000622230 001__ 622230 000622230 005__ 20250801212049.0 000622230 0247_ $$2doi$$a10.1007/JHEP11(2024)046 000622230 0247_ $$2INSPIRETeX$$aBonnefoy:2024gca 000622230 0247_ $$2inspire$$ainspire:2770434 000622230 0247_ $$2ISSN$$a1126-6708 000622230 0247_ $$2ISSN$$a1029-8479 000622230 0247_ $$2ISSN$$a1127-2236 000622230 0247_ $$2arXiv$$aarXiv:2403.13065 000622230 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00268 000622230 0247_ $$2WOS$$aWOS:001361251700001 000622230 0247_ $$2openalex$$aopenalex:W4393100138 000622230 037__ $$aPUBDB-2025-00268 000622230 041__ $$aEnglish 000622230 082__ $$a530 000622230 088__ $$2arXiv$$aarXiv:2403.13065 000622230 088__ $$2DESY$$aDESY-24-033 000622230 088__ $$2Other$$aHU-EP-24/09 000622230 088__ $$2Other$$aLAPTH-011/24 000622230 088__ $$2Other$$aCOMETA-2024-004 000622230 1001_ $$0P:(DE-H253)PIP1090387$$aBonnefoy, Quentin$$b0 000622230 245__ $$aAligned yet large dipoles: a SMEFT study 000622230 260__ $$aHeidelberg$$bSpringer$$c2024 000622230 3367_ $$2DRIVER$$aarticle 000622230 3367_ $$2DataCite$$aOutput Types/Journal article 000622230 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754041308_3349148 000622230 3367_ $$2BibTeX$$aARTICLE 000622230 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000622230 3367_ $$00$$2EndNote$$aJournal Article 000622230 500__ $$a22 pages (main) + 15 pages (appendices & references), 6 figures, 7 tables. JHEP published version. Typos are corrected 000622230 520__ $$aWe study a non-universal flavor scenario at the level of the Standard Model Effective Field Theory, according to which the matrix of Wilson coefficients c$_{uW}$ of an up-type electroweak quark dipole operator is aligned with the up-type Yukawa coupling. Such an alignment usually follows from the assumption of Minimal Flavor Violation (MFV), away from which we step by allowing the entries of c$_{uW}$ to be sizable along the first quark generations. A particular example, which we refer to as “inverse hierarchy MFV”, features Wilson coefficients inversely proportional to quark masses, and arises from BSM models respecting MFV and containing heavy fields that replicate the mass hierarchy of SM quarks. We then analyze the phenomenology driven by c$_{uW}$ at colliders and at lower-energy flavor experiments. We show that precision measurements of the process pp → Wh → γγℓν at FCC-hh could set an upper bound on |c$_{uW}$| ≲ $ \mathcal{O} $(10$^{−2}$)(Λ/TeV)$^{2}$, with Λ the cutoff of the effective field theory. This bound is an order of magnitude stronger than the existing LHC bounds. Moreover, we estimate that Wh → $ b\overline{b}\ell \nu $ at HL-LHC could also give competitive bounds. In the low-energy regime, we consider bounds arising from rare kaon decays, which turn out to be loose, |$ {c}_{uW}^{11} $| <$ \mathcal{O} $(1)(Λ/TeV)$^{2}$. We finally demonstrate that our flavor and operator assumptions can be derived from a weakly-coupled UV model, which we choose to simultaneously illustrate the UV origin of inverse hierarchy MFV. 000622230 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0 000622230 536__ $$0G:(GEPRIS)390833306$$aDFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306)$$c390833306$$x1 000622230 536__ $$0G:(EU-Grant)101086085$$aASYMMETRY - Essential Asymmetries of Nature (101086085)$$c101086085$$fHORIZON-MSCA-2021-SE-01$$x2 000622230 542__ $$2Crossref$$i2024-11-07$$uhttps://creativecommons.org/licenses/by/4.0 000622230 542__ $$2Crossref$$i2024-11-07$$uhttps://creativecommons.org/licenses/by/4.0 000622230 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de 000622230 650_7 $$2INSPIRE$$anew physics 000622230 650_7 $$2INSPIRE$$aeffective field theory 000622230 650_7 $$2INSPIRE$$aoperator: dipole 000622230 650_7 $$2INSPIRE$$aflavor: violation: minimal 000622230 650_7 $$2INSPIRE$$aCERN LHC Coll: upgrade 000622230 650_7 $$2INSPIRE$$aFCC-hh 000622230 650_7 $$2INSPIRE$$ap p: scattering 000622230 650_7 $$2INSPIRE$$aHiggs particle: production 000622230 650_7 $$2INSPIRE$$aW: production 000622230 650_7 $$2INSPIRE$$aelectroweak interaction 000622230 650_7 $$2INSPIRE$$ap p --> W Higgs particle 000622230 650_7 $$2INSPIRE$$aW Higgs particle --> bottom anti-bottom lepton neutrino 000622230 650_7 $$2autogen$$aSMEFT 000622230 650_7 $$2autogen$$aElectric Dipole Moments 000622230 650_7 $$2autogen$$aElectroweak Precision Physics 000622230 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000622230 7001_ $$0P:(DE-H253)PIP1098464$$aKley, Jonathan$$b1 000622230 7001_ $$0P:(DE-H253)PIP1094314$$aLiu, Di$$b2$$eCorresponding author 000622230 7001_ $$0P:(DE-HGF)0$$aRossia$$b3 000622230 7001_ $$0P:(DE-H253)PIP1100776$$aYao, Chang Yuan$$b4 000622230 77318 $$2Crossref$$3journal-article$$a10.1007/jhep11(2024)046$$bSpringer Science and Business Media LLC$$d2024-11-07$$n11$$p46$$tJournal of High Energy Physics$$v2024$$x1029-8479$$y2024 000622230 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP11(2024)046$$gVol. 11, no. 11, p. 46$$n11$$p46$$tJournal of high energy physics$$v2024$$x1029-8479$$y2024 000622230 7870_ $$0PUBDB-2024-01122$$aBonnefoy, Quentin et.al.$$d2024$$iIsParent$$rDESY-24-033 ; arXiv:2403.13065 ; HU-EP-24/09 ; LAPTH-011/24 ; COMETA-2024-004$$tAligned Yet Large Dipoles: a SMEFT Study 000622230 8564_ $$uhttps://bib-pubdb1.desy.de/record/622230/files/JHEP11%282024%29046.pdf$$yOpenAccess 000622230 8564_ $$uhttps://bib-pubdb1.desy.de/record/622230/files/JHEP11%282024%29046.