1186$$p1186 -$$tPhys. Rev. Lett.$$uI. Niculescu et al., Experimental verification of quark hadron duality. Phys. Rev. Lett. 85, 1186–1189 (2000). https://doi.org/10.1103/PhysRevLett.85.1186$$v85$$y2000
000622276 999C5 $$1I Niculescu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.91.055206$$tPhys. Rev. C$$uI. Niculescu et al., Direct observation of quark-hadron duality in the free neutron $$F_2$$ structure function. Phys. Rev. C 91(5), 055206 (2015). https://doi.org/10.1103/PhysRevC.91.055206. arXiv:1501.02203$$v91$$y2015
000622276 999C5 $$1J Arrington$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.73.035205$$tPhys. Rev. C$$uJ. Arrington, R. Ent, C.E. Keppel, J. Mammei, I. Niculescu, Low Q scaling, duality, and the EMC effect. Phys. Rev. C 73, 035205 (2006). https://doi.org/10.1103/PhysRevC.73.035205. arXiv:nucl-ex/0307012$$v73$$y2006
000622276 999C5 $$1W Boeglin$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0218301315300039$$p1530003 -$$tInt. J. Mod. Phys. E$$uW. Boeglin, M. Sargsian, Modern Studies of the Deuteron: from the Lab Frame to the Light Front. Int. J. Mod. Phys. E 24(03), 1530003 (2015). https://doi.org/10.1142/S0218301315300039. arXiv:1501.05377$$v24$$y2015
000622276 999C5 $$1WU Boeglin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.262501$$tPhys. Rev. Lett.$$uW.U. Boeglin et al., Probing the high momentum component of the deuteron at high $${Q}^{2}$$. Phys. Rev. Lett. 107, 262501 (2011). https://doi.org/10.1103/PhysRevLett.107.262501$$v107$$y2011
000622276 999C5 $$1MM Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.82.014612$$tPhys. Rev. C$$uM.M. Sargsian, Large $${Q}^{2}$$ electrodisintegration of the deuteron in the virtual nucleon approximation. Phys. Rev. C 82, 014612 (2010). https://doi.org/10.1103/PhysRevC.82.014612$$v82$$y2010
000622276 999C5 $$1J Laget$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2005.01.046$$p49 -$$tPhysics Letters B$$uJ. Laget, The electro-disintegration of few body systems revisited. Physics Letters B 609(1), 49–56 (2005). https://doi.org/10.1016/j.physletb.2005.01.046$$v609$$y2005
000622276 999C5 $$1WP Ford$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.90.064006$$tPhys. Rev. C$$uW.P. Ford, S. Jeschonnek, J.W. Van Orden, Momentum distributions for $$^{2}{\rm H} (e,{e}^{^{\prime }}p)$$. Phys. Rev. C 90, 064006 (2014). https://doi.org/10.1103/PhysRevC.90.064006$$v90$$y2014
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.48550/ARXIV.2108.11502$$uF. Vera, Probing the structure of deuteron at very short distances (2021). https://doi.org/10.48550/ARXIV.2108.11502. arxiv:2108.11502
000622276 999C5 $$1MM Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.130.112502$$tPhys. Rev. Lett.$$uM.M. Sargsian, F. Vera, New Structure in the Deuteron. Phys. Rev. Lett. 130(11), 112502 (2023). https://doi.org/10.1103/PhysRevLett.130.112502. arXiv:2208.00501$$v130$$y2023
000622276 999C5 $$2Crossref$$uC. Yero, Deuteron disintegration at large missing momenta (January 2023)
000622276 999C5 $$1H Heiselberg$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.nucl.50.1.481$$p481 -$$tAnn. Rev. Nucl. Part. Sci.$$uH. Heiselberg, V. Pandharipande, Recent progress in neutron star theory. Ann. Rev. Nucl. Part. Sci. 50, 481–524 (2000). https://doi.org/10.1146/annurev.nucl.50.1.481. arXiv:astro-ph/0003276$$v50$$y2000
000622276 999C5 $$1M Sargsian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.71.044614$$tPhys. Rev. C$$uM. Sargsian, T. Abrahamyan, M. Strikman, L. Frankfurt, Exclusive electrodisintegration of $$^{3}{\rm He}$$ at high $${Q}^{2}$$. i. generalized eikonal approximation. Phys. Rev. C 71, 044614 (2005). https://doi.org/10.1103/PhysRevC.71.044614$$v71$$y2005
000622276 999C5 $$1N Fomin$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-nucl-102115-044939$$p129 -$$tAnn. Rev. Nucl. Part. Sci.$$uN. Fomin, D. Higinbotham, M. Sargsian, P. Solvignon, New results on short-range correlations in nuclei. Ann. Rev. Nucl. Part. Sci. 67(1), 129–159 (2017). https://doi.org/10.1146/annurev-nucl-102115-044939$$v67$$y2017
000622276 999C5 $$1D Day$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.43.1143$$p1143 -$$tPhys. Rev. Lett.$$uD. Day, J.S. Mccarthy, I. Sick, R.G. Arnold, B.T. Chertok, S. Rock, Z.M. Szalata, F. Martin, B.A. Mecking, G. Tamas, INCLUSIVE ELECTRON SCATTERING FROM HE-3. Phys. Rev. Lett. 43, 1143 (1979). https://doi.org/10.1103/PhysRevLett.43.1143$$v43$$y1979
000622276 999C5 $$1S Rock$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.26.1592$$p1592 -$$tPhys. Rev. C$$uS. Rock, R.G. Arnold, B.T. Chertok, Z.M. Szalata, D. Day, J.S. McCarthy, F. Martin, B.A. Mecking, I. Sick, G. Tamas, Inelastic Electron Scattering From $$^{3}$$He and $$^{4}$$He in the Threshold Region at High Momentum Transfer. Phys. Rev. C 26, 1592 (1982). https://doi.org/10.1103/PhysRevC.26.1592$$v26$$y1982
000622276 999C5 $$1DF Geesaman$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.ns.45.120195.002005$$p337 -$$tAnn. Rev. Nucl. Part. Sci.$$uD.F. Geesaman, K. Saito, A.W. Thomas, The nuclear EMC effect. Ann. Rev. Nucl. Part. Sci. 45, 337–390 (1995). https://doi.org/10.1146/annurev.ns.45.120195.002005$$v45$$y1995
000622276 999C5 $$1PR Norton$$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/66/8/201$$p1253 -$$tProg. Phys.$$uP.R. Norton, The EMC effect. Rept. Prog. Phys. 66, 1253–1297 (2003). https://doi.org/10.1088/0034-4885/66/8/201$$v66$$y2003
000622276 999C5 $$1S Malace$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0218301314300136$$p1430013 -$$tInt. J. Mod. Phys. E$$uS. Malace, D. Gaskell, D.W. Higinbotham, I. Cloet, The Challenge of the EMC Effect: existing data and future directions. Int. J. Mod. Phys. E 23(08), 1430013 (2014). https://doi.org/10.1142/S0218301314300136. arXiv:1405.1270$$v23$$y2014
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.142001$$uN. Baillie, et al., Measurement of the neutron F2 structure function via spectator tagging with CLAS, Phys. Rev. Lett. 108 (2012) 142001, [Erratum: Phys.Rev.Lett. 108, 199902 (2012)]. arXiv:1110.2770, https://doi.org/10.1103/PhysRevLett.108.142001
