001     622258
005     20250929152530.0
024 7 _ |a 10.1038/s41598-024-81789-x
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-00296
|2 datacite_doi
024 7 _ |a 39639094
|2 pmid
024 7 _ |a WOS:001371833500006
|2 WOS
024 7 _ |a openalex:W4405037942
|2 openalex
037 _ _ |a PUBDB-2025-00296
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Wald, Jiri
|0 P:(DE-H253)PIP1083333
|b 0
|e Corresponding author
245 _ _ |a DMSO might impact ligand binding, capsid stability, and RNA interaction in viral preparations
260 _ _ |a [London]
|c 2024
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750936711_1075687
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a DFG grant numbers INST152/772-1,152/774-1, 152/775-1, 152/776-1 and 152/777-1 FUGG.
520 _ _ |a Dimethyl sulfoxide (DMSO) is a widely used solvent in drug research. However, recent studies indicate that even at low concentration DMSO might cause structural changes of proteins and RNA. The pyrazolopyrimidine antiviral OBR-5-340 dissolved in DMSO inhibits rhinovirus-B5 infection yet is inactive against RV-A89. This is consistent with our structural observation that OBR-5-340 is only visible at the pocket factor site in rhinovirus-B5 and not in RV-A89, where the hydrophobic pocket is collapsed. Here, we analyze the impact of DMSO in RV-A89 by high-resolution cryo-electron microscopy. Our 1.76 Å cryo-EM reconstruction of RV-A89 in plain buffer, without DMSO, reveals that the pocket-factor binding site is occupied by myristate and that the previously observed local heterogeneity at protein–RNA interfaces is absent. These findings suggest that DMSO elutes the pocket factor, leading to a collapse of the hydrophobic pocket of RV-A89. Consequently, the conformational heterogeneity observed at the RNA-protein interface in the presence of DMSO likely results from increased capsid flexibility due to the absence of the pocket factor and DMSO-induced affinity modifications. This local asymmetry may promote a directional release of the RNA genome during infection.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
542 _ _ |i 2024-12-06
|2 Crossref
|u https://creativecommons.org/licenses/by-nc-nd/4.0
542 _ _ |i 2024-12-06
|2 Crossref
|u https://creativecommons.org/licenses/by-nc-nd/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Goessweiner-Mohr, Nikolaus
|b 1
700 1 _ |a Real-Hohn, Antonio
|b 2
700 1 _ |a Blaas, Dieter
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Marlovits, Thomas
|0 P:(DE-H253)PIP1021412
|b 4
|e Corresponding author
773 1 8 |a 10.1038/s41598-024-81789-x
|b Springer Science and Business Media LLC
|d 2024-12-06
|n 1
|p 30408
|3 journal-article
|2 Crossref
|t Scientific Reports
|v 14
|y 2024
|x 2045-2322
773 _ _ |a 10.1038/s41598-024-81789-x
|g Vol. 14, no. 1, p. 30408
|0 PERI:(DE-600)2615211-3
|n 1
|p 30408
|t Scientific reports
|v 14
|y 2024
|x 2045-2322
856 4 _ |u https://bib-pubdb1.desy.de/record/622258/files/s41598-024-81789-x.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/622258/files/s41598-024-81789-x.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:622258
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 0
|6 P:(DE-H253)PIP1083333
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1083333
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1083333
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 4
|6 P:(DE-H253)PIP1021412
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1021412
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-29T15:28:26Z
920 1 _ |0 I:(DE-H253)FS-CS-20210408
|k FS-CS
|l Strukturelle Mikrobiologie CSSB
|x 0
920 1 _ |0 I:(DE-H253)CSSB-UKE-TM-20210520
|k CSSB-UKE-TM
|l CSSB-UKE-TM
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-CS-20210408
980 _ _ |a I:(DE-H253)CSSB-UKE-TM-20210520
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.3390/v14010141
|9 -- missing cx lookup --
|1 C Esneau
|p 141 -
|2 Crossref
|u Esneau, C. & Duff, A. C. Bartlett, N. W. understanding rhinovirus circulation and impact on illness. Viruses 14, 141 (2022).
