000622215 001__ 622215
000622215 005__ 20250715170851.0
000622215 0247_ $$2doi$$a10.1107/S1600576724002115
000622215 0247_ $$2ISSN$$a0021-8898
000622215 0247_ $$2ISSN$$a1600-5767
000622215 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00253
000622215 0247_ $$2altmetric$$aaltmetric:161418764
000622215 0247_ $$2pmid$$apmid:38596736
000622215 0247_ $$2WOS$$aWOS:001208800100024
000622215 0247_ $$2openalex$$aopenalex:W4393358050
000622215 037__ $$aPUBDB-2025-00253
000622215 041__ $$aEnglish
000622215 082__ $$a540
000622215 1001_ $$0P:(DE-H253)PIP1096639$$aMunteanu, Valentin$$b0$$eCorresponding author
000622215 245__ $$aNeural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge
000622215 260__ $$aCopenhagen$$bMunksgaard$$c2024
000622215 3367_ $$2DRIVER$$aarticle
000622215 3367_ $$2DataCite$$aOutput Types/Journal article
000622215 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737387105_1513092
000622215 3367_ $$2BibTeX$$aARTICLE
000622215 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000622215 3367_ $$00$$2EndNote$$aJournal Article
000622215 520__ $$aDue to the ambiguity related to the lack of phase information, determining the physical parameters of multilayer thin films from measured neutron and X-ray reflectivity curves is, on a fundamental level, an underdetermined inverse problem. This ambiguity poses limitations on standard neural networks, constraining the range and number of considered parameters in previous machine learning solutions. To overcome this challenge, a novel training procedure has been designed which incorporates dynamic prior boundaries for each physical parameter as additional inputs to the neural network. In this manner, the neural network can be trained simultaneously on all well-posed subintervals of a larger parameter space in which the inverse problem is underdetermined. During inference, users can flexibly input their own prior knowledge about the physical system to constrain the neural network prediction to distinct target subintervals in the parameter space. The effectiveness of the method is demonstrated in various scenarios, including multilayer structures with a box model parameterization and a physics-inspired special parameterization of the scattering length density profile for a multilayer structure. In contrast to previous methods, this approach scales favourably when increasing the complexity of the inverse problem, working properly even for a five-layer multilayer model and a periodic multilayer model with up to 17 open parameters.
000622215 536__ $$0G:(DE-HGF)POF4-623$$a623 - Data Management and Analysis (POF4-623)$$cPOF4-623$$fPOF IV$$x0
000622215 542__ $$2Crossref$$i2024-03-31$$uhttps://creativecommons.org/licenses/by/4.0/legalcode
000622215 542__ $$2Crossref$$i2024-03-31$$uhttps://creativecommons.org/licenses/by/4.0/legalcode
000622215 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000622215 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000622215 7001_ $$aStarostin, Vladimir$$b1
000622215 7001_ $$aGreco, Alessandro$$b2
000622215 7001_ $$0P:(DE-H253)PIP1017835$$aPithan, Linus$$b3
000622215 7001_ $$aGerlach, Alexander$$b4
000622215 7001_ $$aHinderhofer, Alexander$$b5
000622215 7001_ $$aKowarik, Stefan$$b6
000622215 7001_ $$0P:(DE-H253)PIP1008437$$aSchreiber, Frank$$b7$$eCorresponding author
000622215 77318 $$2Crossref$$3journal-article$$a10.1107/s1600576724002115$$bInternational Union of Crystallography (IUCr)$$d2024-03-31$$n2$$p456-469$$tJournal of Applied Crystallography$$v57$$x1600-5767$$y2024
000622215 773__ $$0PERI:(DE-600)2020879-0$$a10.1107/S1600576724002115$$gVol. 57, no. 2, p. 456 - 469$$n2$$p456-469$$tJournal of applied crystallography$$v57$$x1600-5767$$y2024
000622215 8564_ $$uhttps://bib-pubdb1.desy.de/record/622215/files/xx5042.pdf$$yOpenAccess
000622215 8564_ $$uhttps://bib-pubdb1.desy.de/record/622215/files/xx5042.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000622215 909CO $$ooai:bib-pubdb1.desy.de:622215$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000622215 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096639$$aExternal Institute$$b0$$kExtern
000622215 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1017835$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000622215 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008437$$aExternal Institute$$b7$$kExtern
000622215 9131_ $$0G:(DE-HGF)POF4-623$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vData Management and Analysis$$x0
000622215 9141_ $$y2024
000622215 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