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.89.045206$$uS. Tkachenko, et al., Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic $$^2$$H(e, e’p)X scattering with CLAS, Phys. Rev. C 89 (2014) 045206, [Addendum: Phys.Rev.C 90, 059901 (2014)]. arXiv:1402.2477, https://doi.org/10.1103/PhysRevC.89.045206
000622276 999C5 $$1KA Griffioen$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.92.015211$$tPhys. Rev. C$$uK.A. Griffioen et al., Measurement of the EMC Effect in the Deuteron. Phys. Rev. C 92(1), 015211 (2015). https://doi.org/10.1103/PhysRevC.92.015211. arXiv:1506.00871$$v92$$y2015
000622276 999C5 $$1AV Klimenko$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.73.035212$$tPhys. Rev. C$$uA.V. Klimenko et al., Electron scattering from high-momentum neutrons in deuterium. Phys. Rev. C 73, 035212 (2006). https://doi.org/10.1103/PhysRevC.73.035212. arXiv:nucl-ex/0510032$$v73$$y2006
000622276 999C5 $$1A Lovato$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.082501$$tPhys. Rev. Lett.$$uA. Lovato, S. Gandolfi, J. Carlson, S.C. Pieper, R. Schiavilla, Electromagnetic response of $$^{12}$$C: A first-principles calculation. Phys. Rev. Lett. 117(8), 082501 (2016). https://doi.org/10.1103/PhysRevLett.117.082501. arXiv:1605.00248$$v117$$y2016
000622276 999C5 $$1IC Cloët$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.032701$$tPhys. Rev. Lett.$$uI.C. Cloët, W. Bentz, A.W. Thomas, Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule. Phys. Rev. Lett. 116(3), 032701 (2016). https://doi.org/10.1103/PhysRevLett.116.032701. arXiv:1506.05875$$v116$$y2016
000622276 999C5 $$1MM Rvachev$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.192302$$tPhys. Rev. Lett.$$uM.M. Rvachev et al., Quasielastic $$^{3}{\rm He}{(e,{e}^{^{\prime }}p)^{2}}{\rm H}$$ reaction at $${Q}^{2}=1.5 {\rm gev}^{2}$$ for recoil momenta up to $$1 {\rm GeV/c}$$. Phys. Rev. Lett. 94, 192302 (2005). https://doi.org/10.1103/PhysRevLett.94.192302$$v94$$y2005
000622276 999C5 $$1B Hu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.73.064004$$tPhys. Rev. C$$uB. Hu et al., Polarization transfer in the H-2(polarized-e, e-prime polarized-p) n reaction up to Q**2 = 1.61-(GeV/c)**2. Phys. Rev. C 73, 064004 (2006). https://doi.org/10.1103/PhysRevC.73.064004. arXiv:nucl-ex/0601025$$v73$$y2006
000622276 999C5 $$1SP Malace$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.052501$$tPhys. Rev. Lett.$$uS.P. Malace et al., A precise extraction of the induced polarization in the 4He(e, e’p)3H reaction. Phys. Rev. Lett. 106, 052501 (2011). https://doi.org/10.1103/PhysRevLett.106.052501. arXiv:1011.4483$$v106$$y2011
000622276 999C5 $$1WP Ford$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.89.034004$$tPhys. Rev. C$$uW.P. Ford, R. Schiavilla, J.W. Van Orden, The $$^3$$He$$(e, e^\prime p)^2$$H and $$^4$$He$$(e, e^\prime p)^3$$H reactions at high momentum transfer. Phys. Rev. C 89(3), 034004 (2014). https://doi.org/10.1103/PhysRevC.89.034004. arXiv:1401.4399$$v89$$y2014
000622276 999C5 $$1R Dupré$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.104.025203$$tPhys. Rev. C$$uR. Dupré et al., Measurement of deeply virtual Compton scattering off $$^{4}{\rm He}$$ with the CEBAF Large Acceptance Spectrometer at Jefferson Lab. Phys. Rev. C 104(2), 025203 (2021). https://doi.org/10.1103/PhysRevC.104.025203. arXiv:2102.07419$$v104$$y2021
000622276 999C5 $$1V Guzey$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2009.01.064$$p9 -$$tPhys. Lett. B$$uV. Guzey, A.W. Thomas, K. Tsushima, Medium modifications of the bound nucleon GPDs and incoherent DVCS on nuclear targets. Phys. Lett. B 673, 9–14 (2009). https://doi.org/10.1016/j.physletb.2009.01.064. arXiv:0806.3288$$v673$$y2009
000622276 999C5 $$1S Liuti$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.72.034902$$tPhys. Rev. C$$uS. Liuti, S.K. Taneja, Nuclear medium modifications of hadrons from generalized parton distributions. Phys. Rev. C 72, 034902 (2005). https://doi.org/10.1103/PhysRevC.72.034902. arXiv:hep-ph/0504027$$v72$$y2005
000622276 999C5 $$1M Guidal$$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/76/6/066202$$tRept. Prog. Phys.$$uM. Guidal, H. Moutarde, M. Vanderhaeghen, Generalized Parton Distributions in the valence region from Deeply Virtual Compton Scattering. Rept. Prog. Phys. 76, 066202 (2013). https://doi.org/10.1088/0034-4885/76/6/066202. arXiv:1303.6600$$v76$$y2013
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.48550/ARXIV.1708.00835$$uW. Armstrong, et al., Spectator-tagged deeply virtual compton scattering on light nuclei, (2017). https://doi.org/10.48550/ARXIV.1708.00835arXiv:1708.00835
000622276 999C5 $$1S Fucini$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.98.015203$$tPhys. Rev. C$$uS. Fucini, S. Scopetta, M. Viviani, Coherent deeply virtual compton scattering off $$^{4}{\rm He}$$. Phys. Rev. C 98, 015203 (2018). https://doi.org/10.1103/PhysRevC.98.015203$$v98$$y2018
000622276 999C5 $$2Crossref$$uP. Zurita, Medium modified Fragmentation Functions with open source xFitter (1 2021). arXiv:2101.01088
000622276 999C5 $$1K Eskola$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10359-0$$p413 -$$tEur. Phys. J. C$$uK. Eskola, P. Paakkinen, H. Paukkunen, C. Salgado, EPPS21: a global QCD analysis of nuclear PDFs. Eur. Phys. J. C 82(5), 413 (2022). https://doi.org/10.1140/epjc/s10052-022-10359-0. arXiv:2112.12462$$v82$$y2022
000622276 999C5 $$1M Walt$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.096015$$tPhys. Rev. D$$uM. Walt, I. Helenius, W. Vogelsang, Open-source qcd analysis of nuclear parton distribution functions at nlo and nnlo. Phys. Rev. D 100, 096015 (2019). https://doi.org/10.1103/PhysRevD.100.096015$$v100$$y2019
000622276 999C5 $$2Crossref$$uW. Brooks, S. Kuhn, et al., The EMC Effect in Spin Structure Functions, CLAS12 E12-14-00 Experiment (Run Group G) (2014)
000622276 999C5 $$2Crossref$$uW. Brooks, S. Kuhn, et al., The EMC Effect in Spin Structure Functions, CLAS12 Run Group G Jeopardy Update (2020). https://www.jlab.org/exp_prog/proposals/20/Jeopardy/Run%20Group%20G_Update.pdf