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000622230 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-25$$eAPC$$jFlatrate$$lSCOAP3 000622230 8767_ $$81$$92024-06-27$$a52894939$$d2025-03-25$$eAPC$$jStorniert$$lSCOAP3$$zDFG OAPK (Projekt) 000622230 8767_ $$81$$92024-06-27$$a52894939$$d2025-03-25$$eAPC$$jZahlung erfolgt$$lSCOAP3$$zDFG OAPK (Projekt) 000622230 909CO $$ooai:bib-pubdb1.desy.de:622230$$popenaire$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access 000622230 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1090387$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY 000622230 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1098464$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY 000622230 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094314$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY 000622230 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1100776$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY 000622230 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0 000622230 9141_ $$y2024 000622230 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000622230 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000622230 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000622230 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal 000622230 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16 000622230 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16 000622230 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000622230 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16 000622230 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000622230 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16 000622230 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16 000622230 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:11Z 000622230 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:11Z 000622230 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16 000622230 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16 000622230 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16 000622230 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3 000622230 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2024-12-16 000622230 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16 000622230 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-16$$wger 000622230 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16 000622230 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:11Z 000622230 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16 000622230 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0 000622230 980__ $$ajournal 000622230 980__ $$aVDB 000622230 980__ $$aI:(DE-H253)T-20120731 000622230 980__ $$aAPC 000622230 980__ $$aUNRESTRICTED 000622230 9801_ $$aAPC 000622230 9801_ $$aFullTexts 000622230 999C5 $$1W Buchmuller$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(86)90262-2$$p621 -$$tNucl. Phys. B$$uW. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].$$v268$$y1986 000622230 999C5 $$1B Grzadkowski$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2010)085$$p085 -$$tJHEP$$uB. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].$$v10$$y2010 000622230 999C5 $$1CW Murphy$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2020)174$$p174 -$$tJHEP$$uC.W. Murphy, Dimension-8 operators in the Standard Model Effective Field Theory, JHEP 10 (2020) 174 [arXiv:2005.00059] [INSPIRE].$$v10$$y2020 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.015026$$uH.-L. Li et al., Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D 104 (2021) 015026 [arXiv:2005.00008] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.015025$$uH.-L. Li et al., Complete set of dimension-nine operators in the standard model effective field theory, Phys. Rev. D 104 (2021) 015025 [arXiv:2007.07899] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.055020$$uR.V. Harlander, T. Kempkens and M.C. Schaaf, Standard model effective field theory up to mass dimension 12, Phys. Rev. D 108 (2023) 055020 [arXiv:2305.06832] [INSPIRE]. 000622230 999C5 $$1Y Liao$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2016)043$$p043 -$$tJHEP$$uY. Liao and X.-D. Ma, Renormalization Group Evolution of Dimension-seven Baryon- and Lepton-number-violating Operators, JHEP 11 (2016) 043 [arXiv:1607.07309] [INSPIRE].$$v11$$y2016 000622230 999C5 $$1Y Liao$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2020)152$$p152 -$$tJHEP$$uY. Liao and X.-D. Ma, An explicit construction of the dimension-9 operator basis in the standard model effective field theory, JHEP 11 (2020) 152 [arXiv:2007.08125] [INSPIRE].$$v11$$y2020 000622230 999C5 $$1R Alonso$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2016.01.041$$p335 -$$tPhys. Lett. B$$uR. Alonso, E.E. Jenkins and A.V. Manohar, A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space, Phys. Lett. B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE].$$v754$$y2016 000622230 999C5 $$1A Falkowski$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2019)255$$p255 -$$tJHEP$$uA. Falkowski and R. Rattazzi, Which EFT, JHEP 10 (2019) 255 [arXiv:1902.05936] [INSPIRE].$$v10$$y2019 000622230 999C5 $$1T Cohen$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2021)237$$p237 -$$tJHEP$$uT. Cohen, N. Craig, X. Lu and D. Sutherland, Is SMEFT Enough?, JHEP 03 (2021) 237 [arXiv:2008.08597] [INSPIRE].$$v03$$y2021 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(94)00336-D$$uC. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE]. 