000622215 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-17
000622215 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000622215 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-17
000622215 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CRYSTALLOGR : 2022$$d2024-12-17
000622215 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ APPL CRYSTALLOGR : 2022$$d2024-12-17
000622215 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-17$$wger
000622215 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-17
000622215 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
000622215 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000622215 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-17
000622215 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-17
000622215 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
000622215 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-17$$wger
000622215 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
000622215 9201_ $$0I:(DE-H253)FS-EC-20120731$$kFS-EC$$lFS-Experiment Control$$x0
000622215 980__ $$ajournal
000622215 980__ $$aVDB
000622215 980__ $$aUNRESTRICTED
000622215 980__ $$aI:(DE-H253)FS-EC-20120731
000622215 9801_ $$aFullTexts
000622215 999C5 $$1Abelès$$2Crossref$$9-- missing cx lookup --$$a10.1051/jphysrad:01950001107030700$$p307 -$$tJ. Phys. Radium$$v11$$y1950
000622215 999C5 $$1Adler$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6420/aa9581$$p124007 -$$tInverse Probl.$$v33$$y2017
000622215 999C5 $$1Allman$$2Crossref$$9-- missing cx lookup --$$a10.1364/AO.33.001806$$p1806 -$$tAppl. Opt.$$v33$$y1994
000622215 999C5 $$1Andrejevic$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0078814$$p011421 -$$tAppl. Phys. Rev.$$v9$$y2022
000622215 999C5 $$1Ankner$$2Crossref$$9-- missing cx lookup --$$a10.6028/jres.098.004$$p47 -$$tJ. Res. Natl Inst. Standards$$v98$$y1993
000622215 999C5 $$1Aoki$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-021-02085-6$$p22711 -$$tSci. Rep.$$v11$$y2021
000622215 999C5 $$2Crossref$$uArdizzone, L., Kruse, J., Rother, C. & Köthe, U. (2019). International Conference on Learning Representations (ICLR2019), 6-9 May 2019, New Orleans, Louisiana, USA, abstract rJed6j0cKX.
000622215 999C5 $$2Crossref$$uBabu, A. V., Zhou, T., Kandel, S., Bicer, T., Liu, Z., Judge, W., Ching, D. J., Jiang, Y., Veseli, S., Henke, S., Chard, R., Yao, Y., Sirazitdinova, E., Gupta, G., Holt, M. V., Foster, I. T., Miceli, A. & Cherukara, M. J. (2022). arXiv:2209.09408.
000622215 999C5 $$2Crossref$$uBae, J., Zhang, M. R., Ruan, M., Wang, E., Hasegawa, S., Ba, J. & Grosse, R. (2022). arXiv:2212.03905.
000622215 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-38177-5$$uBenediktovich, A., Feranchuk, I. & Ulyanenkov, A. (2014). Theoretical Concepts of X-ray Nanoscale Analysis: Theory and Applications. Berlin, Heidelberg: Springer.
000622215 999C5 $$1Braslau$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.38.2457$$p2457 -$$tPhys. Rev. A$$v38$$y1988
000622215 999C5 $$1Chu$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.langmuir.9b03785$$p906 -$$tLangmuir$$v36$$y2020
000622215 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-62703-275-9_7$$uClifton, L. A., Neylon, C. & Lakey, J. H. (2012). Examining Protein-Lipid Complexes Using Neutron Scattering, pp. 119-150. Totowa: Humana Press.
000622215 999C5 $$2Crossref$$uCollobert, R., Puhrsch, C. & Synnaeve, G. (2016). arXiv:1609.03193.
000622215 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-540-88588-7$$uDaillant, J. & Gibaud, A. (2009). X-ray and Neutron Reflectivity. Heidelberg: Springer.
000622215 999C5 $$1Doucet$$2Crossref$$9-- missing cx lookup --$$a10.1088/2632-2153/abf257$$p035001 -$$tMach. Learn. Sci. Technol.$$v2$$y2021
000622215 999C5 $$1Fenter$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0009-2614(97)00941-X$$p521 -$$tChem. Phys. Lett.$$v277$$y1997
000622215 999C5 $$1Festersen$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577517018057$$p432 -$$tJ. Synchrotron Rad.$$v25$$y2018
000622215 999C5 $$1Fragneto-Cusani$$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/13/21/322$$p4973 -$$tJ. Phys. Condens. Matter$$v13$$y2001
000622215 999C5 $$1Fukushima$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00342633$$p121 -$$tBiol. Cybern.$$v20$$y1975
000622215 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1201/b16018$$uGelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. (2013). Bayesian Data Analysis. Boca Raton: Chapman and Hall/CRC.