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.70.116003$$tPhys. Rev. D$$uS.J. Brodsky, I. Schmidt, J.-J. Yang, Nuclear antishadowing in neutrino deep inelastic scattering. Phys. Rev. D 70, 116003 (2004). https://doi.org/10.1103/PhysRevD.70.116003$$v70$$y2004
000622276 999C5 $$1V Guzey$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.61.014002$$tPhys. Rev. C$$uV. Guzey, M. Strikman, Nuclear effects in $${g}_{1A}{(x, Q}^{2})$$ at small x in deep inelastic scattering on $$ ^{7}{\rm Li}$$ and $$ ^{3}{\rm He}$$. Phys. Rev. C 61, 014002 (1999). https://doi.org/10.1103/PhysRevC.61.014002$$v61$$y1999
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.95.055208$$tPhys. Rev. C$$uL. Frankfurt, V. Guzey, M. Strikman, Dynamical model of antishadowing of the nuclear gluon distribution. Phys. Rev. C 95, 055208 (2017). https://doi.org/10.1103/PhysRevC.95.055208$$v95$$y2017
000622276 999C5 $$1I Cloët$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2006.08.076$$p210 -$$tPhy. Lett. B$$uI. Cloët, W. Bentz, A. Thomas, EMC and polarized EMC effects in nuclei. Phy. Lett. B 642(3), 210–217 (2006). https://doi.org/10.1016/j.physletb.2006.08.076$$v642$$y2006
000622276 999C5 $$1J Smith$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.72.022203$$tPhys. Rev. C$$uJ. Smith, G. Miller, Polarized quark distributions in nuclear matter. Phys. Rev. C 72, 022203 (2005). https://doi.org/10.1103/PhysRevC.72.022203$$v72$$y2005
000622276 999C5 $$1H Fanchiotti$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2014-14116-8$$p116 -$$tEur. Phys. J. A$$uH. Fanchiotti, C.A. García-Canal, T. Tarutina, V. Vento, Medium Effects in DIS from Polarized Nuclear Targets. Eur. Phys. J. A 50, 116 (2014). https://doi.org/10.1140/epja/i2014-14116-8. arXiv:1404.3047$$v50$$y2014
000622276 999C5 $$1I Cloët$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.052302$$tPhys. Rev. Lett.$$uI. Cloët, W. Bentz, A. Thomas, Spin-dependent structure functions in nuclear matter and the polarized emc effect. Phys. Rev. Lett. 95, 052302 (2005). https://doi.org/10.1103/PhysRevLett.95.052302$$v95$$y2005
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(88)90719-8$$p685 -$$tPhys. Lett. B$$uS.J. Brodsky, A.H. Mueller, Using Nuclei to Probe Hadronization in QCD. Phys. Lett. B 206, 685–690 (1988). https://doi.org/10.1016/0370-2693(88)90719-8$$v206$$y1988
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.50.3134$$p3134 -$$tPhys. Rev. D$$uS.J. Brodsky, L. Frankfurt, J.F. Gunion, A.H. Mueller, M. Strikman, Diffractive leptoproduction of vector mesons in QCD. Phys. Rev. D 50, 3134–3144 (1994). https://doi.org/10.1103/PhysRevD.50.3134. arXiv:hep-ph/9402283$$v50$$y1994
000622276 999C5 $$1D Dutta$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2012.11.001$$p1 -$$tProg. Part. Nucl. Phys.$$uD. Dutta, K. Hafidi, M. Strikman, Color Transparency: past, present and future. Prog. Part. Nucl. Phys. 69, 1–27 (2013). https://doi.org/10.1016/j.ppnp.2012.11.001. arXiv:1211.2826$$v69$$y2013
000622276 999C5 $$1SJ Brodsky$$2Crossref$$9-- missing cx lookup --$$a10.3390/physics4020042$$p633 -$$tMDPI Physics$$uS.J. Brodsky, G.F. de Teramond, Onset of Color Transparency in Holographic Light-Front QCD. MDPI Physics 4(2), 633–646 (2022). https://doi.org/10.3390/physics4020042. arXiv:2202.13283$$v4$$y2022
000622276 999C5 $$1B Clasie$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.242502$$tPhys. Rev. Lett.$$uB. Clasie et al., Measurement of Nuclear Transparency for the $$A(e,{e}^{\prime }{\pi }^{+})$$ Reaction. Phys. Rev. Lett. 99, 242502 (2007). https://doi.org/10.1103/PhysRevLett.99.242502. arXiv:0707.1481$$v99$$y2007
000622276 999C5 $$1L El Fassi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2012.05.019$$p326 -$$tPhys. Lett. B$$uL. El Fassi et al., Evidence for the onset of color transparency in $$\rho ^0$$ electroproduction off nuclei. Phys. Lett. B 712, 326–330 (2012). https://doi.org/10.1016/j.physletb.2012.05.019. arXiv:1201.2735$$v712$$y2012
000622276 999C5 $$1L Frankfurt$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.78.015208$$tPhys. Rev. C$$uL. Frankfurt, G.A. Miller, M. Strikman, Color Transparency in Semi-Inclusive Electroproduction of rho Mesons. Phys. Rev. C 78, 015208 (2008). https://doi.org/10.1103/PhysRevC.78.015208. arXiv:0803.4012$$v78$$y2008
000622276 999C5 $$1K Gallmeister$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.83.015201$$tPhys. Rev. C$$uK. Gallmeister, M. Kaskulov, U. Mosel, Color transparency in hadronic attenuation of $$\rho ^0$$ mesons. Phys. Rev. C 83, 015201 (2011). https://doi.org/10.1103/PhysRevC.83.015201. arXiv:1007.1141$$v83$$y2011
000622276 999C5 $$1W Cosyn$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.87.064608$$tPhys. Rev. C$$uW. Cosyn, J. Ryckebusch, Nuclear $$\rho $$ meson transparency in a relativistic Glauber model. Phys. Rev. C 87(6), 064608 (2013). https://doi.org/10.1103/PhysRevC.87.064608. arXiv:1301.1904$$v87$$y2013
000622276 999C5 $$1AS Carroll$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.61.1698$$p1698 -$$tPhys. Rev. Lett.$$uA.S. Carroll et al., Nuclear Transparency to Large Angle $$p p$$ Elastic Scattering. Phys. Rev. Lett. 61, 1698–1701 (1988). https://doi.org/10.1103/PhysRevLett.61.1698$$v61$$y1988
000622276 999C5 $$1I Mardor$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.5085$$p5085 -$$tPhys. Rev. Lett.$$uI. Mardor et al., Nuclear transparency in large momentum transfer quasielastic scattering. Phys. Rev. Lett. 81, 5085–5088 (1998). https://doi.org/10.1103/PhysRevLett.81.5085$$v81$$y1998
000622276 999C5 $$1A Leksanov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.212301$$tPhys. Rev. Lett.$$uA. Leksanov et al., Energy dependence of nuclear transparency in C$$(p, 2p)$$ scattering. Phys. Rev. Lett. 87, 212301 (2001). https://doi.org/10.1103/PhysRevLett.87.212301. arXiv:hep-ex/0104039$$v87$$y2001
