000622273 001__ 622273
000622273 005__ 20250122215654.0
000622273 0247_ $$2URN$$aurn:nbn:de:hbz:5-80379
000622273 037__ $$aPUBDB-2025-00311
000622273 041__ $$aEnglish
000622273 1001_ $$0P:(DE-H253)PIP1094798$$aSimancas, Adriana$$b0$$eCorresponding author$$gfemale
000622273 245__ $$aTCAD Simulations and Test Beam Characterization of MAPS for Future Lepton Colliders$$f2020-11-01 - 2024-11-14
000622273 260__ $$c2025
000622273 300__ $$a124
000622273 3367_ $$2DataCite$$aOutput Types/Dissertation
000622273 3367_ $$2ORCID$$aDISSERTATION
000622273 3367_ $$2BibTeX$$aPHDTHESIS
000622273 3367_ $$02$$2EndNote$$aThesis
000622273 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1737550626_1708564
000622273 3367_ $$2DRIVER$$adoctoralThesis
000622273 502__ $$aDissertation, University of Bonn, 2024$$bDissertation$$cUniversity of Bonn$$d2024$$o2024-11-14
000622273 520__ $$aMonolithic active pixel sensors (MAPS) produced in a 65 nm CMOS imaging technology are being investigated for applications in particle physics. The MAPS design has a small collection electrode with an input capacitance of ~fF, granting a high signal-to-noise ratio and low power consumption. Additionally, compared to previously studied technologies, the 65 nm CMOS imaging technology reduces material budget and improves the readout logic density. Given these features, this technology is employed in the TANGERINE project to develop the next generation of silicon pixel sensors. The sensor design targets temporal and spatial resolutions compatible with the requirements for a vertex detector at future lepton colliders. By fulfilling these requirements, the detector is also suitable as a telescope plane for the DESY-II Test Beam facility. Simulations and test-beam characterization of technology demonstrators have been carried out in close collaboration with the CERN EP R&D program and the ALICE ITS3 upgrade. TCAD device simulations and Monte Carlo simulations have been used to study detector sensing characteristics and predict its performance parameters. This work presents a technology-independent simulation approach that uses generic doping profiles for TCAD simulations. The results agree qualitatively with previous studies, providing a preliminary validation of the simulation approach. Prototypes of a 65 nm CMOS MAPS with a small collection electrode have been characterized in laboratory and test-beam facilities by studying performance parameters such as cluster size, charge collection, spatial resolution, and detection efficiency. This work presents the test beam results for different sensor designs and bias configurations. The results are consistent with studies of the previous technologies, proving the scalability of sensor designs from 180 nm to 65 nm technology and offering perspectives on the necessary compromises to accomplish the ultimate detector goals. Finally, Monte Carlo simulations using TCAD electric fields generated in this thesis have produced performance parameters comparable to experimental data. The comparisons demonstrate that the simulation approach is progressing in the right direction. Discrepancies between the two highlight the need to perform studies on the substrate and epitaxial layer doping concentration to allow for accurate predictions of the detector sensing properties. This thesis showcases MAPS in a 65 nm CMOS imaging technology as a promising candidate for a vertex detector at future lepton colliders and provides valuable insight for refining the simulation approach.
000622273 536__ $$0G:(DE-HGF)POF4-622$$a622 - Detector Technologies and Systems (POF4-622)$$cPOF4-622$$fPOF IV$$x0
000622273 536__ $$0G:(DE-Ds200)Tangerine$$aTangerine - Towards Next Generation Silicon Detectors (innovation pool) (Tangerine)$$cTangerine$$x1
000622273 536__ $$0G:(EU-Grant)101004761$$aAIDAinnova - Advancement and Innovation for Detectors at Accelerators (101004761)$$c101004761$$fH2020-INFRAINNOV-2020-2$$x2
000622273 693__ $$0EXP:(DE-H253)TestBeamline22-20150101$$1EXP:(DE-H253)DESYII-20150101$$6EXP:(DE-H253)TestBeamline22-20150101$$aDESY II$$fDESY: TestBeamline 22$$x0
000622273 7001_ $$0P:(DE-H253)PIP1018940$$aSpannagel, Simon$$b1$$eThesis advisor$$udesy
000622273 7001_ $$0P:(DE-H253)PIP1004563$$aGregor, Ingrid-Maria$$b2$$eThesis advisor$$udesy
000622273 8564_ $$uhttps://doi.org/10.48565/bonndoc-484
000622273 8564_ $$uhttps://bib-pubdb1.desy.de/record/622273/files/Simancas_PhD_Thesis_publication_1.pdf$$yRestricted
000622273 8564_ $$uhttps://bib-pubdb1.desy.de/record/622273/files/Simancas_PhD_Thesis_publication_1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000622273 909CO $$ooai:bib-pubdb1.desy.de:622273$$popenaire$$pVDB$$pec_fundedresources
000622273 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094798$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000622273 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018940$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000622273 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1004563$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000622273 9131_ $$0G:(DE-HGF)POF4-622$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vDetector Technologies and Systems$$x0
000622273 9141_ $$y2025
000622273 920__ $$lyes
000622273 9201_ $$0I:(DE-H253)ATLAS-20120731$$kATLAS$$lLHC/ATLAS Experiment$$x0
000622273 9201_ $$0I:(DE-H253)FTX-20210408$$kFTX$$lTechnol. zukünft. Teilchenph. Experim.$$x1
000622273 9201_ $$0I:(DE-H253)FHTestBeam-20150203$$kFHTestBeam$$lDetector RD at DESY Test beam$$x2
000622273 9201_ $$0I:(DE-H253)FEC-20120731$$kFEC$$lMikro- und Optoelektronik$$x3
000622273 980__ $$aphd
000622273 980__ $$aVDB
000622273 980__ $$aI:(DE-H253)ATLAS-20120731
000622273 980__ $$aI:(DE-H253)FTX-20210408
000622273 980__ $$aI:(DE-H253)FHTestBeam-20150203
000622273 980__ $$aI:(DE-H253)FEC-20120731
000622273 980__ $$aUNRESTRICTED