000622230 999C5 $$1MB Einhorn$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2013.08.023$$p556 -$$tNucl. Phys. B$$uM.B. Einhorn and J. Wudka, The Bases of Effective Field Theories, Nucl. Phys. B 876 (2013) 556 [arXiv:1307.0478] [INSPIRE].$$v876$$y2013 000622230 999C5 $$1N Craig$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2020)086$$p086 -$$tJHEP$$uN. Craig, M. Jiang, Y.-Y. Li and D. Sutherland, Loops and Trees in Generic EFTs, JHEP 08 (2020) 086 [arXiv:2001.00017] [INSPIRE].$$v08$$y2020 000622230 999C5 $$1A Adams$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2006/10/014$$p014 -$$tJHEP$$uA. Adams et al., Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].$$v10$$y2006 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.095003$$uC. Zhang and S.-Y. Zhou, Positivity bounds on vector boson scattering at the LHC, Phys. Rev. D 100 (2019) 095003 [arXiv:1808.00010] [INSPIRE]. 000622230 999C5 $$1GN Remmen$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2019)032$$p032 -$$tJHEP$$uG.N. Remmen and N.L. Rodd, Consistency of the Standard Model Effective Field Theory, JHEP 12 (2019) 032 [arXiv:1908.09845] [INSPIRE].$$v12$$y2019 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.201601$$uC. Zhang and S.-Y. Zhou, Convex Geometry Perspective on the (Standard Model) Effective Field Theory Space, Phys. Rev. Lett. 125 (2020) 201601 [arXiv:2005.03047] [INSPIRE]. 000622230 999C5 $$1CD Froggatt$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(79)90316-X$$p277 -$$tNucl. Phys. B$$uC.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].$$v147$$y1979 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(93)90112-3$$uM. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(94)90074-4$$uM. Leurer, Y. Nir and N. Seiberg, Mass matrix models: The Sequel, Nucl. Phys. B 420 (1994) 468 [hep-ph/9310320] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.61.033005$$uN. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(00)00054-X$$uY. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(00)00083-6$$uG.R. Dvali and M.A. Shifman, Families as neighbors in extra dimension, Phys. Lett. B 475 (2000) 295 [hep-ph/0001072] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(00)00392-8$$uT. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(00)01399-X$$uS.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2000/09/030$$uA.E. Nelson and M.J. Strassler, Suppressing flavor anarchy, JHEP 09 (2000) 030 [hep-ph/0006251] [INSPIRE]. 000622230 999C5 $$1S Davidson$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2008.04.005$$p73 -$$tPhys. Lett. B$$uS. Davidson, G. Isidori and S. Uhlig, Solving the flavour problem with hierarchical fermion wave functions, Phys. Lett. B 663 (2008) 73 [arXiv:0711.3376] [INSPIRE].$$v663$$y2008 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.069.0034$$uG. Isidori, Effective Theories for Flavour Physics beyond the Standard Model, PoS EFT09 (2009) 034 [arXiv:0908.0404] [INSPIRE]. 000622230 999C5 $$1A Efrati$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2015)018$$p018 -$$tJHEP$$uA. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP 07 (2015) 018 [arXiv:1503.07872] [INSPIRE].$$v07$$y2015 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.81.085006$$uO. Aharony et al., Inverted Sparticle Hierarchies from Natural Particle Hierarchies, Phys. Rev. D 81 (2010) 085006 [arXiv:1001.0637] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.81.075025$$uC. Csaki, G. Perez, Z. Surujon and A. Weiler, Flavor Alignment via Shining in RS, Phys. Rev. D 81 (2010) 075025 [arXiv:0907.0474] [INSPIRE]. 000622230 999C5 $$1M Bordone$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2020)067$$p067 -$$tJHEP$$uM. Bordone, O. Catà and T. Feldmann, Effective Theory Approach to New Physics with Flavour: General Framework and a Leptoquark Example, JHEP 01 (2020) 067 [arXiv:1910.02641] [INSPIRE].$$v01$$y2020 000622230 999C5 $$1DA Faroughy$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2020)166$$p166 -$$tJHEP$$uD.A. Faroughy, G. Isidori, F. Wilsch and K. Yamamoto, Flavour symmetries in the SMEFT, JHEP 08 (2020) 166 [arXiv:2005.05366] [INSPIRE].$$v08$$y2020 000622230 999C5 $$1A Greljo$$2Crossref$$uA. Greljo, A. Palavrić and A.E. Thomsen, Adding Flavor to the SMEFT, JHEP 10 (2022) 005 [arXiv:2203.09561] [INSPIRE].$$y2022 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(96)00390-2$$uF. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A Complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2008/03/049$$uUTfit collaboration, Model-independent constraints on ∆F = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE]. 000622230 999C5 $$1G Isidori$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.nucl.012809.104534$$p355 -$$tAnn. Rev. Nucl. Part. Sci.$$uG. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].$$v60$$y2010 000622230 999C5 $$1A Crivellin$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2014)167$$p167 -$$tJHEP$$uA. Crivellin, S. Najjari and J. Rosiek, Lepton Flavor Violation in the Standard Model with general Dimension-Six Operators, JHEP 04 (2014) 167 [arXiv:1312.0634] [INSPIRE].$$v04$$y2014 000622230 999C5 $$1GM Pruna$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2014)014$$p014 -$$tJHEP$$uG.M. Pruna and A. Signer, The μ → eγ decay in a systematic effective field theory approach with dimension 6 operators, JHEP 10 (2014) 014 [arXiv:1408.3565] [INSPIRE].