| Home > Publications database > DMSO might impact ligand binding, capsid stability, and RNA interaction in viral preparations > print |
| 001 | 622258 | ||
| 005 | 20250929152530.0 | ||
| 024 | 7 | _ | |a 10.1038/s41598-024-81789-x |2 doi |
| 024 | 7 | _ | |a 10.3204/PUBDB-2025-00296 |2 datacite_doi |
| 024 | 7 | _ | |a 39639094 |2 pmid |
| 024 | 7 | _ | |a WOS:001371833500006 |2 WOS |
| 024 | 7 | _ | |a openalex:W4405037942 |2 openalex |
| 037 | _ | _ | |a PUBDB-2025-00296 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Wald, Jiri |0 P:(DE-H253)PIP1083333 |b 0 |e Corresponding author |
| 245 | _ | _ | |a DMSO might impact ligand binding, capsid stability, and RNA interaction in viral preparations |
| 260 | _ | _ | |a [London] |c 2024 |b Springer Nature |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1750936711_1075687 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a DFG grant numbers INST152/772-1,152/774-1, 152/775-1, 152/776-1 and 152/777-1 FUGG. |
| 520 | _ | _ | |a Dimethyl sulfoxide (DMSO) is a widely used solvent in drug research. However, recent studies indicate that even at low concentration DMSO might cause structural changes of proteins and RNA. The pyrazolopyrimidine antiviral OBR-5-340 dissolved in DMSO inhibits rhinovirus-B5 infection yet is inactive against RV-A89. This is consistent with our structural observation that OBR-5-340 is only visible at the pocket factor site in rhinovirus-B5 and not in RV-A89, where the hydrophobic pocket is collapsed. Here, we analyze the impact of DMSO in RV-A89 by high-resolution cryo-electron microscopy. Our 1.76 Å cryo-EM reconstruction of RV-A89 in plain buffer, without DMSO, reveals that the pocket-factor binding site is occupied by myristate and that the previously observed local heterogeneity at protein–RNA interfaces is absent. These findings suggest that DMSO elutes the pocket factor, leading to a collapse of the hydrophobic pocket of RV-A89. Consequently, the conformational heterogeneity observed at the RNA-protein interface in the presence of DMSO likely results from increased capsid flexibility due to the absence of the pocket factor and DMSO-induced affinity modifications. This local asymmetry may promote a directional release of the RNA genome during infection. |
| 536 | _ | _ | |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633) |0 G:(DE-HGF)POF4-633 |c POF4-633 |f POF IV |x 0 |
| 542 | _ | _ | |i 2024-12-06 |2 Crossref |u https://creativecommons.org/licenses/by-nc-nd/4.0 |
| 542 | _ | _ | |i 2024-12-06 |2 Crossref |u https://creativecommons.org/licenses/by-nc-nd/4.0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
| 700 | 1 | _ | |a Goessweiner-Mohr, Nikolaus |b 1 |
| 700 | 1 | _ | |a Real-Hohn, Antonio |b 2 |
| 700 | 1 | _ | |a Blaas, Dieter |0 P:(DE-HGF)0 |b 3 |e Corresponding author |
| 700 | 1 | _ | |a Marlovits, Thomas |0 P:(DE-H253)PIP1021412 |b 4 |e Corresponding author |
| 773 | 1 | 8 | |a 10.1038/s41598-024-81789-x |b Springer Science and Business Media LLC |d 2024-12-06 |n 1 |p 30408 |3 journal-article |2 Crossref |t Scientific Reports |v 14 |y 2024 |x 2045-2322 |