|t Viruses
|v 14
|y 2022
999 C 5 |a 10.1128/CMR.00077-12
|9 -- missing cx lookup --
|1 SE Jacobs
|p 135 -
|2 Crossref
|u Jacobs, S. E., Lamson, D. M., Kirsten, S. & Walsh, T. J. Human rhinoviruses. Clin. Microbiol. Rev. 26, 135–162 (2013).
|t Clin. Microbiol. Rev.
|v 26
|y 2013
999 C 5 |a 10.1080/21645515.2019.1661207
|9 -- missing cx lookup --
|1 GR McLean
|p 684 -
|2 Crossref
|u McLean, G. R. Vaccine strategies to induce broadly protective immunity to rhinoviruses. Hum. Vaccin. Immunother. 16, 684–686 (2020).
|t Hum. Vaccin. Immunother.
|v 16
|y 2020
999 C 5 |a 10.1016/S1473-3099(02)00277-3
|9 -- missing cx lookup --
|1 K Senior
|p 264 -
|2 Crossref
|u Senior, K. FDA panel rejects common cold treatment. Lancet Infect. Dis. 2, 264 (2002).
|t Lancet Infect. Dis.
|v 2
|y 2002
999 C 5 |a 10.1016/j.antiviral.2021.105020
|9 -- missing cx lookup --
|1 C Liu
|p 105020 -
|2 Crossref
|u Liu, C. et al. Dual inhibition of SARS-CoV-2 and human rhinovirus with protease inhibitors in clinical development. Antiviral Res. 187, 105020 (2021).
|t Antiviral Res.
|v 187
|y 2021
999 C 5 |a 10.1038/317145a0
|9 -- missing cx lookup --
|1 MG Rossmann
|p 145 -
|2 Crossref
|u Rossmann, M. G. et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145–153 (1985).
|t Nature
|v 317
|y 1985
999 C 5 |a 10.1126/science.2994218
|9 -- missing cx lookup --
|1 JM Hogle
|p 1358 -
|2 Crossref
|u Hogle, J. M., Chow, M. & Filman, D. J. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229, 1358–1365 (1985).
|t Science
|v 229
|y 1985
999 C 5 |a 10.1126/science.3018924
|9 -- missing cx lookup --
|1 TJ Smith
|p 1286 -
|2 Crossref
|u Smith, T. J. et al. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233, 1286–1293 (1986).
|t Science
|v 233
|y 1986
999 C 5 |a 10.1016/S0969-2126(97)00199-8
|9 -- missing cx lookup --
|1 AT Hadfield
|p 427 -
|2 Crossref
|u Hadfield, A. T. et al. The refined structure of human rhinovirus 16 at 2.15 Å resolution: implications for the viral life cycle. Structure 5, 427–441 (1997).
|t Structure
|v 5
|y 1997
999 C 5 |a 10.1016/0969-2126(93)90008-5
|9 -- missing cx lookup --
|1 MA Oliveira
|p 51 -
|2 Crossref
|u Oliveira, M. A. et al. The structure of human rhinovirus 16. Structure 1, 51–68 (1993).
|t Structure
|v 1
|y 1993
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s42003-020-01269-6
|2 Crossref
|u Blaas, D. Individual subunits of a rhinovirus causing common cold exhibit largely different protein-RNA contact site conformations. Commun. Biol. 3, 1–7 (2020).