$$v10$$y2014 000622230 999C5 $$2Crossref$$uF. Feruglio, Theoretical Aspects of Flavour and CP Violation in the Lepton Sector, in the proceedings of the 27th Rencontres de Blois on Particle Physics and Cosmology, Blois, France (2015) [arXiv:1509.08428] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2019.135062$$uL. Silvestrini and M. Valli, Model-independent Bounds on the Standard Model Effective Theory from Flavour Physics, Phys. Lett. B 799 (2019) 135062 [arXiv:1812.10913] [INSPIRE]. 000622230 999C5 $$1J Aebischer$$2Crossref$$uJ. Aebischer, C. Bobeth, A.J. Buras and J. Kumar, SMEFT ATLAS of ∆F = 2 transitions, JHEP 12 (2020) 187 [arXiv:2009.07276] [INSPIRE].$$y2020 000622230 999C5 $$1M Ardu$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2021)002$$p002 -$$tJHEP$$uM. Ardu and S. Davidson, What is Leading Order for LFV in SMEFT?, JHEP 08 (2021) 002 [arXiv:2103.07212] [INSPIRE].$$v08$$y2021 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.2.1285$$uS.L. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.15.1958$$uS.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(87)90713-1$$uR.S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [INSPIRE]. 000622230 999C5 $$1LJ Hall$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.65.2939$$p2939 -$$tPhys. Rev. Lett.$$uL.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].$$v65$$y1990 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(01)00061-2$$uA.J. Buras et al., Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(02)00836-2$$uG. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.171601$$uT. Feldmann and T. Mannel, Large Top Mass and Non-Linear Representation of Flavour Symmetry, Phys. Rev. Lett. 100 (2008) 171601 [arXiv:0801.1802] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.80.076002$$uA.L. Kagan, G. Perez, T. Volansky and J. Zupan, General Minimal Flavor Violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [INSPIRE]. 000622230 999C5 $$2Crossref$$uK. Agashe, M. Papucci, G. Perez and D. Pirjol, Next to minimal flavor violation, hep-ph/0509117 [INSPIRE]. 000622230 999C5 $$1R Barbieri$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2012)181$$p181 -$$tJHEP$$uR. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].$$v07$$y2012 000622230 999C5 $$1G Isidori$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-012-2103-1$$p2103 -$$tEur. Phys. J. C$$uG. Isidori and D.M. Straub, Minimal Flavour Violation and Beyond, Eur. Phys. J. C 72 (2012) 2103 [arXiv:1202.0464] [INSPIRE].$$v72$$y2012 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.69.1871$$uA. Antaramian, L.J. Hall and A. Rasin, Flavor changing interactions mediated by scalars at the weak scale, Phys. Rev. Lett. 69 (1992) 1871 [hep-ph/9206205] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.48.R979$$uL.J. Hall and S. Weinberg, Flavor changing scalar interactions, Phys. Rev. D 48 (1993) R979 [hep-ph/9303241] [INSPIRE]. 000622230 999C5 $$1C Degrande$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2022)032$$p032 -$$tJHEP$$uC. Degrande and J. Touchèque, A reduced basis for CP violation in SMEFT at colliders and its application to diboson production, JHEP 04 (2022) 032 [arXiv:2110.02993] [INSPIRE].$$v04$$y2022 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.055022$$uT. Kobayashi, H. Otsuka, M. Tanimoto and K. Yamamoto, Modular symmetry in the SMEFT, Phys. Rev. D 105 (2022) 055022 [arXiv:2112.00493] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.77.095011$$uS. Bar-Shalom and A. Rajaraman, Models and phenomenology of maximal flavor violation, Phys. Rev. D 77 (2008) 095011 [arXiv:0711.3193] [INSPIRE]. 000622230 999C5 $$1GF Giudice$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2011)055$$p055 -$$tJHEP$$uG.F. Giudice, B. Gripaios and R. Sundrum, Flavourful Production at Hadron Colliders, JHEP 08 (2011) 055 [arXiv:1105.3161] [INSPIRE].$$v08$$y2011 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.161803$$uS. Knapen and D.J. Robinson, Disentangling Mass and Mixing Hierarchies, Phys. Rev. Lett. 115 (2015) 161803 [arXiv:1507.00009] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.031802$$uD. Egana-Ugrinovic, S. Homiller and P. Meade, Aligned and Spontaneous Flavor Violation, Phys. Rev. Lett. 123 (2019) 031802 [arXiv:1811.00017] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.80.091702$$uA. Pich and P. Tuzon, Yukawa Alignment in the Two-Higgs-Doublet Model, Phys. Rev. D 80 (2009) 091702 [arXiv:0908.1554] [INSPIRE]. 000622230 999C5 $$1PM Ferreira$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2010.04.033$$p341 -$$tPhys. Lett. B$$uP.M. Ferreira, L. Lavoura and J.P. Silva, Renormalization-group constraints on Yukawa alignment in multi-Higgs-doublet models, Phys. Lett. B 688 (2010) 341 [arXiv:1001.2561] [INSPIRE].$$v688$$y2010 000622230 999C5 $$1FJ Botella$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-015-3487-5$$p286 -$$tEur. Phys. J. C$$uF.J. Botella et al., Natural Quasi-Alignment with two Higgs Doublets and RGE Stability, Eur. Phys. J. C 75 (2015) 286 [arXiv:1501.07435] [INSPIRE].$$v75$$y2015 000622230 999C5 $$1S Gori$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2017)110$$p110 -$$tJHEP$$uS. Gori, H.E. Haber and E. Santos, High scale flavor alignment in two-Higgs doublet models and its phenomenology, JHEP 06 (2017) 110 [arXiv:1703.05873] [INSPIRE].$$v06$$y2017 000622230 999C5 $$1A Peñuelas$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2017)084$$p084 -$$tJHEP$$uA. Peñuelas and A. Pich, Flavour alignment in multi-Higgs-doublet models, JHEP 12 (2017) 084 [arXiv:1710.02040] [INSPIRE].