| 773 | _ | _ | |a 10.1038/s41598-024-81789-x |g Vol. 14, no. 1, p. 30408 |0 PERI:(DE-600)2615211-3 |n 1 |p 30408 |t Scientific reports |v 14 |y 2024 |x 2045-2322 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622258/files/s41598-024-81789-x.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622258/files/s41598-024-81789-x.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:622258 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 0 |6 P:(DE-H253)PIP1083333 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1083333 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1083333 |
| 910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 4 |6 P:(DE-H253)PIP1021412 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1021412 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-633 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Life Sciences – Building Blocks of Life: Structure and Function |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-18 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2024-12-18 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-29T15:28:26Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-29T15:28:26Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-18 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-07-29T15:28:26Z |
| 920 | 1 | _ | |0 I:(DE-H253)FS-CS-20210408 |k FS-CS |l Strukturelle Mikrobiologie CSSB |x 0 |
| 920 | 1 | _ | |0 I:(DE-H253)CSSB-UKE-TM-20210520 |k CSSB-UKE-TM |l CSSB-UKE-TM |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-H253)FS-CS-20210408 |
| 980 | _ | _ | |a I:(DE-H253)CSSB-UKE-TM-20210520 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| 999 | C | 5 | |a 10.3390/v14010141 |9 -- missing cx lookup -- |1 C Esneau |p 141 - |2 Crossref |u Esneau, C. & Duff, A. C. Bartlett, N. W. understanding rhinovirus circulation and impact on illness. Viruses 14, 141 (2022). |t Viruses |v 14 |y 2022 |
| 999 | C | 5 | |a 10.1128/CMR.00077-12 |9 -- missing cx lookup -- |1 SE Jacobs |p 135 - |2 Crossref |u Jacobs, S. E., Lamson, D. M., Kirsten, S. & Walsh, T. J. Human rhinoviruses. Clin. Microbiol. Rev. 26, 135–162 (2013). |t Clin. Microbiol. Rev. |v 26 |y 2013 |
| 999 | C | 5 | |a 10.1080/21645515.2019.1661207 |9 -- missing cx lookup -- |1 GR McLean |p 684 - |2 Crossref |u McLean, G. R. Vaccine strategies to induce broadly protective immunity to rhinoviruses. Hum. Vaccin. Immunother. 16, 684–686 (2020). |t Hum. Vaccin. Immunother. |v 16 |y 2020 |
| 999 | C | 5 | |a 10.1016/S1473-3099(02)00277-3 |9 -- missing cx lookup -- |1 K Senior |p 264 - |2 Crossref |u Senior, K. FDA panel rejects common cold treatment. Lancet Infect. Dis. 2, 264 (2002). |t Lancet Infect. Dis. |v 2 |y 2002 |
| 999 | C | 5 | |a 10.1016/j.antiviral.2021.105020 |9 -- missing cx lookup -- |1 C Liu |p 105020 - |2 Crossref |u Liu, C. et al. Dual inhibition of SARS-CoV-2 and human rhinovirus with protease inhibitors in clinical development. Antiviral Res. 187, 105020 (2021). |t Antiviral Res. |v 187 |y 2021 |
| 999 | C | 5 | |a 10.1038/317145a0 |9 -- missing cx lookup -- |1 MG Rossmann |p 145 - |2 Crossref |u Rossmann, M. G. et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145–153 (1985). |t Nature |v 317 |y 1985 |
| 999 | C | 5 | |a 10.1126/science.2994218 |9 -- missing cx lookup -- |1 JM Hogle |p 1358 - |2 Crossref |u Hogle, J. M., Chow, M. & Filman, D. J. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229, 1358–1365 (1985). |t Science |v 229 |y 1985 |