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.70.015208$$uJ. Aclander et al., Nuclear transparency. Phys. Rev. C in $${90}_{{\rm c.m.}}^{\circ }$$ quasielastic $$A(p,2p)$$ reactions 70, 015208 (2004). https://doi.org/10.1103/PhysRevC.70.015208. arXiv:nucl-ex/0405025
000622276 999C5 $$1N Makins$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.72.1986$$p1986 -$$tPhys. Rev. Lett.$$uN. Makins et al., Momentum transfer dependence of nuclear transparency from the quasielastic $$^{12}{\rm C}$$(e, e’p) reaction. Phys. Rev. Lett. 72, 1986–1989 (1994). https://doi.org/10.1103/PhysRevLett.72.1986$$v72$$y1994
000622276 999C5 $$1TG O’Neill$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(95)00362-O$$p87 -$$tPhys. Lett. B$$uT.G. O’Neill et al., $$A$$-dependence of nuclear transparency in quasielastic $$A(e, e^{\prime } p)$$ at high $$Q^2$$. Phys. Lett. B 351, 87–92 (1995). https://doi.org/10.1016/0370-2693(95)00362-O. arXiv:hep-ph/9408260$$v351$$y1995
000622276 999C5 $$1D Abbott$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.5072$$p5072 -$$tPhys. Rev. Lett.$$uD. Abbott et al., Quasifree $$(e, e^{\prime }p)$$ reactions and proton propagation in nuclei. Phys. Rev. Lett. 80, 5072–5076 (1998). https://doi.org/10.1103/PhysRevLett.80.5072$$v80$$y1998
000622276 999C5 $$1K Garrow$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.66.044613$$tPhys. Rev. C$$uK. Garrow et al., Nuclear transparency from quasielastic $${A(e, e}^{^{\prime }}p)$$ reactions up to $${Q}^{2}=8.1({\rm GeV}/c)^{2}$$. Phys. Rev. C 66, 044613 (2002). https://doi.org/10.1103/PhysRevC.66.044613. arXiv:hep-ex/0109027$$v66$$y2002
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.126.082301$$uD. Bhetuwal, J. Matter, H. Szumila-Vance, M. L. Kabir, D. Dutta, R. Ent, et al., Ruling out color transparency in quasielastic $$^{12}{\rm C}({\rm e},{e}^{^{\prime }}{\rm p})$$ up to $${Q}^{2}$$ of $$14.2 ({\rm GeV}/{\rm c})^{2}$$, Phys. Rev. Lett. 126 (2021) 082301. https://doi.org/10.1103/PhysRevLett.126.082301
000622276 999C5 $$1S Li$$2Crossref$$9-- missing cx lookup --$$a10.3390/physics4040092$$p1426 -$$tPhysics$$uS. Li, C. Yero, J.R. West, C. Bennett, W. Cosyn, D. Higinbotham, M. Sargsian, H. Szumila-Vance, Searching for an enhanced signal of the onset of color transparency in baryons with d(e, e’p)n scattering. Physics 4(4), 1426–1439 (2022). https://doi.org/10.3390/physics4040092$$v4$$y2022
000622276 999C5 $$1RD Field$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.15.2590$$p2590 -$$tPhys. Rev. D$$uR.D. Field, R.P. Feynman, Quark Elastic Scattering as a Source of High Transverse Momentum Mesons. Phys. Rev. D 15, 2590–2616 (1977). https://doi.org/10.1103/PhysRevD.15.2590$$v15$$y1977
000622276 999C5 $$1J-J Aubert$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(83)90437-9$$p275 -$$tPhysics Letters B$$uJ.-J. Aubert, G. Bassompierre, K. Becks, C. Best, E. Böhm, X. de Bouard, F. Brasse, C. Broll, S. Brown, J. Carr et al., The ratio of the nucleon structure functions $$F_2^N$$ for iron and deuterium. Physics Letters B 123(3–4), 275–278 (1983)$$v123$$y1983
000622276 999C5 $$1K Adcox$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2005.03.086$$p184 -$$tNuclear Physics A$$uK. Adcox, S. Adler, S. Afanasiev, C. Aidala, N. Ajitanand, Y. Akiba, A. Al-Jamel, J. Alexander, R. Amirikas, K. Aoki et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at rhic: experimental evaluation by the phenix collaboration. Nuclear Physics A 757(1–2), 184–283 (2005)$$v757$$y2005
000622276 999C5 $$1J Adams$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2005.03.085$$p102 -$$tNucl. Phys. A$$uJ. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085. arXiv:nucl-ex/0501009$$v757$$y2005
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2010.01.020$$p114 -$$tPhys. Lett. B$$uA. Airapetian et al., Transverse momentum broadening of hadrons produced in semi-inclusive deep-inelastic scattering on nuclei. Phys. Lett. B 684, 114–118 (2010). https://doi.org/10.1016/j.physletb.2010.01.020$$v684$$y2010
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2011-11113-5$$p113 -$$tEur. Phys. J. A$$uA. Airapetian et al., Multidimensional Study of Hadronization in Nuclei. Eur. Phys. J. A 47, 113 (2011). https://doi.org/10.1140/epja/i2011-11113-5. arXiv:1107.3496$$v47$$y2011
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2007.06.004$$p1 -$$tNucl. Phys. B$$uA. Airapetian et al., Hadronization in semi-inclusive deep-inelastic scattering on nuclei. Nucl. Phys. B 780, 1–27 (2007). https://doi.org/10.1016/j.nuclphysb.2007.06.004. arXiv:0704.3270$$v780$$y2007
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.162301$$tPhys. Rev. Lett.$$uA. Airapetian et al., Double-hadron leptoproduction in the nuclear medium. Phys. Rev. Lett. 96, 162301 (2006). https://doi.org/10.1103/PhysRevLett.96.162301$$v96$$y2006
000622276 999C5 $$1SJ Paul$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.129.182501$$tPhys. Rev. Lett.$$uS.J. Paul, S. Morán, M. Arratia, A. El Alaoui, H. Hakobyan, W. Brooks et al., Observation of azimuth-dependent suppression of hadron pairs in electron scattering off nuclei. Phys. Rev. Lett. 129, 182501 (2022). https://doi.org/10.1103/PhysRevLett.129.182501$$v129$$y2022
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1007/s100520100697$$p479 -$$tEur. Phys. J. C$$uA. Airapetian et al., Hadron formation in deep inelastic positron scattering in a nuclear environment. Eur. Phys. J. C 20, 479–486 (2001). https://doi.org/10.1007/s100520100697$$v20$$y2001
000622276 999C5 $$1S Morán$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.105.015201$$tPhys. Rev. C$$uS. Morán, R. Dupré, H. Hakobyan, M. Arratia, W.K. Brooks, A. Bórquez, A. El Alaoui, L. El Fassi, K. Hafidi, R. Mendez, T. Mineeva, S.J. Paul et al., Measurement of charged-pion production in deep-inelastic scattering off nuclei with the CLAS detector. Phys. Rev. C 105, 015201 (2022). https://doi.org/10.1103/PhysRevC.105.015201$$v105$$y2022
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2003.10.026$$p37 -$$tPhys. Lett. B$$uA. Airapetian et al., Quark fragmentation to $$\pi ^\pm $$, $$\pi ^0$$, $$K^\pm $$, $$p$$ and $${\bar{p}}$$ in the nuclear environment. Phys. Lett. B 577, 37–46 (2003). https://doi.org/10.1016/j.physletb.2003.10.026$$v577$$y2003