000622215 999C5 $$1Glavic$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576722006653$$p1063 -$$tJ. Appl. Cryst.$$v55$$y2022
000622215 999C5 $$1Greco$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576722002230$$p362 -$$tJ. Appl. Cryst.$$v55$$y2022
000622215 999C5 $$1Greco$$2Crossref$$9-- missing cx lookup --$$a10.1088/2632-2153/abf9b1$$p045003 -$$tMach. Learn. Sci. Technol.$$v2$$y2021
000622215 999C5 $$1Greco$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576719013311$$p1342 -$$tJ. Appl. Cryst.$$v52$$y2019
000622215 999C5 $$1Guessoum$$2Crossref$$9-- missing cx lookup --$$a10.3390/s22239517$$p9517 -$$tSensors$$v22$$y2022
000622215 999C5 $$2Crossref$$uHe, K., Zhang, X., Ren, S. & Sun, J. (2016). 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27-30 June 2016, Las Vegas, Nevada, USA, pp. 770-778. New York: IEEE.
000622215 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/bs.mie.2015.05.019$$uHeinrich, F. (2016). Deuteration in Biological Neutron Reflectometry, pp. 211-230. Amsterdam: Elsevier.
000622215 999C5 $$2Crossref$$uHendrycks, D. & Gimpel, K. (2020). arXiv:1606.08415.
000622215 999C5 $$1Hinderhofer$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576722011566$$p3 -$$tJ. Appl. Cryst.$$v56$$y2023
000622215 999C5 $$2Crossref$$uHolý, V., Pietsch, U. & Baumbach, T. (1999). High-Resolution X-ray Scattering from Thin Films and Multilayers. Berlin: Springer.
000622215 999C5 $$1Ioffe$$2Crossref$$oIoffe 2015$$y2015
000622215 999C5 $$1Kabanikhin$$2Crossref$$oKabanikhin 2008$$y2008
000622215 999C5 $$1Kim$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576721009043$$p1572 -$$tJ. Appl. Cryst.$$v54$$y2021
000622215 999C5 $$2Crossref$$uKingma, D. P. & Ba, J. (2017). arXiv:1412.6980.
000622215 999C5 $$1Kiranyaz$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ymssp.2020.107398$$p107398 -$$tMech. Syst. Signal Process.$$v151$$y2021
000622215 999C5 $$2Crossref$$uKlambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. (2017). Advances in Neural Information Processing Systems, Vol. 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan & R. Garnett. Red Hook: Curran Associates.
000622215 999C5 $$2Crossref$$uKomatsuzaki, A. (2019). arXiv:1906.06669.
000622215 999C5 $$2Crossref$$uKovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A. & Anandkumar, A. (2023). arXiv:2108.08481.
000622215 999C5 $$1Kowarik$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.125504$$p125504 -$$tPhys. Rev. Lett.$$v96$$y2006
000622215 999C5 $$1Kozhevnikov$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(03)01512-2$$p519 -$$tNucl. Instrum. Methods Phys. Res. A$$v508$$y2003
000622215 999C5 $$1Lehmkühler$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja806211r$$p585 -$$tJ. Am. Chem. Soc.$$v131$$y2009
000622215 999C5 $$1Li$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6420/ab6d57$$p065005 -$$tInverse Probl.$$v36$$y2020
000622215 999C5 $$2Crossref$$uLi, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A. & Anandkumar, A. (2020). arXiv:2003.03485.
000622215 999C5 $$2Crossref$$uLi, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A. & Anandkumar, A. (2021). International Conference on Learning Representations (ICLR2021), 4 May 2021, Vienna, Austria, abstract c8P9NQVtmnO.
000622215 999C5 $$1Lorch$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp510321k$$p819 -$$tJ. Phys. Chem. C$$v119$$y2015
000622215 999C5 $$2Crossref$$uLoshchilov, I. & Hutter, F. (2019). International Conference on Learning Representations (ICLR2019), 6-9 May 2019, New Orleans, Louisiana, USA, abstract Bkg6RiCqY7.
000622215 999C5 $$1Majkrzak$$2Crossref$$9-- missing cx lookup --$$a10.1016/0921-4526(91)90037-F$$p75 -$$tPhysica B$$v173$$y1991
000622215 999C5 $$1Majkrzak$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4526(98)00260-9$$p338 -$$tPhysica B$$v248$$y1998
000622215 999C5 $$1Masoudi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physb.2004.10.038$$p21 -$$tPhysica B$$v356$$y2005
000622215 999C5 $$1Metzger$$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-9002(94)91188-6$$p398 -$$tNucl. Instrum. Methods Phys. Res. A$$v350$$y1994
000622215 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-18672-1$$uMichely, T. & Krug, J. (2004). Islands, Mounds, and Atoms. Patterns and Processes in Crystal Growth Far from Equilibrium. Heidelberg: Springer.
000622215 999C5 $$1Mironov$$2Crossref$$9-- missing cx lookup --$$a10.1088/2632-2153/abe7b5$$p035006 -$$tMach. Learn. Sci. Technol.$$v2$$y2021
000622215 999C5 $$2Crossref$$uMisra, D. (2020). arXiv:1908.08681.