$$v12$$y2017 000622230 999C5 $$1W Altmannshofer$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2018)129$$p129 -$$tJHEP$$uW. Altmannshofer, S. Gori, D.J. Robinson and D. Tuckler, The Flavor-locked Flavorful Two Higgs Doublet Model, JHEP 03 (2018) 129 [arXiv:1712.01847] [INSPIRE].$$v03$$y2018 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.115041$$uD. Egana-Ugrinovic, S. Homiller and P.R. Meade, Higgs bosons with large couplings to light quarks, Phys. Rev. D 100 (2019) 115041 [arXiv:1908.11376] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.055026$$uB. Batell, A. Freitas, A. Ismail and D. Mckeen, Flavor-specific scalar mediators, Phys. Rev. D 98 (2018) 055026 [arXiv:1712.10022] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.115032$$uB. Batell et al., Renormalizable models of flavor-specific scalars, Phys. Rev. D 104 (2021) 115032 [arXiv:2107.08059] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.aop.2005.04.002$$uM. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE]. 000622230 999C5 $$1W Dekens$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2013)149$$p149 -$$tJHEP$$uW. Dekens and J. de Vries, Renormalization Group Running of Dimension-Six Sources of Parity and Time-Reversal Violation, JHEP 05 (2013) 149 [arXiv:1303.3156] [INSPIRE].$$v05$$y2013 000622230 999C5 $$1G Panico$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2019)090$$p090 -$$tJHEP$$uG. Panico, A. Pomarol and M. Riembau, EFT approach to the electron Electric Dipole Moment at the two-loop level, JHEP 04 (2019) 090 [arXiv:1810.09413] [INSPIRE].$$v04$$y2019 000622230 999C5 $$1J Kley$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10861-5$$p926 -$$tEur. Phys. J. C$$uJ. Kley, T. Theil, E. Venturini and A. Weiler, Electric dipole moments at one-loop in the dimension-6 SMEFT, Eur. Phys. J. C 82 (2022) 926 [arXiv:2109.15085] [INSPIRE].$$v82$$y2022 000622230 999C5 $$1J Brod$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2022)294$$p294 -$$tJHEP$$uJ. Brod, J.M. Cornell, D. Skodras and E. Stamou, Global constraints on Yukawa operators in the standard model effective theory, JHEP 08 (2022) 294 [arXiv:2203.03736] [INSPIRE].$$v08$$y2022 000622230 999C5 $$2Crossref$$uR. Alarcon et al., Electric dipole moments and the search for new physics, in the proceedings of the Snowmass 2021, Seattle, U.S.A. (2022) [arXiv:2203.08103] [INSPIRE]. 000622230 999C5 $$1A Falkowski$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-023-11821-3$$p656 -$$tEur. Phys. J. C$$uA. Falkowski, Lectures on SMEFT, Eur. Phys. J. C 83 (2023) 656 [INSPIRE].$$v83$$y2023 000622230 999C5 $$1X-G He$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X15501560$$p1550156 -$$tInt. J. Mod. Phys. A$$uX.-G. He, G.-N. Li and Y.-J. Zheng, Probing Higgs boson CP Properties with $$ t\overline{t}H $$ at the LHC and the 100 TeV pp collider, Int. J. Mod. Phys. A 30 (2015) 1550156 [arXiv:1501.00012] [INSPIRE].$$v30$$y2015 000622230 999C5 $$1K Hagiwara$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2018)180$$p180 -$$tJHEP$$uK. Hagiwara, H. Yokoya and Y.-J. Zheng, Probing the CP properties of top Yukawa coupling at an e+e− collider, JHEP 02 (2018) 180 [arXiv:1712.09953] [INSPIRE].$$v02$$y2018 000622230 999C5 $$1J Aebischer$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2019.04.016$$p465 -$$tPhys. Lett. B$$uJ. Aebischer et al., Master formula for ε′/ε beyond the Standard Model, Phys. Lett. B 792 (2019) 465 [arXiv:1807.02520] [INSPIRE].$$v792$$y2019 000622230 999C5 $$1J Aebischer$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-019-6715-6$$p219 -$$tEur. Phys. J. C$$uJ. Aebischer, C. Bobeth, A.J. Buras and D.M. Straub, Anatomy of ε′/ε beyond the standard model, Eur. Phys. J. C 79 (2019) 219 [arXiv:1808.00466] [INSPIRE].$$v79$$y2019 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2020)056$$uE. Fuchs, M. Losada, Y. Nir and Y. Viernik, CP violation from τ, t and b dimension-6 Yukawa couplings — interplay of baryogenesis, EDM and Higgs physics, JHEP 05 (2020) 056 [arXiv:2003.00099] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2020)127$$uH. Bahl et al., Indirect $$ \mathcal{CP} $$ probes of the Higgs-top-quark interaction: current LHC constraints and future opportunities, JHEP 11 (2020) 127 [arXiv:2007.08542] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2022.115676$$uS.D. Bakshi et al., Landscaping CP-violating BSM scenarios, Nucl. Phys. B 975 (2022) 115676 [arXiv:2103.15861] [INSPIRE]. 000622230 999C5 $$1Q Bonnefoy$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2022)032$$p032 -$$tJHEP$$uQ. Bonnefoy, E. Gendy, C. Grojean and J.T. Ruderman, Beyond Jarlskog: 699 invariants for CP violation in SMEFT, JHEP 08 (2022) 032 [arXiv:2112.03889] [INSPIRE].$$v08$$y2022 000622230 999C5 $$1H Bahl$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10528-1$$p604 -$$tEur. Phys. J. C$$uH. Bahl et al., Constraining the $$ \mathcal{CP} $$ structure of Higgs-fermion couplings with a global LHC fit, the electron EDM and baryogenesis, Eur. Phys. J. C 82 (2022) 604 [arXiv:2202.11753] [INSPIRE].$$v82$$y2022 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2023)107$$uD. Kondo, H. Murayama and R. Okabe, 23, 381, 6242, 103268, 1743183, . . . : Hilbert series for CP-violating operators in SMEFT, JHEP 03 (2023) 107 [arXiv:2212.02413] [INSPIRE]. 000622230 999C5 $$1Q Bonnefoy$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2023)141$$p141 -$$tJHEP$$uQ. Bonnefoy, E. Gendy, C. Grojean and J.T. Ruderman, Opportunistic CP violation, JHEP 06 (2023) 141 [arXiv:2302.07288] [INSPIRE].