000622258 001__ 622258
000622258 005__ 20250929152530.0
000622258 0247_ $$2doi$$a10.1038/s41598-024-81789-x
000622258 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00296
000622258 0247_ $$2pmid$$a39639094
000622258 0247_ $$2WOS$$aWOS:001371833500006
000622258 0247_ $$2openalex$$aopenalex:W4405037942
000622258 037__ $$aPUBDB-2025-00296
000622258 041__ $$aEnglish
000622258 082__ $$a600
000622258 1001_ $$0P:(DE-H253)PIP1083333$$aWald, Jiri$$b0$$eCorresponding author
000622258 245__ $$aDMSO might impact ligand binding, capsid stability, and RNA interaction in viral preparations
000622258 260__ $$a[London]$$bSpringer Nature$$c2024
000622258 3367_ $$2DRIVER$$aarticle
000622258 3367_ $$2DataCite$$aOutput Types/Journal article
000622258 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1750936711_1075687
000622258 3367_ $$2BibTeX$$aARTICLE
000622258 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000622258 3367_ $$00$$2EndNote$$aJournal Article
000622258 500__ $$aDFG grant numbers INST152/772-1,152/774-1, 152/775-1, 152/776-1 and 152/777-1 FUGG.
000622258 520__ $$aDimethyl sulfoxide (DMSO) is a widely used solvent in drug research. However, recent studies indicate that even at low concentration DMSO might cause structural changes of proteins and RNA. The pyrazolopyrimidine antiviral OBR-5-340 dissolved in DMSO inhibits rhinovirus-B5 infection yet is inactive against RV-A89. This is consistent with our structural observation that OBR-5-340 is only visible at the pocket factor site in rhinovirus-B5 and not in RV-A89, where the hydrophobic pocket is collapsed. Here, we analyze the impact of DMSO in RV-A89 by high-resolution cryo-electron microscopy. Our 1.76 Å cryo-EM reconstruction of RV-A89 in plain buffer, without DMSO, reveals that the pocket-factor binding site is occupied by myristate and that the previously observed local heterogeneity at protein–RNA interfaces is absent. These findings suggest that DMSO elutes the pocket factor, leading to a collapse of the hydrophobic pocket of RV-A89. Consequently, the conformational heterogeneity observed at the RNA-protein interface in the presence of DMSO likely results from increased capsid flexibility due to the absence of the pocket factor and DMSO-induced affinity modifications. This local asymmetry may promote a directional release of the RNA genome during infection.
000622258 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000622258 542__ $$2Crossref$$i2024-12-06$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0
000622258 542__ $$2Crossref$$i2024-12-06$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0
000622258 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000622258 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000622258 7001_ $$aGoessweiner-Mohr, Nikolaus$$b1
000622258 7001_ $$aReal-Hohn, Antonio$$b2
000622258 7001_ $$0P:(DE-HGF)0$$aBlaas, Dieter$$b3$$eCorresponding author
000622258 7001_ $$0P:(DE-H253)PIP1021412$$aMarlovits, Thomas$$b4$$eCorresponding author
000622258 77318 $$2Crossref$$3journal-article$$a10.1038/s41598-024-81789-x$$bSpringer Science and Business Media LLC$$d2024-12-06$$n1$$p30408$$tScientific Reports$$v14$$x2045-2322$$y2024
000622258 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-024-81789-x$$gVol. 14, no. 1, p. 30408$$n1$$p30408$$tScientific reports$$v14$$x2045-2322$$y2024
000622258 8564_ $$uhttps://bib-pubdb1.desy.de/record/622258/files/s41598-024-81789-x.pdf$$yOpenAccess
000622258 8564_ $$uhttps://bib-pubdb1.desy.de/record/622258/files/s41598-024-81789-x.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000622258 909CO $$ooai:bib-pubdb1.desy.de:622258$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000622258 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1083333$$aCentre for Structural Systems Biology$$b0$$kCSSB
000622258 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083333$$aExternal Institute$$b0$$kExtern