| 999 | C | 5 | |a 10.1126/science.3018924 |9 -- missing cx lookup -- |1 TJ Smith |p 1286 - |2 Crossref |u Smith, T. J. et al. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233, 1286–1293 (1986). |t Science |v 233 |y 1986 |
| 999 | C | 5 | |a 10.1016/S0969-2126(97)00199-8 |9 -- missing cx lookup -- |1 AT Hadfield |p 427 - |2 Crossref |u Hadfield, A. T. et al. The refined structure of human rhinovirus 16 at 2.15 Å resolution: implications for the viral life cycle. Structure 5, 427–441 (1997). |t Structure |v 5 |y 1997 |
| 999 | C | 5 | |a 10.1016/0969-2126(93)90008-5 |9 -- missing cx lookup -- |1 MA Oliveira |p 51 - |2 Crossref |u Oliveira, M. A. et al. The structure of human rhinovirus 16. Structure 1, 51–68 (1993). |t Structure |v 1 |y 1993 |
| 999 | C | 5 | |9 -- missing cx lookup -- |a 10.1038/s42003-020-01269-6 |2 Crossref |u Blaas, D. Individual subunits of a rhinovirus causing common cold exhibit largely different protein-RNA contact site conformations. Commun. Biol. 3, 1–7 (2020). |
| 999 | C | 5 | |a 10.1021/ac402038t |9 -- missing cx lookup -- |1 J Lee |p 9692 - |2 Crossref |u Lee, J., Vogt, C. E., McBrairty, M. & Al-Hashimi, H. M. Influence of dimethylsulfoxide on RNA structure and ligand binding. Anal. Chem. 85, 9692–9698 (2013). |t Anal. Chem. |v 85 |y 2013 |
| 999 | C | 5 | |a 10.1016/0022-2836(91)90749-V |9 -- missing cx lookup -- |1 MS Chapman |p 455 - |2 Crossref |u Chapman, M. S., Minor, I., Rossmann, M. G., Diana, G. D. & Andries, K. Human rhinovirus 14 complexed with antiviral compound R 61837. J. Mol. Biol. 217, 455–463 (1991). |t J. Mol. Biol. |v 217 |y 1991 |
| 999 | C | 5 | |a 10.1073/pnas.1904732116 |9 -- missing cx lookup -- |1 J Wald |p 19109 - |2 Crossref |u Wald, J. et al. Cryo-EM structure of pleconaril-resistant rhinovirus-B5 complexed to the antiviral OBR-5-340 reveals unexpected binding site. Proc. Natl. Acad. Sci. U.S.A. 116, 19109–19115 (2019). |t Proc. Natl. Acad. Sci. U.S.A. |v 116 |y 2019 |
| 999 | C | 5 | |a 10.1007/978-1-4939-1571-2_9 |9 -- missing cx lookup -- |1 VU Weiss |p 101 - |2 Crossref |u Weiss, V. U. et al. Capillary electrophoresis, gas-phase electrophoretic mobility molecular analysis, and electron microscopy: effective tools for quality assessment and basic rhinovirus research. Methods Mol. Biol. 1221, 101–128 (2015). |t Methods Mol. Biol. |v 1221 |y 2015 |
| 999 | C | 5 | |a 10.1073/pnas.1312128110 |9 -- missing cx lookup -- |1 A Pickl-Herk |p 20063 - |2 Crossref |u Pickl-Herk, A. et al. Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle. Proc. Natl. Acad. Sci. U.S.A. 110, 20063–20068 (2013). |t Proc. Natl. Acad. Sci. U.S.A. |v 110 |y 2013 |
| 999 | C | 5 | |a 10.1371/journal.ppat.1003270 |9 -- missing cx lookup -- |1 S Harutyunyan |p e1003270 - |2 Crossref |u Harutyunyan, S. et al. Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3′-end. PLoS Pathog. 9, e1003270 (2013). |t PLoS Pathog. |v 9 |y 2013 |
| 999 | C | 5 | |a 10.1128/JVI.78.6.2935-2942.2004 |9 -- missing cx lookup -- |1 EA Hewat |p 2935 - |2 Crossref |u Hewat, E. A. & Blaas, D. Cryoelectron microscopy analysis of the structural changes associated with human rhinovirus type 14 uncoating. J. Virol. 78, 2935–2942 (2004). |t J. Virol. |v 78 |y 2004 |