999 C 5 |a 10.1021/ac402038t
|9 -- missing cx lookup --
|1 J Lee
|p 9692 -
|2 Crossref
|u Lee, J., Vogt, C. E., McBrairty, M. & Al-Hashimi, H. M. Influence of dimethylsulfoxide on RNA structure and ligand binding. Anal. Chem. 85, 9692–9698 (2013).
|t Anal. Chem.
|v 85
|y 2013
999 C 5 |a 10.1016/0022-2836(91)90749-V
|9 -- missing cx lookup --
|1 MS Chapman
|p 455 -
|2 Crossref
|u Chapman, M. S., Minor, I., Rossmann, M. G., Diana, G. D. & Andries, K. Human rhinovirus 14 complexed with antiviral compound R 61837. J. Mol. Biol. 217, 455–463 (1991).
|t J. Mol. Biol.
|v 217
|y 1991
999 C 5 |a 10.1073/pnas.1904732116
|9 -- missing cx lookup --
|1 J Wald
|p 19109 -
|2 Crossref
|u Wald, J. et al. Cryo-EM structure of pleconaril-resistant rhinovirus-B5 complexed to the antiviral OBR-5-340 reveals unexpected binding site. Proc. Natl. Acad. Sci. U.S.A. 116, 19109–19115 (2019).
|t Proc. Natl. Acad. Sci. U.S.A.
|v 116
|y 2019
999 C 5 |a 10.1007/978-1-4939-1571-2_9
|9 -- missing cx lookup --
|1 VU Weiss
|p 101 -
|2 Crossref
|u Weiss, V. U. et al. Capillary electrophoresis, gas-phase electrophoretic mobility molecular analysis, and electron microscopy: effective tools for quality assessment and basic rhinovirus research. Methods Mol. Biol. 1221, 101–128 (2015).
|t Methods Mol. Biol.
|v 1221
|y 2015
999 C 5 |a 10.1073/pnas.1312128110
|9 -- missing cx lookup --
|1 A Pickl-Herk
|p 20063 -
|2 Crossref
|u Pickl-Herk, A. et al. Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle. Proc. Natl. Acad. Sci. U.S.A. 110, 20063–20068 (2013).
|t Proc. Natl. Acad. Sci. U.S.A.
|v 110
|y 2013
999 C 5 |a 10.1371/journal.ppat.1003270
|9 -- missing cx lookup --
|1 S Harutyunyan
|p e1003270 -
|2 Crossref
|u Harutyunyan, S. et al. Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3′-end. PLoS Pathog. 9, e1003270 (2013).
|t PLoS Pathog.
|v 9
|y 2013
999 C 5 |a 10.1128/JVI.78.6.2935-2942.2004
|9 -- missing cx lookup --
|1 EA Hewat
|p 2935 -
|2 Crossref
|u Hewat, E. A. & Blaas, D. Cryoelectron microscopy analysis of the structural changes associated with human rhinovirus type 14 uncoating. J. Virol. 78, 2935–2942 (2004).
|t J. Virol.
|v 78
|y 2004
999 C 5 |a 10.1016/S1097-2765(02)00603-2
|9 -- missing cx lookup --
|1 EA Hewat
|p 317 -
|2 Crossref
|u Hewat, E. A., Neumann, E. & Blaas, D. The concerted conformational changes during human rhinovirus 2 uncoating. Mol. Cell 10, 317–326 (2002).
|t Mol. Cell
|v 10
|y 2002
999 C 5 |a 10.1371/journal.ppat.1002473
|9 -- missing cx lookup --
|1 D Garriga
|p e1002473 -
|2 Crossref
|u Garriga, D. et al. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog. 8, e1002473 (2012).
|t PLoS Pathog.
|v 8
|y 2012
999 C 5 |a 10.1016/0042-6822(87)90264-9
|9 -- missing cx lookup --
|1 C Neubauer
|p 255 -
|2 Crossref
|u Neubauer, C., Frasel, L., Kuechler, E. & Blaas, D. Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology 158, 255–258 (1987).
|t Virology
|v 158
|y 1987
999 C 5 |a 10.1128/jvi.12.4.819-826.1973
|9 -- missing cx lookup --
|1 K Lonberg-Holm
|p 819 -
|2 Crossref
|u Lonberg-Holm, K. & Noble-Harvey, J. Comparison of in vitro and cell-mediated alteration of a human rhinovirus and its inhibition by sodium dodecyl sulfate. J. Virol. 12, 819–826 (1973).