000622258 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083333$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000622258 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1021412$$aCentre for Structural Systems Biology$$b4$$kCSSB
000622258 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021412$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000622258 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000622258 9141_ $$y2024
000622258 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2024-12-18
000622258 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000622258 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-29T15:28:26Z
000622258 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-29T15:28:26Z
000622258 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000622258 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000622258 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-07-29T15:28:26Z
000622258 9201_ $$0I:(DE-H253)FS-CS-20210408$$kFS-CS$$lStrukturelle Mikrobiologie CSSB$$x0
000622258 9201_ $$0I:(DE-H253)CSSB-UKE-TM-20210520$$kCSSB-UKE-TM$$lCSSB-UKE-TM$$x1
000622258 980__ $$ajournal
000622258 980__ $$aVDB
000622258 980__ $$aI:(DE-H253)FS-CS-20210408
000622258 980__ $$aI:(DE-H253)CSSB-UKE-TM-20210520
000622258 980__ $$aUNRESTRICTED
000622258 9801_ $$aFullTexts
000622258 999C5 $$1C Esneau$$2Crossref$$9-- missing cx lookup --$$a10.3390/v14010141$$p141 -$$tViruses$$uEsneau, C. & Duff, A. C. Bartlett, N. W. understanding rhinovirus circulation and impact on illness. Viruses 14, 141 (2022).$$v14$$y2022
000622258 999C5 $$1SE Jacobs$$2Crossref$$9-- missing cx lookup --$$a10.1128/CMR.00077-12$$p135 -$$tClin. Microbiol. Rev.$$uJacobs, S. E., Lamson, D. M., Kirsten, S. & Walsh, T. J. Human rhinoviruses. Clin. Microbiol. Rev. 26, 135–162 (2013).$$v26$$y2013
000622258 999C5 $$1GR McLean$$2Crossref$$9-- missing cx lookup --$$a10.1080/21645515.2019.1661207$$p684 -$$tHum. Vaccin. Immunother.$$uMcLean, G. R. Vaccine strategies to induce broadly protective immunity to rhinoviruses. Hum. Vaccin. Immunother. 16, 684–686 (2020).$$v16$$y2020
000622258 999C5 $$1K Senior$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1473-3099(02)00277-3$$p264 -$$tLancet Infect. Dis.$$uSenior, K. FDA panel rejects common cold treatment. Lancet Infect. Dis. 2, 264 (2002).$$v2$$y2002
000622258 999C5 $$1C Liu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.antiviral.2021.105020$$p105020 -$$tAntiviral Res.$$uLiu, C. et al. Dual inhibition of SARS-CoV-2 and human rhinovirus with protease inhibitors in clinical development. Antiviral Res. 187, 105020 (2021).$$v187$$y2021
000622258 999C5 $$1MG Rossmann$$2Crossref$$9-- missing cx lookup --$$a10.1038/317145a0$$p145 -$$tNature$$uRossmann, M. G. et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145–153 (1985).$$v317$$y1985
000622258 999C5 $$1JM Hogle$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.2994218$$p1358 -$$tScience$$uHogle, J. M., Chow, M. & Filman, D. J. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229, 1358–1365 (1985).$$v229$$y1985
000622258 999C5 $$1TJ Smith$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.3018924$$p1286 -$$tScience$$uSmith, T. J. et al. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233, 1286–1293 (1986).$$v233$$y1986
000622258 999C5 $$1AT Hadfield$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0969-2126(97)00199-8$$p427 -$$tStructure$$uHadfield, A. T. et al. The refined structure of human rhinovirus 16 at 2.15 Å resolution: implications for the viral life cycle. Structure 5, 427–441 (1997).$$v5$$y1997
000622258 999C5 $$1MA Oliveira$$2Crossref$$9-- missing cx lookup --$$a10.1016/0969-2126(93)90008-5$$p51 -$$tStructure$$uOliveira, M. A. et al. The structure of human rhinovirus 16. Structure 1, 51–68 (1993).$$v1$$y1993
000622258 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s42003-020-01269-6$$uBlaas, D. Individual subunits of a rhinovirus causing common cold exhibit largely different protein-RNA contact site conformations. Commun. Biol. 3, 1–7 (2020).