000622276 999C5 $$1A Airapetian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2007.06.004$$p1 -$$tNucl. Phys. B$$uA. Airapetian et al., Hadronization in semi-inclusive deep-inelastic scattering on nuclei. Nucl. Phys. B 780, 1–27 (2007). https://doi.org/10.1016/j.nuclphysb.2007.06.004$$v780$$y2007
000622276 999C5 $$1T Chetry$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.130.142301$$tPhys. Rev. Lett.$$uT. Chetry, L. El Fassi et al., First measurement of $$\Lambda $$ electroproduction off nuclei in the current and target fragmentation regions. Phys. Rev. Lett. 130, 142301 (2023). https://doi.org/10.1103/PhysRevLett.130.142301$$v130$$y2023
000622276 999C5 $$1A Accardi$$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2016-16268-9$$p268 -$$tThe European Physical Journal A$$uA. Accardi et al., Electron-Ion Collider: The next QCD frontier. The European Physical Journal A 52(9), 268 (2016). https://doi.org/10.1140/epja/i2016-16268-9$$v52$$y2016
000622276 999C5 $$1V Khachatryan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2017.07.001$$p489 -$$tPhysics Letters B$$uV. Khachatryan et al., Coherent $$J/\psi $$ photoproduction in ultra-peripheral PbPb collisions at $$\sqrt{s_{NN}}=2.76$$ TeV with the CMS experiment. Physics Letters B 772, 489–511 (2017)$$v772$$y2017
000622276 999C5 $$1B Abelev$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2012.11.059$$p1273 -$$tPhysics Letters B$$uB. Abelev et al., Coherent $$J/\psi $$ photoproduction in ultra-peripheral Pb-Pb collisions at $$\sqrt{s_{NN}}=2.76 TeV$$. Physics Letters B 718(4), 1273–1283 (2013). https://doi.org/10.1016/j.physletb.2012.11.059$$v718$$y2013
000622276 999C5 $$1S Acharya$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2021.136280$$tPhysics Letters B$$uS. Acharya et al., First measurement of the $$|t|$$-dependence of coherent $$J/\psi $$ photonuclear production. Physics Letters B 817, 136280 (2021). https://doi.org/10.1016/j.physletb.2021.136280$$v817$$y2021
000622276 999C5 $$1S Acharya$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-021-09437-6$$p712 -$$tThe European Physical Journal C$$uS. Acharya et al., Coherent $$J/\psi $$ and $$\psi ^{\prime }$$ photoproduction at midrapidity in ultra-peripheral Pb-Pb collisions at $$\sqrt{s_{NN}}=5.02$$ TeV. The European Physical Journal C 81(8), 712 (2021). https://doi.org/10.1140/epjc/s10052-021-09437-6$$v81$$y2021
000622276 999C5 $$1R Aaij$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.105.L032201$$pL032201 -$$tPhys. Rev. C$$uR. Aaij et al., $$J/\psi $$ photoproduction in Pb-Pb peripheral collisions at $$\sqrt{{s}_{NN}}=5$$ TeV. Phys. Rev. C 105, L032201 (2022). https://doi.org/10.1103/PhysRevC.105.L032201$$v105$$y2022
000622276 999C5 $$1MS Abdallah$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.128.122303$$tPhys. Rev. Lett.$$uM.S. Abdallah et al., Probing the gluonic structure of the deuteron with $$J/\psi $$ photoproduction in $${{d}}+{\rm Au}$$ ultraperipheral collisions. Phys. Rev. Lett. 128, 122303 (2022). https://doi.org/10.1103/PhysRevLett.128.122303$$v128$$y2022
000622276 999C5 $$1A Ali$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.072001$$tPhys. Rev. Lett.$$uA. Ali et al., First Measurement of Near-Threshold $$J/\psi $$ Exclusive Photoproduction off the Proton. Phys. Rev. Lett. 123, 072001 (2019). https://doi.org/10.1103/PhysRevLett.123.072001$$v123$$y2019
000622276 999C5 $$1T Toll$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.87.024913$$tPhys. Rev. C$$uT. Toll, T. Ullrich, Exclusive diffractive processes in electron-ion collisions. Phys. Rev. C 87, 024913 (2013). https://doi.org/10.1103/PhysRevC.87.024913$$v87$$y2013
000622276 999C5 $$2Crossref$$uO. Hen, et al., Studying Short-Range Correlations with Real Photon Beams at GlueX (9 2020). arXiv:2009.09617
000622276 999C5 $$1U Camerini$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.35.483$$p483 -$$tPhys. Rev. Lett.$$uU. Camerini, J.G. Learned, R. Prepost, C.M. Spencer, D.E. Wiser, W.W. Ash, R.L. Anderson, D.M. Ritson, D.J. Sherden, C.K. Sinclair, Photoproduction of the $$\psi $$ Particles. Phys. Rev. Lett. 35, 483–486 (1975). https://doi.org/10.1103/PhysRevLett.35.483$$v35$$y1975
000622276 999C5 $$1RB Wiringa$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.89.024305$$tPhys. Rev. C$$uR.B. Wiringa, R. Schiavilla, S.C. Pieper, J. Carlson, Nucleon and nucleon-pair momentum distributions in $$A\le 12$$ nuclei. Phys. Rev. C 89, 024305 (2014). https://doi.org/10.1103/PhysRevC.89.024305$$v89$$y2014
000622276 999C5 $$1L Gan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2021.11.001$$p1 -$$tPhys. Rept.$$uL. Gan, B. Kubis, E. Passemar, S. Tulin, Precision tests of fundamental physics with $$\eta $$ and $$\eta $$’ mesons. Phys. Rept. 945, 1–105 (2022). https://doi.org/10.1016/j.physrep.2021.11.001$$v945$$y2022
000622276 999C5 $$1SL Adler$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.177.2426$$p2426 -$$tPhys. Rev.$$uS.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969). https://doi.org/10.1103/PhysRev.177.2426$$v177$$y1969
000622276 999C5 $$1JS Bell$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02823296$$p47 -$$tNuovo Cim. A$$uJ.S. Bell, R. Jackiw, A PCAC puzzle: $$\pi ^0 \rightarrow \gamma \gamma $$ in the $$\sigma $$ model. Nuovo Cim. A 60, 47–61 (1969). https://doi.org/10.1007/BF02823296$$v60$$y1969
000622276 999C5 $$1G ’t Hooft$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.37.8$$p8 -$$tPhys. Rev. Lett.$$uG. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies. Phys. Rev. Lett. 37, 8–11 (1976). https://doi.org/10.1103/PhysRevLett.37.8$$v37$$y1976
000622276 999C5 $$1E Witten$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(79)90031-2$$p269 -$$tNucl. Phys. B$$uE. Witten, Current Algebra Theorems for the U(1) Goldstone Boson. Nucl. Phys. B 156, 269–283 (1979). https://doi.org/10.1016/0550-3213(79)90031-2$$v156$$y1979