|t J. Virol.
|v 12
|y 1973
999 C 5 |a 10.1128/jvi.12.1.114-123.1973
|9 -- missing cx lookup --
|1 K Lonberg-Holm
|p 114 -
|2 Crossref
|u Lonberg-Holm, K. & Yin, F. H. Antigenic determinants of infective and inactivated human rhinovirus type 2. J. Virol. 12, 114–123 (1973).
|t J. Virol.
|v 12
|y 1973
999 C 5 |a 10.1006/jmbi.1993.1137
|9 -- missing cx lookup --
|1 KH Kim
|p 206 -
|2 Crossref
|u Kim, K. H. et al. A comparison of the anti-rhinoviral drug binding pocket in HRV14 and HRV1A. J. Mol. Biol. 230, 206–226 (1993).
|t J. Mol. Biol.
|v 230
|y 1993
999 C 5 |a 10.1002/1522-2683(200203)23:6<896::AID-ELPS896>3.0.CO;2-W
|9 -- missing cx lookup --
|1 VM Okun
|p 896 -
|2 Crossref
|u Okun, V. M., Nizet, S., Blaas, D. & Kenndler, E. Kinetics of thermal denaturation of human rhinoviruses in the presence of anti-viral capsid binders analyzed by capillary electrophoresis. Electrophoresis 23, 896–902 (2002).
|t Electrophoresis
|v 23
|y 2002
999 C 5 |a 10.1006/jmbi.1997.1542
|9 -- missing cx lookup --
|1 DK Phelps
|p 331 -
|2 Crossref
|u Phelps, D. K., Rossky, P. J. & Post, C. B. Influence of an antiviral compound on the temperature dependence of viral protein flexibility and packing: a molecular dynamics study. J. Mol. Biol. 276, 331–337 (1998).
|t J. Mol. Biol.
|v 276
|y 1998
999 C 5 |a 10.1099/0022-1317-72-2-431
|9 -- missing cx lookup --
|1 M Gruenberger
|p 431 -
|2 Crossref
|u Gruenberger, M., Pevear, D., Diana, G. D., Kuechler, E. & Blaas, D. Stabilization of human rhinovirus serotype 2 against pH-induced conformational change by antiviral compounds. J. Gen. Virol. 72, 431–433 (1991).
|t J. Gen. Virol.
|v 72
|y 1991
999 C 5 |a 10.1006/jmbi.1995.0637
|9 -- missing cx lookup --
|1 DK Phelps
|p 544 -
|2 Crossref
|u Phelps, D. K. & Post, C. B. A novel basis for capsid stabilization by antiviral compounds. J. Mol. Biol. 254, 544–551 (1995).
|t J. Mol. Biol.
|v 254
|y 1995
999 C 5 |a 10.3389/fmicb.2020.01442
|9 -- missing cx lookup --
|1 A Real-Hohn
|p 554367 -
|2 Crossref
|u Real-Hohn, A., Groznica, M., Löffler, N., Blaas, D. & Kowalski, H. nanoDSF: in vitro label-free method to monitor picornavirus uncoating and test compounds affecting particle stability. Front. Microbiol. 11, 554367 (2020).
|t Front. Microbiol.
|v 11
|y 2020
999 C 5 |a 10.1128/JVI.74.7.3410-3412.2000
|9 -- missing cx lookup --
|1 T Ward
|p 3410 -
|2 Crossref
|u Ward, T. et al. Fatty acid-depleted albumin induces the formation of Echovirus A particles. J. Virol. 74, 3410–3412 (2000).
|t J. Virol.
|v 74
|y 2000
999 C 5 |9 -- missing cx lookup --
|a 10.1128/JVI.00599-19
|2 Crossref
|u Ruokolainen, V. et al. Extracellular albumin and endosomal ions prime enterovirus particles for uncoating that can be prevented by fatty acid saturation. J. Virol. 93 (2019).