000622258 999C5 $$1J Lee$$2Crossref$$9-- missing cx lookup --$$a10.1021/ac402038t$$p9692 -$$tAnal. Chem.$$uLee, J., Vogt, C. E., McBrairty, M. & Al-Hashimi, H. M. Influence of dimethylsulfoxide on RNA structure and ligand binding. Anal. Chem. 85, 9692–9698 (2013).$$v85$$y2013
000622258 999C5 $$1MS Chapman$$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-2836(91)90749-V$$p455 -$$tJ. Mol. Biol.$$uChapman, M. S., Minor, I., Rossmann, M. G., Diana, G. D. & Andries, K. Human rhinovirus 14 complexed with antiviral compound R 61837. J. Mol. Biol. 217, 455–463 (1991).$$v217$$y1991
000622258 999C5 $$1J Wald$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1904732116$$p19109 -$$tProc. Natl. Acad. Sci. U.S.A.$$uWald, J. et al. Cryo-EM structure of pleconaril-resistant rhinovirus-B5 complexed to the antiviral OBR-5-340 reveals unexpected binding site. Proc. Natl. Acad. Sci. U.S.A. 116, 19109–19115 (2019).$$v116$$y2019
000622258 999C5 $$1VU Weiss$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4939-1571-2_9$$p101 -$$tMethods Mol. Biol.$$uWeiss, V. U. et al. Capillary electrophoresis, gas-phase electrophoretic mobility molecular analysis, and electron microscopy: effective tools for quality assessment and basic rhinovirus research. Methods Mol. Biol. 1221, 101–128 (2015).$$v1221$$y2015
000622258 999C5 $$1A Pickl-Herk$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1312128110$$p20063 -$$tProc. Natl. Acad. Sci. U.S.A.$$uPickl-Herk, A. et al. Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle. Proc. Natl. Acad. Sci. U.S.A. 110, 20063–20068 (2013).$$v110$$y2013
000622258 999C5 $$1S Harutyunyan$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.ppat.1003270$$pe1003270 -$$tPLoS Pathog.$$uHarutyunyan, S. et al. Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3′-end. PLoS Pathog. 9, e1003270 (2013).$$v9$$y2013
000622258 999C5 $$1EA Hewat$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.78.6.2935-2942.2004$$p2935 -$$tJ. Virol.$$uHewat, E. A. & Blaas, D. Cryoelectron microscopy analysis of the structural changes associated with human rhinovirus type 14 uncoating. J. Virol. 78, 2935–2942 (2004).$$v78$$y2004
000622258 999C5 $$1EA Hewat$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1097-2765(02)00603-2$$p317 -$$tMol. Cell$$uHewat, E. A., Neumann, E. & Blaas, D. The concerted conformational changes during human rhinovirus 2 uncoating. Mol. Cell 10, 317–326 (2002).$$v10$$y2002
000622258 999C5 $$1D Garriga$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.ppat.1002473$$pe1002473 -$$tPLoS Pathog.$$uGarriga, D. et al. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog. 8, e1002473 (2012).$$v8$$y2012
000622258 999C5 $$1C Neubauer$$2Crossref$$9-- missing cx lookup --$$a10.1016/0042-6822(87)90264-9$$p255 -$$tVirology$$uNeubauer, C., Frasel, L., Kuechler, E. & Blaas, D. Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology 158, 255–258 (1987).$$v158$$y1987
000622258 999C5 $$1K Lonberg-Holm$$2Crossref$$9-- missing cx lookup --$$a10.1128/jvi.12.4.819-826.1973$$p819 -$$tJ. Virol.$$uLonberg-Holm, K. & Noble-Harvey, J. Comparison of in vitro and cell-mediated alteration of a human rhinovirus and its inhibition by sodium dodecyl sulfate. J. Virol. 12, 819–826 (1973).$$v12$$y1973
000622258 999C5 $$1K Lonberg-Holm$$2Crossref$$9-- missing cx lookup --$$a10.1128/jvi.12.1.114-123.1973$$p114 -$$tJ. Virol.$$uLonberg-Holm, K. & Yin, F. H. Antigenic determinants of infective and inactivated human rhinovirus type 2. J. Virol. 12, 114–123 (1973).$$v12$$y1973
000622258 999C5 $$1KH Kim$$2Crossref$$9-- missing cx lookup --$$a10.1006/jmbi.1993.1137$$p206 -$$tJ. Mol. Biol.$$uKim, K. H. et al. A comparison of the anti-rhinoviral drug binding pocket in HRV14 and HRV1A. J. Mol. Biol. 230, 206–226 (1993).$$v230$$y1993