000622276 999C5 $$1M Gell-Mann$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.175.2195$$p2195 -$$tPhys. Rev.$$uM. Gell-Mann, R.J. Oakes, B. Renner, Behavior of current divergences under SU(3) x SU(3). Phys. Rev. 175, 2195–2199 (1968). https://doi.org/10.1103/PhysRev.175.2195$$v175$$y1968
000622276 999C5 $$1JS Bell$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(68)90316-7$$p315 -$$tNucl. Phys. B$$uJ.S. Bell, D.G. Sutherland, Current algebra and eta -$${>}$$ 3 pi. Nucl. Phys. B 4, 315–325 (1968). https://doi.org/10.1016/0550-3213(68)90316-7$$v4$$y1968
000622276 999C5 $$1DG Sutherland$$2Crossref$$9-- missing cx lookup --$$a10.1016/0031-9163(66)90477-X$$p384 -$$tPhys. Lett.$$uD.G. Sutherland, Current algebra and the decay $$\eta \rightarrow 3\pi $$. Phys. Lett. 23, 384–385 (1966). https://doi.org/10.1016/0031-9163(66)90477-X$$v23$$y1966
000622276 999C5 $$1VA Kuzmin$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(85)91028-7$$p36 -$$tPhys. Lett. B$$uV.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 155, 36 (1985). https://doi.org/10.1016/0370-2693(85)91028-7$$v155$$y1985
000622276 999C5 $$1T Aoyama$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2020.07.006$$p1 -$$tPhys. Rept.$$uT. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model. Phys. Rept. 887, 1–166 (2020). https://doi.org/10.1016/j.physrep.2020.07.006. arXiv:2006.04822$$v887$$y2020
000622276 999C5 $$1M Hoferichter$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.121.112002$$tPhys. Rev. Lett.$$uM. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, S.P. Schneider, Pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon. Phys. Rev. Lett. 121(11), 112002 (2018). https://doi.org/10.1103/PhysRevLett.121.112002. arXiv:1805.01471$$v121$$y2018
000622276 999C5 $$1M Hoferichter$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2018)141$$p141 -$$tJHEP$$uM. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, S.P. Schneider, Dispersion relation for hadronic light-by-light scattering: pion pole. JHEP 10, 141 (2018). https://doi.org/10.1007/JHEP10(2018)141. arXiv:1808.04823$$v10$$y2018
000622276 999C5 $$1I Larin$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aay6641$$p506 -$$tScience$$uI. Larin et al., Precision measurement of the neutral pion lifetime. Science 368(6490), 506–509 (2020). https://doi.org/10.1126/science.aay6641$$v368$$y2020
000622276 999C5 $$1A Gérardin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.034520$$tPhys. Rev. D$$uA. Gérardin, H.B. Meyer, A. Nyffeler, Lattice calculation of the pion transition form factor with $$N_f=2+1$$ Wilson quarks. Phys. Rev. D 100(3), 034520 (2019). https://doi.org/10.1103/PhysRevD.100.034520. arXiv:1903.09471$$v100$$y2019
000622276 999C5 $$1JL Goity$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.66.076014$$tPhys. Rev. D$$uJ.L. Goity, A.M. Bernstein, B.R. Holstein, The Decay pi0 -$${>}$$ gamma gamma to next to leading order in chiral perturbation theory. Phys. Rev. D 66, 076014 (2002). https://doi.org/10.1103/PhysRevD.66.076014. arXiv:hep-ph/0206007$$v66$$y2002
000622276 999C5 $$1B Ananthanarayan$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2002/05/052$$p052 -$$tJHEP$$uB. Ananthanarayan, B. Moussallam, Electromagnetic corrections in the anomaly sector. JHEP 05, 052 (2002). https://doi.org/10.1088/1126-6708/2002/05/052. arXiv:hep-ph/0205232$$v05$$y2002
000622276 999C5 $$1K Kampf$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.79.076005$$tPhys. Rev. D$$uK. Kampf, B. Moussallam, Chiral expansions of the pi0 lifetime. Phys. Rev. D 79, 076005 (2009). https://doi.org/10.1103/PhysRevD.79.076005. arXiv:0901.4688$$v79$$y2009
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.430.0306$$uS. A. Burri, et al., Pseudoscalar-pole contributions to the muon $$g-2$$ at the physical point, PoS LATTICE2022 (2023) 306. https://doi.org/10.22323/1.430.0306. arXiv:2212.10300
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.430.0332$$uA. Gérardin, J. N. Guenther, L. Varnhorst, W. E. A. Verplanke, Pseudoscalar transition form factors and the hadronic light-by-light contribution to the muon g-2, PoS LATTICE2022 (2023) 332. https://doi.org/10.22323/1.430.0332. arXiv:2211.04159
000622276 999C5 $$1M Hoferichter$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-014-3180-0$$p3180 -$$tEur. Phys. J. C$$uM. Hoferichter, B. Kubis, S. Leupold, F. Niecknig, S.P. Schneider, Dispersive analysis of the pion transition form factor. Eur. Phys. J. C 74, 3180 (2014). https://doi.org/10.1140/epjc/s10052-014-3180-0. arXiv:1410.4691$$v74$$y2014
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-013-2668-3$$uC. Hanhart, A. Kupść, U.-G. Meißner, F. Stollenwerk, A. Wirzba, Dispersive analysis for $$\eta \rightarrow \gamma \gamma ^*$$, Eur. Phys. J. C 73 (12) (2013) 2668, [Erratum: Eur. Phys. J. C 75, 242 (2015)]. arXiv:1307.5654, https://doi.org/10.1140/epjc/s10052-013-2668-3
000622276 999C5 $$1B Kubis$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-015-3495-5$$p283 -$$tEur. Phys. J. C$$uB. Kubis, J. Plenter, Anomalous decay and scattering processes of the $$\eta $$ meson. Eur. Phys. J. C 75(6), 283 (2015). https://doi.org/10.1140/epjc/s10052-015-3495-5. arXiv:1504.02588$$v75$$y2015
000622276 999C5 $$1S Holz$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-021-09661-0$$p1002 -$$tEur. Phys. J. C$$uS. Holz, J. Plenter, C.-W. Xiao, T. Dato, C. Hanhart, B. Kubis, U.-G. Meißner, A. Wirzba, Towards an improved understanding of $$\eta \rightarrow \gamma ^* \gamma ^*$$. Eur. Phys. J. C 81(11), 1002 (2021). https://doi.org/10.1140/epjc/s10052-021-09661-0. arXiv:1509.02194$$v81$$y2021
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10247-7$$uS. Holz, C. Hanhart, M. Hoferichter, B. Kubis, A dispersive analysis of $$\eta ^{\prime }\rightarrow \pi ^+\pi ^-\gamma $$ and $$\eta ^{\prime }\rightarrow \ell ^+\ell ^-\gamma $$, Eur. Phys. J. C 82 (5) (2022) 434, [Addendum: Eur. Phys. J. C 82, 1159 (2022)]. arXiv:2202.05846, https://doi.org/10.1140/epjc/s10052-022-10247-7