$$v06$$y2023 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2024.138547$$uV. Barger, K. Hagiwara and Y.-J. Zheng, CP-violating top-Higgs coupling in SMEFT, Phys. Lett. B 850 (2024) 138547 [arXiv:2310.10852] [INSPIRE]. 000622230 999C5 $$1M Kobayashi$$2Crossref$$9-- missing cx lookup --$$a10.1143/PTP.49.652$$p652 -$$tProg. Theor. Phys.$$uM. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].$$v49$$y1973 000622230 999C5 $$1C Jarlskog$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01565198$$p491 -$$tZ. Phys. C$$uC. Jarlskog, A Basis Independent Formulation of the Connection Between Quark Mass Matrices, CP Violation and Experiment, Z. Phys. C 29 (1985) 491 [INSPIRE].$$v29$$y1985 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.55.1039$$uC. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE]. 000622230 999C5 $$1B Grinstein$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2010)067$$p067 -$$tJHEP$$uB. Grinstein, M. Redi and G. Villadoro, Low Scale Flavor Gauge Symmetries, JHEP 11 (2010) 067 [arXiv:1009.2049] [INSPIRE].$$v11$$y2010 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.095022$$uR. Boughezal, E. Mereghetti and F. Petriello, Dilepton production in the SMEFT at O(1/Λ4), Phys. Rev. D 104 (2021) 095022 [arXiv:2106.05337] [INSPIRE]. 000622230 999C5 $$1L Allwicher$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2023)064$$p064 -$$tJHEP$$uL. Allwicher et al., Drell-Yan tails beyond the Standard Model, JHEP 03 (2023) 064 [arXiv:2207.10714] [INSPIRE].$$v03$$y2023 000622230 999C5 $$1F Bishara$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2021)154$$p154 -$$tJHEP$$uF. Bishara et al., Precision from the diphoton Zh channel at FCC-hh, JHEP 04 (2021) 154 [arXiv:2011.13941] [INSPIRE].$$v04$$y2021 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2023)077$$uF. Bishara et al., Revisiting Vh(→ $$ b\overline{b} $$) at the LHC and FCC-hh, JHEP 06 (2023) 077 [arXiv:2208.11134] [INSPIRE]. 000622230 999C5 $$1A Rossia$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2023)132$$p132 -$$tJHEP$$uA. Rossia, M. Thomas and E. Vryonidou, Diboson production in the SMEFT from gluon fusion, JHEP 11 (2023) 132 [arXiv:2306.09963] [INSPIRE].$$v11$$y2023 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2021)279$$uJ. Ellis et al., Top, Higgs, Diboson and Electroweak Fit to the Standard Model Effective Field Theory, JHEP 04 (2021) 279 [arXiv:2012.02779] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2021)089$$uSMEFiT collaboration, Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC, JHEP 11 (2021) 089 [arXiv:2105.00006] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.065014$$uA. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.055001$$uD. Liu and L.-T. Wang, Prospects for precision measurement of diboson processes in the semileptonic decay channel in future LHC runs, Phys. Rev. D 99 (2019) 055001 [arXiv:1804.08688] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.115004$$uJ. Baglio et al., Validity of standard model EFT studies of VH and VV production at NLO, Phys. Rev. D 101 (2020) 115004 [arXiv:2003.07862] [INSPIRE]. 000622230 999C5 $$1S Banerjee$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2020)170$$p170 -$$tJHEP$$uS. Banerjee et al., Towards the ultimate differential SMEFT analysis, JHEP 09 (2020) 170 [arXiv:1912.07628] [INSPIRE].$$v09$$y2020 000622230 999C5 $$1F Bishara$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2020)075$$p075 -$$tJHEP$$uF. Bishara et al., A New Precision Process at FCC-hh: the diphoton leptonic Wh channel, JHEP 07 (2020) 075 [arXiv:2004.06122] [INSPIRE].$$v07$$y2020 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.013003$$uE. da Silva Almeida, N. Rosa-Agostinho, O.J.P. Éboli and M.C. Gonzalez-Garcia, Light-quark dipole operators at the LHC, Phys. Rev. D 100 (2019) 013003 [arXiv:1905.05187] [INSPIRE]. 000622230 999C5 $$2Crossref$$uS. Bhattacharya, A. Sarkar and S. Biswas, Higgs couplings in SMEFT via Zh production at the HL-LHC, arXiv:2403.03001 [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(94)80039-1$$uR. Escribano and E. Masso, Constraints on fermion magnetic and electric moments from LEP-1, Nucl. Phys. B 429 (1994) 19 [hep-ph/9403304] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01556142$$uG. Kopp, D. Schaile, M. Spira and P.M. Zerwas, Bounds on radii and magnetic dipole moments of quarks and leptons from LEP, SLC and HERA, Z. Phys. C 65 (1995) 545 [hep-ph/9409457] [INSPIRE]. 000622230 999C5 $$1I Brivio$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2019)056$$p056 -$$tJHEP$$uI. Brivio, T. Corbett and M. Trott, The Higgs width in the SMEFT, JHEP 10 (2019) 056 [arXiv:1906.06949] [INSPIRE].$$v10$$y2019 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.035014$$uT. Corbett, O.J.P. Éboli and M.C. Gonzalez-Garcia, Unitarity Constraints on Dimension-Six Operators, Phys. Rev. D 91 (2015) 035014 [arXiv:1411.5026] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.96.035006$$uT. Corbett, O.J.P. Éboli and M.C. Gonzalez-Garcia, Unitarity Constraints on Dimension-six Operators II: Including Fermionic Operators, Phys. Rev. D 96 (2017) 035006 [arXiv:1705.09294] [INSPIRE]. 000622230 999C5 $$1T Cohen$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2022)155$$p155 -$$tJHEP$$uT. Cohen, J. Doss and X. Lu, Unitarity bounds on effective field theories at the LHC, JHEP 04 (2022) 155 [arXiv:2111.09895] [INSPIRE].