| 999 | C | 5 | |a 10.1016/S1097-2765(02)00603-2 |9 -- missing cx lookup -- |1 EA Hewat |p 317 - |2 Crossref |u Hewat, E. A., Neumann, E. & Blaas, D. The concerted conformational changes during human rhinovirus 2 uncoating. Mol. Cell 10, 317–326 (2002). |t Mol. Cell |v 10 |y 2002 |
| 999 | C | 5 | |a 10.1371/journal.ppat.1002473 |9 -- missing cx lookup -- |1 D Garriga |p e1002473 - |2 Crossref |u Garriga, D. et al. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog. 8, e1002473 (2012). |t PLoS Pathog. |v 8 |y 2012 |
| 999 | C | 5 | |a 10.1016/0042-6822(87)90264-9 |9 -- missing cx lookup -- |1 C Neubauer |p 255 - |2 Crossref |u Neubauer, C., Frasel, L., Kuechler, E. & Blaas, D. Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology 158, 255–258 (1987). |t Virology |v 158 |y 1987 |
| 999 | C | 5 | |a 10.1128/jvi.12.4.819-826.1973 |9 -- missing cx lookup -- |1 K Lonberg-Holm |p 819 - |2 Crossref |u Lonberg-Holm, K. & Noble-Harvey, J. Comparison of in vitro and cell-mediated alteration of a human rhinovirus and its inhibition by sodium dodecyl sulfate. J. Virol. 12, 819–826 (1973). |t J. Virol. |v 12 |y 1973 |
| 999 | C | 5 | |a 10.1128/jvi.12.1.114-123.1973 |9 -- missing cx lookup -- |1 K Lonberg-Holm |p 114 - |2 Crossref |u Lonberg-Holm, K. & Yin, F. H. Antigenic determinants of infective and inactivated human rhinovirus type 2. J. Virol. 12, 114–123 (1973). |t J. Virol. |v 12 |y 1973 |
| 999 | C | 5 | |a 10.1006/jmbi.1993.1137 |9 -- missing cx lookup -- |1 KH Kim |p 206 - |2 Crossref |u Kim, K. H. et al. A comparison of the anti-rhinoviral drug binding pocket in HRV14 and HRV1A. J. Mol. Biol. 230, 206–226 (1993). |t J. Mol. Biol. |v 230 |y 1993 |
| 999 | C | 5 | |a 10.1002/1522-2683(200203)23:6<896::AID-ELPS896>3.0.CO;2-W |9 -- missing cx lookup -- |1 VM Okun |p 896 - |2 Crossref |u Okun, V. M., Nizet, S., Blaas, D. & Kenndler, E. Kinetics of thermal denaturation of human rhinoviruses in the presence of anti-viral capsid binders analyzed by capillary electrophoresis. Electrophoresis 23, 896–902 (2002). |t Electrophoresis |v 23 |y 2002 |
| 999 | C | 5 | |a 10.1006/jmbi.1997.1542 |9 -- missing cx lookup -- |1 DK Phelps |p 331 - |2 Crossref |u Phelps, D. K., Rossky, P. J. & Post, C. B. Influence of an antiviral compound on the temperature dependence of viral protein flexibility and packing: a molecular dynamics study. J. Mol. Biol. 276, 331–337 (1998). |t J. Mol. Biol. |v 276 |y 1998 |
| 999 | C | 5 | |a 10.1099/0022-1317-72-2-431 |9 -- missing cx lookup -- |1 M Gruenberger |p 431 - |2 Crossref |u Gruenberger, M., Pevear, D., Diana, G. D., Kuechler, E. & Blaas, D. Stabilization of human rhinovirus serotype 2 against pH-induced conformational change by antiviral compounds. J. Gen. Virol. 72, 431–433 (1991). |t J. Gen. Virol. |v 72 |y 1991 |
| 999 | C | 5 | |a 10.1006/jmbi.1995.0637 |9 -- missing cx lookup -- |1 DK Phelps |p 544 - |2 Crossref |u Phelps, D. K. & Post, C. B. A novel basis for capsid stabilization by antiviral compounds. J. Mol. Biol. 254, 544–551 (1995). |t J. Mol. Biol. |v 254 |y 1995 |
| 999 | C | 5 | |a 10.3389/fmicb.2020.01442 |9 -- missing cx lookup -- |1 A Real-Hohn |p 554367 - |2 Crossref |u Real-Hohn, A., Groznica, M., Löffler, N., Blaas, D. & Kowalski, H. nanoDSF: in vitro label-free method to monitor picornavirus uncoating and test compounds affecting particle stability. Front. Microbiol. 11, 554367 (2020). |t Front. Microbiol. |v 11 |y 2020 |