000622276 999C5 $$1P Masjuan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.054026$$tPhys. Rev. D$$uP. Masjuan, P. Sánchez-Puertas, Pseudoscalar-pole contribution to the $$(g_{\mu }-2)$$: a rational approach. Phys. Rev. D 95(5), 054026 (2017). https://doi.org/10.1103/PhysRevD.95.054026. arXiv:1701.05829$$v95$$y2017
000622276 999C5 $$1R Escribano$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.054033$$tPhys. Rev. D$$uR. Escribano, S. Gonzàlez-Solís, P. Masjuan, P. Sánchez-Puertas, $$\eta $$’ transition form factor from space- and timelike experimental data. Phys. Rev. D 94(5), 054033 (2016). https://doi.org/10.1103/PhysRevD.94.054033. arXiv:1512.07520$$v94$$y2016
000622276 999C5 $$2Crossref$$uC. Alexandrou, et al., The $$\eta \rightarrow \gamma ^* \gamma ^*$$ transition form factor and the hadronic light-by-light $$\eta $$-pole contribution to the muon $$g-2$$ from lattice QCD (12 2022). arXiv:2212.06704
000622276 999C5 $$1A Browman$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.32.1067$$p1067 -$$tPhys. Rev. Lett.$$uA. Browman, J. DeWire, B. Gittelman, K.M. Hanson, E. Loh, R. Lewis, The Radiative Width of the eta Meson. Phys. Rev. Lett. 32, 1067 (1974). https://doi.org/10.1103/PhysRevLett.32.1067$$v32$$y1974
000622276 999C5 $$1H Primakoff$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.81.899$$p899 -$$tPhys. Rev.$$uH. Primakoff, Photoproduction of neutral mesons in nuclear electric fields and the mean life of the neutral meson. Phys. Rev. 81, 899 (1951). https://doi.org/10.1103/PhysRev.81.899$$v81$$y1951
000622276 999C5 $$1L Gan$$2Crossref$$9-- missing cx lookup --$$a10.1051/epjconf/20147307004$$p07004 -$$tEPJ Web Conf.$$uL. Gan, Test of fundamental symmetries via the Primakoff effect. EPJ Web Conf. 73, 07004 (2014). https://doi.org/10.1051/epjconf/20147307004$$v73$$y2014
000622276 999C5 $$1AM Bernstein$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.85.49$$p49 -$$tRev. Mod. Phys.$$uA.M. Bernstein, B.R. Holstein, Neutral Pion Lifetime Measurements and the QCD Chiral Anomaly. Rev. Mod. Phys. 85, 49 (2013). https://doi.org/10.1103/RevModPhys.85.49. arXiv:1112.4809$$v85$$y2013
000622276 999C5 $$1M Tanabashi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.030001$$tPhys. Rev. D$$uM. Tanabashi et al., Review of Particle Physics. Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001$$v98$$y2018
000622276 999C5 $$1BL Ioffe$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2007.02.021$$p389 -$$tPhys. Lett. B$$uB.L. Ioffe, A.G. Oganesian, Axial anomaly and the precise value of the pi0 –$${>}$$ 2 gamma decay width. Phys. Lett. B 647, 389–393 (2007). https://doi.org/10.1016/j.physletb.2007.02.021. arXiv:hep-ph/0701077$$v647$$y2007
000622276 999C5 $$1A Kastner$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-008-0703-6$$p541 -$$tEur. Phys. J. C$$uA. Kastner, H. Neufeld, The K(l3) scalar form factors in the standard model. Eur. Phys. J. C 57, 541–556 (2008). https://doi.org/10.1140/epjc/s10052-008-0703-6. arXiv:0805.2222$$v57$$y2008
000622276 999C5 $$1D Giusti$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.114504$$tPhys. Rev. D$$uD. Giusti, V. Lubicz, C. Tarantino, G. Martinelli, F. Sanfilippo, S. Simula, N. Tantalo, Leading isospin-breaking corrections to pion, kaon and charmed-meson masses with Twisted-Mass fermions. Phys. Rev. D 95(11), 114504 (2017). https://doi.org/10.1103/PhysRevD.95.114504. arXiv:1704.06561$$v95$$y2017
000622276 999C5 $$2Crossref$$uA. Gasparian, L. Gan, et al., A precision measurement of the $$\eta $$ radiative decay width via the primakoff effect, https://www.jlab.org/exp_-prog/proposals/10/PR12-10-011.pdf
000622276 999C5 $$1H Leutwyler$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(96)00167-0$$p181 -$$tPhys. Lett. B$$uH. Leutwyler, Implications of eta eta-prime mixing for the decay eta –$${>}$$ 3 pi. Phys. Lett. B 374, 181–185 (1996). https://doi.org/10.1016/0370-2693(96)00167-0. arXiv:hep-ph/9601236$$v374$$y1996
000622276 999C5 $$2Crossref$$uR. Essig, et al., Working Group Report: New Light Weakly Coupled Particles, in: Community Summer Study 2013: Snowmass on the Mississippi, 2013. arXiv:1311.0029
000622276 999C5 $$2Crossref$$uJ. Alexander, et al., Dark Sectors 2016 Workshop: Community Report, 2016. arXiv:1608.08632
000622276 999C5 $$2Crossref$$uM. Battaglieri, et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in: U.S. Cosmic Visions: New Ideas in Dark Matter, 2017. arXiv:1707.04591
000622276 999C5 $$1N Arkani-Hamed$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.79.015014$$tPhys. Rev. D$$uN. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, N. Weiner, A Theory of Dark Matter. Phys. Rev. D 79, 015014 (2009). https://doi.org/10.1103/PhysRevD.79.015014. arXiv:0810.0713$$v79$$y2009
000622276 999C5 $$1M Pospelov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2008.12.012$$p391 -$$tPhys. Lett. B$$uM. Pospelov, A. Ritz, Astrophysical Signatures of Secluded Dark Matter. Phys. Lett. B 671, 391–397 (2009). https://doi.org/10.1016/j.physletb.2008.12.012. arXiv:0810.1502$$v671$$y2009
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2019.114638$$uY.-S. Liu, I. C. Cloët, G. A. Miller, Eta Decay and Muonic Puzzles, Nucl. Phys. B (2019) 114638. https://doi.org/10.1016/j.nuclphysb.2019.114638. arXiv:1805.01028
000622276 999C5 $$1P Fayet$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.75.115017$$tPhys. Rev. D$$uP. Fayet, U-boson production in e+ e- annihilations, psi and Upsilon decays, and Light Dark Matter. Phys. Rev. D 75, 115017 (2007). https://doi.org/10.1103/PhysRevD.75.115017. arXiv:hep-ph/0702176$$v75$$y2007
000622276 999C5 $$1M Pospelov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.80.095002$$tPhys. Rev. D$$uM. Pospelov, Secluded U(1) below the weak scale. Phys. Rev. D 80, 095002 (2009). https://doi.org/10.1103/PhysRevD.80.095002. arXiv:0811.1030$$v80$$y2009
000622276 999C5 $$1AJ Krasznahorkay$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.042501$$tPhys. Rev. Lett.$$uA.J. Krasznahorkay et al., Observation of Anomalous Internal Pair Creation in Be8: A Possible Indication of a Light, Neutral Boson. Phys. Rev. Lett. 116(4), 042501 (2016). https://doi.org/10.1103/PhysRevLett.116.042501. arXiv:1504.01527$$v116$$y2016