$$v04$$y2022 000622230 999C5 $$1L Di Luzio$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-017-4594-2$$p30 -$$tEur. Phys. J. C$$uL. Di Luzio, J.F. Kamenik and M. Nardecchia, Implications of perturbative unitarity for scalar di-boson resonance searches at LHC, Eur. Phys. J. C 77 (2017) 30 [arXiv:1604.05746] [INSPIRE].$$v77$$y2017 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/06/045$$uG.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE]. 000622230 999C5 $$1A Manohar$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(84)90231-1$$p189 -$$tNucl. Phys. B$$uA. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].$$v234$$y1984 000622230 999C5 $$1H Georgi$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(86)90022-2$$p241 -$$tNucl. Phys. B$$uH. Georgi and L. Randall, Flavor Conserving CP Violation in Invisible Axion Models, Nucl. Phys. B 276 (1986) 241 [INSPIRE].$$v276$$y1986 000622230 999C5 $$1T Corbett$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.16.1.019$$p019 -$$tSciPost Phys.$$uT. Corbett and A. Martin, Higgs associated production with a vector decaying to two fermions in the geoSMEFT, SciPost Phys. 16 (2024) 019 [arXiv:2306.00053] [INSPIRE].$$v16$$y2024 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2018)016$$uE.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016 [Erratum ibid. 12 (2023) 043] [arXiv:1709.04486] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2018)084$$uE.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Anomalous Dimensions, JHEP 01 (2018) 084 [Erratum ibid. 12 (2023) 042] [arXiv:1711.05270] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2019)197$$uW. Dekens and P. Stoffer, Low-energy effective field theory below the electroweak scale: matching at one loop, JHEP 10 (2019) 197 [Erratum ibid. 11 (2022) 148] [arXiv:1908.05295] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.68.1125$$uG. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE]. 000622230 999C5 $$1J Aebischer$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2016)037$$p037 -$$tJHEP$$uJ. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for b → s and b → c transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].$$v05$$y2016 000622230 999C5 $$1A Celis$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-017-4967-6$$p405 -$$tEur. Phys. J. C$$uA. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, DsixTools: The Standard Model Effective Field Theory Toolkit, Eur. Phys. J. C 77 (2017) 405 [arXiv:1704.04504] [INSPIRE].$$v77$$y2017 000622230 999C5 $$1J Aebischer$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-018-6492-7$$p1026 -$$tEur. Phys. J. C$$uJ. Aebischer, J. Kumar and D.M. Straub, Wilson: a Python package for the running and matching of Wilson coefficients above and below the electroweak scale, Eur. Phys. J. C 78 (2018) 1026 [arXiv:1804.05033] [INSPIRE].$$v78$$y2018 000622230 999C5 $$1T Hurth$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2019)029$$p029 -$$tJHEP$$uT. Hurth, S. Renner and W. Shepherd, Matching for FCNC effects in the flavour-symmetric SMEFT, JHEP 06 (2019) 029 [arXiv:1903.00500] [INSPIRE].$$v06$$y2019 000622230 999C5 $$1Y Liao$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2020)162$$p162 -$$tJHEP$$uY. Liao, X.-D. Ma and Q.-Y. Wang, Extending low energy effective field theory with a complete set of dimension-7 operators, JHEP 08 (2020) 162 [arXiv:2005.08013] [INSPIRE].$$v08$$y2020 000622230 999C5 $$1V Cirigliano$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.84.399$$p399 -$$tRev. Mod. Phys.$$uV. Cirigliano et al., Kaon Decays in the Standard Model, Rev. Mod. Phys. 84 (2012) 399 [arXiv:1107.6001] [INSPIRE].$$v84$$y2012 000622230 999C5 $$1E Celada$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2024)091$$p091 -$$tJHEP$$uE. Celada et al., Mapping the SMEFT at high-energy colliders: from LEP and the (HL-)LHC to the FCC-ee, JHEP 09 (2024) 091 [arXiv:2404.12809] [INSPIRE].$$v09$$y2024 000622230 999C5 $$1A Pich$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2021)005$$p005 -$$tJHEP$$uA. Pich and A. Rodríguez-Sánchez, SU(3) analysis of four-quark operators: K → ππ and vacuum matrix elements, JHEP 06 (2021) 005 [arXiv:2102.09308] [INSPIRE].$$v06$$y2021 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.113.352$$uJ.D. Good, Pion Spectrum in Radiative $$ {K}_{\pi}^{+} $$ Decay, Phys. Rev. 113 (1959) 352 [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2024)071$$uM. Hoferichter, B.-L. Hoid and J.R. de Elvira, Improved Standard-Model prediction for KL → ℓ+ℓ−, JHEP 04 (2024) 071 [arXiv:2310.17689] [INSPIRE]. 000622230 999C5 $$2Crossref$$uParticle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE]. 000622230 999C5 $$1P Mertens$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2011)069$$p069 -$$tJHEP$$uP. Mertens and C. Smith, The s → dγ decay in and beyond the Standard Model, JHEP 08 (2011) 069 [arXiv:1103.5992] [INSPIRE].$$v08$$y2011 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1142/9789814329682_0069$$uP.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya and M.I. Polikarpov, Lattice QCD in strong magnetic fields, eCONF C 0906083 (2009) 25 [arXiv:0909.1808] [INSPIRE]. 000622230 999C5 $$1O Cata$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/09/078$$p078 -$$tJHEP$$uO. Cata and V. Mateu, Chiral perturbation theory with tensor sources, JHEP 09 (2007) 078 [arXiv:0705.2948] [INSPIRE].