| 999 | C | 5 | |a 10.1128/JVI.74.7.3410-3412.2000 |9 -- missing cx lookup -- |1 T Ward |p 3410 - |2 Crossref |u Ward, T. et al. Fatty acid-depleted albumin induces the formation of Echovirus A particles. J. Virol. 74, 3410–3412 (2000). |t J. Virol. |v 74 |y 2000 |
| 999 | C | 5 | |9 -- missing cx lookup -- |a 10.1128/JVI.00599-19 |2 Crossref |u Ruokolainen, V. et al. Extracellular albumin and endosomal ions prime enterovirus particles for uncoating that can be prevented by fatty acid saturation. J. Virol. 93 (2019). |
| 999 | C | 5 | |a 10.1039/C7NR08704G |9 -- missing cx lookup -- |1 A Valbuena |p 1440 - |2 Crossref |u Valbuena, A., Rodríguez-Huete, A. & Mateu, M. G. Mechanical stiffening of human rhinovirus by cavity-filling antiviral drugs. Nanoscale 10, 1440–1452 (2018). |t Nanoscale |v 10 |y 2018 |
| 999 | C | 5 | |a 10.1016/S0042-6822(03)00452-5 |9 -- missing cx lookup -- |1 N Reisdorph |p 34 - |2 Crossref |u Reisdorph, N. et al. Human rhinovirus capsid dynamics is controlled by canyon flexibility. Virology 314, 34–44 (2003). |t Virology |v 314 |y 2003 |
| 999 | C | 5 | |a 10.1016/S0006-3495(01)75999-1 |9 -- missing cx lookup -- |1 B Speelman |p 121 - |2 Crossref |u Speelman, B., Brooks, B. R. & Post, C. B. Molecular dynamics simulations of human rhinovirus and an antiviral compound. Biophys. J. 80, 121–129 (2001). |t Biophys. J. |v 80 |y 2001 |
| 999 | C | 5 | |a 10.1110/ps.8.11.2281 |9 -- missing cx lookup -- |1 DK Phelps |p 2281 - |2 Crossref |u Phelps, D. K. & Post, C. B. Molecular dynamics investigation of the effect of an antiviral compound on human rhinovirus. Protein Sci. 8, 2281–2289 (1999). |t Protein Sci. |v 8 |y 1999 |
| 999 | C | 5 | |a 10.1073/pnas.95.12.6774 |9 -- missing cx lookup -- |1 JK Lewis |p 6774 - |2 Crossref |u Lewis, J. K., Bothner, B., Smith, T. J. & Siuzdak, G. Antiviral agent blocks breathing of the common cold virus. Proc. Natl. Acad. Sci. U.S.A. 95, 6774–6778 (1998). |t Proc. Natl. Acad. Sci. U.S.A. |v 95 |y 1998 |
| 999 | C | 5 | |a 10.1021/acs.analchem.7b02329 |9 -- missing cx lookup -- |1 DSH Chan |p 9976 - |2 Crossref |u Chan, D. S. H. et al. Effect of DMSO on protein structure and interactions assessed by collision-induced dissociation and unfolding. Anal. Chem. 89, 9976–9983 (2017). |t Anal. Chem. |v 89 |y 2017 |
| 999 | C | 5 | |a 10.1177/1087057105284218 |9 -- missing cx lookup -- |1 A Tjernberg |p 131 - |2 Crossref |u Tjernberg, A., Markova, N., Griffiths, W. J. & Hallén, D. DMSO-related effects in protein characterization. J. Biomol. Screen. 11, 131–137 (2006). |t J. Biomol. Screen. |v 11 |y 2006 |
| 999 | C | 5 | |a 10.1038/s41598-022-07706-2 |9 -- missing cx lookup -- |1 L Reimer |p 1 - |2 Crossref |u Reimer, L. et al. Low dose DMSO treatment induces oligomerization and accelerates aggregation of α-synuclein. Sci. Rep. 12, 1–13 (2022). |t Sci. Rep. |v 12 |y 2022 |
| 999 | C | 5 | |a 10.1186/1471-2334-2-9 |9 -- missing cx lookup -- |1 JS Aguilar |p 1 - |2 Crossref |u Aguilar, J. S., Roy, D., Ghazal, P. & Wagner, E. K. Dimethyl sulfoxide blocks herpes simplex virus-I productive infection in vitro acting at different stages with positive cooperativity. Application of micro-array analysis. BMC Infect. Dis. 2, 1–10 (2002). |t BMC Infect. Dis. |v 2 |y 2002 |