000622276 999C5 $$1JL Feng$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.071803$$tPhys. Rev. Lett.$$uJ.L. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T.M.P. Tait, P. Tanedo, Protophobic Fifth-Force Interpretation of the Observed Anomaly in $$^8$$Be Nuclear Transitions. Phys. Rev. Lett. 117(7), 071803 (2016). https://doi.org/10.1103/PhysRevLett.117.071803. arXiv:1604.07411$$v117$$y2016
000622276 999C5 $$1S Tulin$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2017.11.004$$p1 -$$tPhys. Rept.$$uS. Tulin, H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure. Phys. Rept. 730, 1–57 (2018). https://doi.org/10.1016/j.physrep.2017.11.004. arXiv:1705.02358$$v730$$y2018
000622276 999C5 $$1S Tulin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.111301$$tPhys. Rev. Lett.$$uS. Tulin, H.-B. Yu, K.M. Zurek, Resonant Dark Forces and Small Scale Structure. Phys. Rev. Lett. 110(11), 111301 (2013). https://doi.org/10.1103/PhysRevLett.110.111301. arXiv:1210.0900$$v110$$y2013
000622276 999C5 $$1S Tulin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.87.115007$$tPhys. Rev. D$$uS. Tulin, H.-B. Yu, K.M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure. Phys. Rev. D 87(11), 115007 (2013). https://doi.org/10.1103/PhysRevD.87.115007. arXiv:1302.3898$$v87$$y2013
000622276 999C5 $$1D Aloni$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.031803$$tPhys. Rev. Lett.$$uD. Aloni, Y. Soreq, M. Williams, Coupling QCD-Scale Axionlike Particles to Gluons. Phys. Rev. Lett. 123(3), 031803 (2019). https://doi.org/10.1103/PhysRevLett.123.031803. arXiv:1811.03474$$v123$$y2019
000622276 999C5 $$1D Aloni$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.071801$$tPhys. Rev. Lett.$$uD. Aloni, C. Fanelli, Y. Soreq, M. Williams, Photoproduction of Axionlike Particles. Phys. Rev. Lett. 123(7), 071801 (2019). https://doi.org/10.1103/PhysRevLett.123.071801. arXiv:1903.03586$$v123$$y2019
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2017)094$$uM. J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer, K. Schmidt-Hoberg, Revised constraints and Belle II sensitivity for visible and invisible axion-like particles, JHEP 12 (2017) 094, [Erratum: JHEP 03, 190 (2021)]. https://doi.org/10.1007/JHEP12(2017)094. arXiv:1709.00009
000622276 999C5 $$1JD Bjorken$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.38.3375$$p3375 -$$tPhys. Rev. D$$uJ.D. Bjorken, S. Ecklund, W.R. Nelson, A. Abashian, C. Church, B. Lu, L.W. Mo, T.A. Nunamaker, P. Rassmann, Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump. Phys. Rev. D 38, 3375 (1988). https://doi.org/10.1103/PhysRevD.38.3375$$v38$$y1988
000622276 999C5 $$1G Abbiendi$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2002-01074-5$$p331 -$$tEur. Phys. J. C$$uG. Abbiendi et al., Multiphoton production in e+ e- collisions at s**(1/2) = 181-GeV to 209-GeV. Eur. Phys. J. C 26, 331–344 (2003). https://doi.org/10.1140/epjc/s2002-01074-5. arXiv:hep-ex/0210016$$v26$$y2003
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.118.171801$$uS. Knapen, T. Lin, H.K. Lou, T. Melia, Searching for Axionlike Particles with Ultraperipheral Heavy-Ion Collisions. Phys. Rev. Lett. 118(17), 171801 (2017). https://doi.org/10.1103/PhysRevLett.118.171801. arXiv:1607.06083
000622276 999C5 $$1J Blumlein$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X9200171X$$p3835 -$$tInt. J. Mod. Phys. A$$uJ. Blumlein et al., Limits on the mass of light (pseudo)scalar particles from Bethe-Heitler e+ e- and mu+ mu- pair production in a proton - iron beam dump experiment. Int. J. Mod. Phys. A 7, 3835–3850 (1992). https://doi.org/10.1142/S0217751X9200171X$$v7$$y1992
000622276 999C5 $$2Crossref$$uP. A. Souder, P. E. Reimer, X. Zheng, Precision Measurement of Parity-violation in Deep Inelastic Scattering Over a Broad Kinematic Range, Jefferson Lab Experiment E12-10-007, 2010 with 2022 update
000622276 999C5 $$1D Akimov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.129.081801$$tPhys. Rev. Lett.$$uD. Akimov et al., Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENT. Phys. Rev. Lett. 129(8), 081801 (2022). https://doi.org/10.1103/PhysRevLett.129.081801. arXiv:2110.07730$$v129$$y2022
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2172/1322154$$uM. Battaglieri, et al., Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab (7 2016). arXiv:1607.01390
000622276 999C5 $$1L Marsicano$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.115022$$tPhys. Rev. D$$uL. Marsicano, M. Battaglieri, A. Celentano, R. De Vita, Y.-M. Zhong, Probing Leptophilic Dark Sectors at Electron Beam-Dump Facilities. Phys. Rev. D 98(11), 115022 (2018). https://doi.org/10.1103/PhysRevD.98.115022. arXiv:1812.03829$$v98$$y2018
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.072011$$uM. Battaglieri et al., Dark matter search with the BDX-MINI experiment. Phys. Rev. D 106(7), 072011 (2022). https://doi.org/10.1103/PhysRevD.106.072011. arXiv:2208.01387
000622276 999C5 $$1A Bartnik$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.044803$$tPhys. Rev. Lett.$$uA. Bartnik et al., CBETA: First Multipass Superconducting Linear Accelerator with Energy Recovery. Phys. Rev. Lett. 125(4), 044803 (2020). https://doi.org/10.1103/PhysRevLett.125.044803$$v125$$y2020
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.18429/JACoW-IPAC2021-MOPAB216$$uS. Bogacz, et al., 20-24 GeV FFA CEBAF Energy Upgrade, Proc. IPAC’21, Campinas, Brazil, May 2021 (2023) 715–718 https://doi.org/10.18429/JACoW-IPAC2021-MOPAB216
000622276 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.18429/JACoW-IPAC2022-THPOTK011$$uS. Brooks, S. Bogacz, Permanent Magnets forthe CEBAF 24GeV Upgrade, Proc. IPAC’22, Bangkok, Thailand, Jun. 2022 (2022) 2792–2795 https://doi.org/10.18429/JACoW-IPAC2022-THPOTK011
000622276 999C5 $$2Crossref$$uS. Brooks, et al., Open-Midplane Gradient Permanent Magnet with 1.53 T Peak Field, Proc. IPAC’23, Venice, Italy, May 2023 (2023)