999 C 5 |a 10.1039/C7NR08704G
|9 -- missing cx lookup --
|1 A Valbuena
|p 1440 -
|2 Crossref
|u Valbuena, A., Rodríguez-Huete, A. & Mateu, M. G. Mechanical stiffening of human rhinovirus by cavity-filling antiviral drugs. Nanoscale 10, 1440–1452 (2018).
|t Nanoscale
|v 10
|y 2018
999 C 5 |a 10.1016/S0042-6822(03)00452-5
|9 -- missing cx lookup --
|1 N Reisdorph
|p 34 -
|2 Crossref
|u Reisdorph, N. et al. Human rhinovirus capsid dynamics is controlled by canyon flexibility. Virology 314, 34–44 (2003).
|t Virology
|v 314
|y 2003
999 C 5 |a 10.1016/S0006-3495(01)75999-1
|9 -- missing cx lookup --
|1 B Speelman
|p 121 -
|2 Crossref
|u Speelman, B., Brooks, B. R. & Post, C. B. Molecular dynamics simulations of human rhinovirus and an antiviral compound. Biophys. J. 80, 121–129 (2001).
|t Biophys. J.
|v 80
|y 2001
999 C 5 |a 10.1110/ps.8.11.2281
|9 -- missing cx lookup --
|1 DK Phelps
|p 2281 -
|2 Crossref
|u Phelps, D. K. & Post, C. B. Molecular dynamics investigation of the effect of an antiviral compound on human rhinovirus. Protein Sci. 8, 2281–2289 (1999).
|t Protein Sci.
|v 8
|y 1999
999 C 5 |a 10.1073/pnas.95.12.6774
|9 -- missing cx lookup --
|1 JK Lewis
|p 6774 -
|2 Crossref
|u Lewis, J. K., Bothner, B., Smith, T. J. & Siuzdak, G. Antiviral agent blocks breathing of the common cold virus. Proc. Natl. Acad. Sci. U.S.A. 95, 6774–6778 (1998).
|t Proc. Natl. Acad. Sci. U.S.A.
|v 95
|y 1998
999 C 5 |a 10.1021/acs.analchem.7b02329
|9 -- missing cx lookup --
|1 DSH Chan
|p 9976 -
|2 Crossref
|u Chan, D. S. H. et al. Effect of DMSO on protein structure and interactions assessed by collision-induced dissociation and unfolding. Anal. Chem. 89, 9976–9983 (2017).
|t Anal. Chem.
|v 89
|y 2017
999 C 5 |a 10.1177/1087057105284218
|9 -- missing cx lookup --
|1 A Tjernberg
|p 131 -
|2 Crossref
|u Tjernberg, A., Markova, N., Griffiths, W. J. & Hallén, D. DMSO-related effects in protein characterization. J. Biomol. Screen. 11, 131–137 (2006).
|t J. Biomol. Screen.
|v 11
|y 2006
999 C 5 |a 10.1038/s41598-022-07706-2
|9 -- missing cx lookup --
|1 L Reimer
|p 1 -
|2 Crossref
|u Reimer, L. et al. Low dose DMSO treatment induces oligomerization and accelerates aggregation of α-synuclein. Sci. Rep. 12, 1–13 (2022).
|t Sci. Rep.
|v 12
|y 2022
999 C 5 |a 10.1186/1471-2334-2-9
|9 -- missing cx lookup --
|1 JS Aguilar
|p 1 -
|2 Crossref
|u Aguilar, J. S., Roy, D., Ghazal, P. & Wagner, E. K. Dimethyl sulfoxide blocks herpes simplex virus-I productive infection in vitro acting at different stages with positive cooperativity. Application of micro-array analysis. BMC Infect. Dis. 2, 1–10 (2002).
|t BMC Infect. Dis.