| 999 | C | 5 | |a 10.1016/j.jsb.2012.09.006 |9 -- missing cx lookup -- |1 SHW Scheres |p 519 - |2 Crossref |u Scheres, S. H. W. & RELION Implementation of a bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). |t J. Struct. Biol. |v 180 |y 2012 |
| 999 | C | 5 | |a 10.1038/nmeth.4169 |9 -- missing cx lookup -- |1 A Punjani |p 290 - |2 Crossref |u Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). |t Nat. Methods |v 14 |y 2017 |
| 999 | C | 5 | |a 10.1038/nmeth.4193 |9 -- missing cx lookup -- |1 SQ Zheng |p 331 - |2 Crossref |u Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). |t Nat. Methods |v 14 |y 2017 |
| 999 | C | 5 | |a 10.1016/j.jsb.2015.08.008 |9 -- missing cx lookup -- |1 A Rohou |p 216 - |2 Crossref |u Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). |t J. Struct. Biol. |v 192 |y 2015 |
| 999 | C | 5 | |a 10.1038/s42003-019-0437-z |9 -- missing cx lookup -- |1 T Wagner |p 1 - |2 Crossref |u Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 1–13 (2019). |t Commun. Biol. |v 2 |y 2019 |
| 999 | C | 5 | |a 10.1002/jcc.20084 |9 -- missing cx lookup -- |1 EF Pettersen |p 1605 - |2 Crossref |u Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). |t J. Comput. Chem. |v 25 |y 2004 |
| 999 | C | 5 | |a 10.1006/jmbi.2001.5032 |9 -- missing cx lookup -- |1 MR Lee |p 417 - |2 Crossref |u Lee, M. R., Tsai, J., Baker, D. & Kollman, P. A. Molecular dynamics in the endgame of protein structure prediction. J. Mol. Biol. 313, 417–430 (2001). |t J. Mol. Biol. |v 313 |y 2001 |
| 999 | C | 5 | |a 10.1038/s41596-022-00757-9 |9 -- missing cx lookup -- |1 W Lugmayr |p 239 - |2 Crossref |u Lugmayr, W. et al. StarMap: a user-friendly workflow for Rosetta-driven molecular structure refinement. Nat. Protoc. 18, 239–264 (2023). |t Nat. Protoc. |v 18 |y 2023 |
| 999 | C | 5 | |a 10.1107/S2059798318002425 |9 -- missing cx lookup -- |1 TI Croll |p 519 - |2 Crossref |u Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519 (2018). |t Acta Crystallogr. D Struct. Biol. |v 74 |y 2018 |
| 999 | C | 5 | |a 10.1002/pro.3943 |9 -- missing cx lookup -- |1 EF Pettersen |p 70 - |2 Crossref |u Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). |t Protein Sci. |v 30 |y 2021 |
| 999 | C | 5 | |a 10.1107/S2059798318006551 |9 -- missing cx lookup -- |1 PV Afonine |p 531 - |2 Crossref |u Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018). |t Acta Crystallogr. D Struct. Biol. |v 74 |y 2018 |
| 999 | C | 5 | |a 10.1002/pro.3330 |9 -- missing cx lookup -- |1 CJ Williams |p 293 - |2 Crossref |u Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018). |t Protein Sci. |v 27 |y 2018 |
| 999 | C | 5 | |a 10.1093/nar/gkj032 |9 -- missing cx lookup -- |1 CM Shepherd |p D386 - |2 Crossref |u Shepherd, C. M. et al. VIPERdb: a relational database for structural virology. Nucleic Acids Res. 34, D386–D389 (2006). |t Nucleic Acids Res. |v 34 |y 2006 |
| 999 | C | 5 | |a 10.1093/nar/gkaa1096 |9 -- missing cx lookup -- |1 D Montiel-Garcia |p D809 - |2 Crossref |u Montiel-Garcia, D. et al. VIPERdb v3.0: a structure-based data analytics platform for viral capsids. Nucleic Acids Res. 49, D809–D816 (2021). |t Nucleic Acids Res. |v 49 |y 2021 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|