000622258 999C5 $$1VM Okun$$2Crossref$$9-- missing cx lookup --$$a10.1002/1522-2683(200203)23:6<896::AID-ELPS896>3.0.CO;2-W$$p896 -$$tElectrophoresis$$uOkun, V. M., Nizet, S., Blaas, D. & Kenndler, E. Kinetics of thermal denaturation of human rhinoviruses in the presence of anti-viral capsid binders analyzed by capillary electrophoresis. Electrophoresis 23, 896–902 (2002).$$v23$$y2002
000622258 999C5 $$1DK Phelps$$2Crossref$$9-- missing cx lookup --$$a10.1006/jmbi.1997.1542$$p331 -$$tJ. Mol. Biol.$$uPhelps, D. K., Rossky, P. J. & Post, C. B. Influence of an antiviral compound on the temperature dependence of viral protein flexibility and packing: a molecular dynamics study. J. Mol. Biol. 276, 331–337 (1998).$$v276$$y1998
000622258 999C5 $$1M Gruenberger$$2Crossref$$9-- missing cx lookup --$$a10.1099/0022-1317-72-2-431$$p431 -$$tJ. Gen. Virol.$$uGruenberger, M., Pevear, D., Diana, G. D., Kuechler, E. & Blaas, D. Stabilization of human rhinovirus serotype 2 against pH-induced conformational change by antiviral compounds. J. Gen. Virol. 72, 431–433 (1991).$$v72$$y1991
000622258 999C5 $$1DK Phelps$$2Crossref$$9-- missing cx lookup --$$a10.1006/jmbi.1995.0637$$p544 -$$tJ. Mol. Biol.$$uPhelps, D. K. & Post, C. B. A novel basis for capsid stabilization by antiviral compounds. J. Mol. Biol. 254, 544–551 (1995).$$v254$$y1995
000622258 999C5 $$1A Real-Hohn$$2Crossref$$9-- missing cx lookup --$$a10.3389/fmicb.2020.01442$$p554367 -$$tFront. Microbiol.$$uReal-Hohn, A., Groznica, M., Löffler, N., Blaas, D. & Kowalski, H. nanoDSF: in vitro label-free method to monitor picornavirus uncoating and test compounds affecting particle stability. Front. Microbiol. 11, 554367 (2020).$$v11$$y2020
000622258 999C5 $$1T Ward$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.74.7.3410-3412.2000$$p3410 -$$tJ. Virol.$$uWard, T. et al. Fatty acid-depleted albumin induces the formation of Echovirus A particles. J. Virol. 74, 3410–3412 (2000).$$v74$$y2000
000622258 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.00599-19$$uRuokolainen, V. et al. Extracellular albumin and endosomal ions prime enterovirus particles for uncoating that can be prevented by fatty acid saturation. J. Virol. 93 (2019).
000622258 999C5 $$1A Valbuena$$2Crossref$$9-- missing cx lookup --$$a10.1039/C7NR08704G$$p1440 -$$tNanoscale$$uValbuena, A., Rodríguez-Huete, A. & Mateu, M. G. Mechanical stiffening of human rhinovirus by cavity-filling antiviral drugs. Nanoscale 10, 1440–1452 (2018).$$v10$$y2018
000622258 999C5 $$1N Reisdorph$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0042-6822(03)00452-5$$p34 -$$tVirology$$uReisdorph, N. et al. Human rhinovirus capsid dynamics is controlled by canyon flexibility. Virology 314, 34–44 (2003).$$v314$$y2003
000622258 999C5 $$1B Speelman$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0006-3495(01)75999-1$$p121 -$$tBiophys. J.$$uSpeelman, B., Brooks, B. R. & Post, C. B. Molecular dynamics simulations of human rhinovirus and an antiviral compound. Biophys. J. 80, 121–129 (2001).$$v80$$y2001
000622258 999C5 $$1DK Phelps$$2Crossref$$9-- missing cx lookup --$$a10.1110/ps.8.11.2281$$p2281 -$$tProtein Sci.$$uPhelps, D. K. & Post, C. B. Molecular dynamics investigation of the effect of an antiviral compound on human rhinovirus. Protein Sci. 8, 2281–2289 (1999).$$v8$$y1999
000622258 999C5 $$1JK Lewis$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.95.12.6774$$p6774 -$$tProc. Natl. Acad. Sci. U.S.A.$$uLewis, J. K., Bothner, B., Smith, T. J. & Siuzdak, G. Antiviral agent blocks breathing of the common cold virus. Proc. Natl. Acad. Sci. U.S.A. 95, 6774–6778 (1998).$$v95$$y1998
000622258 999C5 $$1DSH Chan$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.analchem.7b02329$$p9976 -$$tAnal. Chem.$$uChan, D. S. H. et al. Effect of DMSO on protein structure and interactions assessed by collision-induced dissociation and unfolding. Anal. Chem. 89, 9976–9983 (2017).$$v89$$y2017