|v 2
|y 2002
999 C 5 |a 10.1016/j.jsb.2012.09.006
|9 -- missing cx lookup --
|1 SHW Scheres
|p 519 -
|2 Crossref
|u Scheres, S. H. W. & RELION Implementation of a bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
|t J. Struct. Biol.
|v 180
|y 2012
999 C 5 |a 10.1038/nmeth.4169
|9 -- missing cx lookup --
|1 A Punjani
|p 290 -
|2 Crossref
|u Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
|t Nat. Methods
|v 14
|y 2017
999 C 5 |a 10.1038/nmeth.4193
|9 -- missing cx lookup --
|1 SQ Zheng
|p 331 -
|2 Crossref
|u Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
|t Nat. Methods
|v 14
|y 2017
999 C 5 |a 10.1016/j.jsb.2015.08.008
|9 -- missing cx lookup --
|1 A Rohou
|p 216 -
|2 Crossref
|u Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
|t J. Struct. Biol.
|v 192
|y 2015
999 C 5 |a 10.1038/s42003-019-0437-z
|9 -- missing cx lookup --
|1 T Wagner
|p 1 -
|2 Crossref
|u Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 1–13 (2019).
|t Commun. Biol.
|v 2
|y 2019
999 C 5 |a 10.1002/jcc.20084
|9 -- missing cx lookup --
|1 EF Pettersen
|p 1605 -
|2 Crossref
|u Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
|t J. Comput. Chem.
|v 25
|y 2004
999 C 5 |a 10.1006/jmbi.2001.5032
|9 -- missing cx lookup --
|1 MR Lee
|p 417 -
|2 Crossref
|u Lee, M. R., Tsai, J., Baker, D. & Kollman, P. A. Molecular dynamics in the endgame of protein structure prediction. J. Mol. Biol. 313, 417–430 (2001).
|t J. Mol. Biol.
|v 313
|y 2001
999 C 5 |a 10.1038/s41596-022-00757-9
|9 -- missing cx lookup --
|1 W Lugmayr
|p 239 -
|2 Crossref
|u Lugmayr, W. et al. StarMap: a user-friendly workflow for Rosetta-driven molecular structure refinement. Nat. Protoc. 18, 239–264 (2023).
|t Nat. Protoc.
|v 18
|y 2023
999 C 5 |a 10.1107/S2059798318002425
|9 -- missing cx lookup --
|1 TI Croll
|p 519 -
|2 Crossref
|u Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519 (2018).
|t Acta Crystallogr. D Struct. Biol.
|v 74
|y 2018
999 C 5 |a 10.1002/pro.3943
|9 -- missing cx lookup --
|1 EF Pettersen
|p 70 -
|2 Crossref
|u Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
|t Protein Sci.
|v 30
|y 2021
999 C 5 |a 10.1107/S2059798318006551
|9 -- missing cx lookup --
|1 PV Afonine
|p 531 -
|2 Crossref
|u Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).
|t Acta Crystallogr. D Struct. Biol.
|v 74
|y 2018
999 C 5 |a 10.1002/pro.3330
|9 -- missing cx lookup --
|1 CJ Williams
|p 293 -
|2 Crossref
|u Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).
|t Protein Sci.
|v 27
|y 2018
999 C 5 |a 10.1093/nar/gkj032
|9 -- missing cx lookup --
|1 CM Shepherd
|p D386 -
|2 Crossref
|u Shepherd, C. M. et al. VIPERdb: a relational database for structural virology. Nucleic Acids Res. 34, D386–D389 (2006).
|t Nucleic Acids Res.
|v 34
|y 2006
999 C 5 |a 10.1093/nar/gkaa1096
|9 -- missing cx lookup --
|1 D Montiel-Garcia
|p D809 -
|2 Crossref
|u Montiel-Garcia, D. et al. VIPERdb v3.0: a structure-based data analytics platform for viral capsids. Nucleic Acids Res. 49, D809–D816 (2021).
|t Nucleic Acids Res.
|v 49
|y 2021


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21