$$v09$$y2007 000622230 999C5 $$1V Mateu$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-007-0393-5$$p325 -$$tEur. Phys. J. C$$uV. Mateu and J. Portoles, Form-factors in radiative pion decay, Eur. Phys. J. C 52 (2007) 325 [arXiv:0706.1039] [INSPIRE].$$v52$$y2007 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(02)01951-2$$uM. Jamin, Flavor symmetry breaking of the quark condensate and chiral corrections to the Gell-Mann-Oakes-Renner relation, Phys. Lett. B 538 (2002) 71 [hep-ph/0201174] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(92)90061-8$$uV.M. Belyaev and I.I. Kogan, Supersymmetry and tensor coupling in π− → $$ {e}^{-}{\overline{\nu}}_e\gamma $$ decay, Phys. Lett. B 280 (1992) 238 [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(90)90857-3$$uV.N. Bolotov et al., The Experimental study of the π− → $$ {e}^{-}{\overline{\nu}}_e\gamma $$ decay in flight, Phys. Lett. B 243 (1990) 308 [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjh/s13129-023-00052-5$$uL. Peliti and P. Muratore-Ginanneschi, R. Fürth’s 1933 paper “On certain relations between classical statistics and quantum mechanics” [“Über einige Beziehungen zwischen klassischer Statistik und Quantenmechanik”, Zeitschrift für Physik, 81 143–162], Eur. Phys. J. H 48 (2023) 4 [arXiv:2006.03740] [INSPIRE]. 000622230 999C5 $$1R Unterdorfer$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-008-0584-8$$p273 -$$tEur. Phys. J. C$$uR. Unterdorfer and H. Pichl, On the Radiative Pion Decay, Eur. Phys. J. C 55 (2008) 273 [arXiv:0801.2482] [INSPIRE].$$v55$$y2008 000622230 999C5 $$1J Gasser$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(85)90492-4$$p465 -$$tNucl. Phys. B$$uJ. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].$$v250$$y1985 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(93)90259-R$$uJ. Bijnens, G. Ecker and J. Gasser, Radiative semileptonic kaon decays, Nucl. Phys. B 396 (1993) 81 [hep-ph/9209261] [INSPIRE]. 000622230 999C5 $$2Crossref$$uNA7 collaboration, A Measurement of the Space-Like Pion Electromagnetic Form-Factor, Nucl. Phys. B 277 (1986) 168 [INSPIRE]. 000622230 999C5 $$2Crossref$$uJefferson Lab collaboration, Charged pion form-factor between Q2 = 0.60 and 2.45 GeV2. II. Determination of, and results for, the pion form-factor, Phys. Rev. C 78 (2008) 045203 [arXiv:0809.3052] [INSPIRE]. 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.094013$$uS. Simula and L. Vittorio, Dispersive analysis of the experimental data on the electromagnetic form factor of charged pions at spacelike momenta, Phys. Rev. D 108 (2023) 094013 [arXiv:2309.02135] [INSPIRE]. 000622230 999C5 $$2Crossref$$uM. Bychkov et al., New Precise Measurement of the Pion Weak Form Factors in π+ → e+νγ Decay, Phys. Rev. Lett. 103 (2009) 051802 [arXiv:0804.1815] [INSPIRE]. 000622230 999C5 $$1MB Voloshin$$2Crossref$$uM.B. Voloshin, On Compatibility of Small Mass with Large Magnetic Moment of Neutrino, Sov. J. Nucl. Phys. 48 (1988) 512 [INSPIRE].$$y1988 000622230 999C5 $$1A Carmona$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.12.6.198$$p198 -$$tSciPost Phys.$$uA. Carmona, A. Lazopoulos, P. Olgoso and J. Santiago, Matchmakereft: automated tree-level and one-loop matching, SciPost Phys. 12 (2022) 198 [arXiv:2112.10787] [INSPIRE].$$v12$$y2022 000622230 999C5 $$1R Franceschini$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2018)111$$p111 -$$tJHEP$$uR. Franceschini et al., Electroweak Precision Tests in High-Energy Diboson Processes, JHEP 02 (2018) 111 [arXiv:1712.01310] [INSPIRE].$$v02$$y2018 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2018)146$$uJ. Ellis, C.W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE]. 000622230 999C5 $$1J De Blas$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2019)117$$p117 -$$tJHEP$$uJ. De Blas et al., On the future of Higgs, electroweak and diboson measurements at lepton colliders, JHEP 12 (2019) 117 [arXiv:1907.04311] [INSPIRE].$$v12$$y2019 000622230 999C5 $$1J Alwall$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2014)079$$p079 -$$tJHEP$$uJ. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].$$v07$$y2014 000622230 999C5 $$1I Brivio$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2021)073$$p073 -$$tJHEP$$uI. Brivio, SMEFTsim 3.0 — a practical guide, JHEP 04 (2021) 073 [arXiv:2012.11343] [INSPIRE].$$v04$$y2021 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/oso/9780198855743.003.0003$$uA. Pich, Effective Field Theory with Nambu-Goldstone Modes, arXiv:1804.05664 [https://doi.org/10.1093/oso/9780198855743.003.0003] [INSPIRE]. 000622230 999C5 $$1FJ Gilman$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.20.2392$$p2392 -$$tPhys. Rev. D$$uF.J. Gilman and M.B. Wise, Effective Hamiltonian for ∆s = 1 Weak Nonleptonic Decays in the Six Quark Model, Phys. Rev. D 20 (1979) 2392 [INSPIRE].$$v20$$y1979 000622230 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2003-01579-3$$uV. Cirigliano, G. Ecker, H. Neufeld and A. Pich, Isospin breaking in K → ππ decays, Eur. Phys. J. C 33 (2004) 369 [hep-ph/0310351] [INSPIRE]. 000622230 999C5 $$1AJ Buras$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2018)126$$p126 -$$tJHEP$$uA.J. Buras and J.-M. Gérard, K → ππ and K → π Matrix Elements of the Chromomagnetic Operators from Dual QCD, JHEP 07 (2018) 126 [arXiv:1803.08052] [INSPIRE].$$v07$$y2018 000622230 999C5 $$1C-H Chen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2018.11.006$$p182 -$$tPhys. Lett. B$$uC.-H. Chen and T. Nomura, ϵ′/ϵ from charged-Higgs-induced gluonic dipole operators, Phys. Lett. B 787 (2018) 182 [arXiv:1805.07522] [INSPIRE].$$v787$$y2018