000622258 999C5 $$1A Tjernberg$$2Crossref$$9-- missing cx lookup --$$a10.1177/1087057105284218$$p131 -$$tJ. Biomol. Screen.$$uTjernberg, A., Markova, N., Griffiths, W. J. & Hallén, D. DMSO-related effects in protein characterization. J. Biomol. Screen. 11, 131–137 (2006).$$v11$$y2006
000622258 999C5 $$1L Reimer$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-022-07706-2$$p1 -$$tSci. Rep.$$uReimer, L. et al. Low dose DMSO treatment induces oligomerization and accelerates aggregation of α-synuclein. Sci. Rep. 12, 1–13 (2022).$$v12$$y2022
000622258 999C5 $$1JS Aguilar$$2Crossref$$9-- missing cx lookup --$$a10.1186/1471-2334-2-9$$p1 -$$tBMC Infect. Dis.$$uAguilar, J. S., Roy, D., Ghazal, P. & Wagner, E. K. Dimethyl sulfoxide blocks herpes simplex virus-I productive infection in vitro acting at different stages with positive cooperativity. Application of micro-array analysis. BMC Infect. Dis. 2, 1–10 (2002).$$v2$$y2002
000622258 999C5 $$1SHW Scheres$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2012.09.006$$p519 -$$tJ. Struct. Biol.$$uScheres, S. H. W. & RELION Implementation of a bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).$$v180$$y2012
000622258 999C5 $$1A Punjani$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.4169$$p290 -$$tNat. Methods$$uPunjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).$$v14$$y2017
000622258 999C5 $$1SQ Zheng$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.4193$$p331 -$$tNat. Methods$$uZheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).$$v14$$y2017
000622258 999C5 $$1A Rohou$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2015.08.008$$p216 -$$tJ. Struct. Biol.$$uRohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).$$v192$$y2015
000622258 999C5 $$1T Wagner$$2Crossref$$9-- missing cx lookup --$$a10.1038/s42003-019-0437-z$$p1 -$$tCommun. Biol.$$uWagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 1–13 (2019).$$v2$$y2019
000622258 999C5 $$1EF Pettersen$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.20084$$p1605 -$$tJ. Comput. Chem.$$uPettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).$$v25$$y2004
000622258 999C5 $$1MR Lee$$2Crossref$$9-- missing cx lookup --$$a10.1006/jmbi.2001.5032$$p417 -$$tJ. Mol. Biol.$$uLee, M. R., Tsai, J., Baker, D. & Kollman, P. A. Molecular dynamics in the endgame of protein structure prediction. J. Mol. Biol. 313, 417–430 (2001).$$v313$$y2001
000622258 999C5 $$1W Lugmayr$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41596-022-00757-9$$p239 -$$tNat. Protoc.$$uLugmayr, W. et al. StarMap: a user-friendly workflow for Rosetta-driven molecular structure refinement. Nat. Protoc. 18, 239–264 (2023).$$v18$$y2023
000622258 999C5 $$1TI Croll$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2059798318002425$$p519 -$$tActa Crystallogr. D Struct. Biol.$$uCroll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519 (2018).$$v74$$y2018
000622258 999C5 $$1EF Pettersen$$2Crossref$$9-- missing cx lookup --$$a10.1002/pro.3943$$p70 -$$tProtein Sci.$$uPettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).$$v30$$y2021
000622258 999C5 $$1PV Afonine$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2059798318006551$$p531 -$$tActa Crystallogr. D Struct. Biol.$$uAfonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).$$v74$$y2018
000622258 999C5 $$1CJ Williams$$2Crossref$$9-- missing cx lookup --$$a10.1002/pro.3330$$p293 -$$tProtein Sci.$$uWilliams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).$$v27$$y2018
000622258 999C5 $$1CM Shepherd$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkj032$$pD386 -$$tNucleic Acids Res.$$uShepherd, C. M. et al. VIPERdb: a relational database for structural virology. Nucleic Acids Res. 34, D386–D389 (2006).$$v34$$y2006
000622258 999C5 $$1D Montiel-Garcia$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkaa1096$$pD809 -$$tNucleic Acids Res.$$uMontiel-Garcia, D. et al. VIPERdb v3.0: a structure-based data analytics platform for viral capsids. Nucleic Acids Res. 49, D809–D816 (2021).$$v49$$y2021