000622215 999C5 $$1Mukherjee$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.66.061801$$p061801 -$$tPhys. Rev. E$$v66$$y2002
000622215 999C5 $$1Murtagh$$2Crossref$$9-- missing cx lookup --$$a10.1016/0925-2312(91)90023-5$$p183 -$$tNeurocomputing$$v2$$y1991
000622215 999C5 $$1Nelson$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576718017296$$p193 -$$tJ. Appl. Cryst.$$v52$$y2019
000622215 999C5 $$1Neville$$2Crossref$$9-- missing cx lookup --$$a10.1529/biophysj.105.067595$$p1275 -$$tBiophys. J.$$v90$$y2006
000622215 999C5 $$1Névot$$2Crossref$$9-- missing cx lookup --$$a10.1051/rphysap:01980001503076100$$p761 -$$tRev. Phys. Appl.$$v15$$y1980
000622215 999C5 $$2Crossref$$uNewton, R. G. (1974). Scattering Theory in Mathematical Physics, NATO Advanced Study Institutes Series, Vol 9, edited by J. A. Lavita & J. P. Marchand, pp. 193-235. Dordrecht: Springer.
000622215 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41524-022-00876-7$$uOommen, V., Shukla, K., Goswami, S., Dingreville, R. & Karniadakis, G. E. (2022). NPJ Comput. Mater. 8, 190.
000622215 999C5 $$2Crossref$$uOrhan, E. & Pitkow, X. (2018). International Conference on Learning Representations (ICLR2018), 30 April to 3 May 2018, Vancouver, Canada, abstract HkwBEMWCZ.
000622215 999C5 $$1Parratt$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.95.359$$p359 -$$tPhys. Rev.$$v95$$y1954
000622215 999C5 $$2Crossref$$uPaszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. & Chintala, S. (2019). arXiv:1912.01703.
000622215 999C5 $$1Pershan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.50.2369$$p2369 -$$tPhys. Rev. E$$v50$$y1994
000622215 999C5 $$2Crossref$$uPithan, L., Greco, A., Hinderhofer, A., Gerlach, A., Kowarik, S., Rußegger, N., Dax, I. & Schreiber, F. (2022). Reflectometry Curves (XRR and NR) and Corresponding Fits for Machine Learning, https://zenodo.org/records/6497438.
000622215 999C5 $$2Crossref$$uPithan, L., Starostin, V., Mareček, D., Petersdorf, L., Völter, C., Munteanu, V., Jankowski, M., Konovalov, O., Gerlach, A., Hinderhofer, A., Murphy, B., Kowarik, S. & Schreiber, F. (2023). arXiv:2306.11899.
000622215 999C5 $$1Pynn$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.45.602$$p602 -$$tPhys. Rev. B$$v45$$y1992
000622215 999C5 $$1Ritley$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1336822$$p1453 -$$tRev. Sci. Instrum.$$v72$$y2001
000622215 999C5 $$1Salditt$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.semcdb.2016.06.014$$p65 -$$tSemin. Cell Dev. Biol.$$v60$$y2016
000622215 999C5 $$1Schlomka$$2Crossref$$9-- missing cx lookup --$$a10.1016/0921-4526(95)00903-5$$p44 -$$tPhysica B$$v221$$y1996
000622215 999C5 $$1Seeck$$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i2002-00274-6$$p376 -$$tEurophys. Lett.$$v60$$y2002
000622215 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/0-306-47077-2_19$$uSinha, S. K. & Pynn, R. (2002). Diffuse X-ray and Neutron Reflection from Surfaces and Interfaces, edited by S. J. L Billinge & M. F. Thorpe, pp. 351-373. New York: Springer US.
000622215 999C5 $$1Sironi$$2Crossref$$9-- missing cx lookup --$$a10.1039/C6SM00369A$$p3877 -$$tSoft Matter$$v12$$y2016
000622215 999C5 $$1Sivia$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.349629$$p732 -$$tJ. Appl. Phys.$$v70$$y1991
000622215 999C5 $$1Skoda$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcis.2021.08.018$$p1673 -$$tJ. Colloid Interface Sci.$$v606$$y2022
000622215 999C5 $$1Skoda$$2Crossref$$9-- missing cx lookup --$$a10.1039/C7RA04900E$$p34208 -$$tRSC Adv.$$v7$$y2017
000622215 999C5 $$1Tidswell$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.41.1111$$p1111 -$$tPhys. Rev. B$$v41$$y1990
000622215 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BFb0112834$$uTolan, M. (1999). X-ray Scattering from Soft-Matter Thin Films: Materials Science and Basic Research. Heidelberg: Springer.
000622215 999C5 $$1Treece$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576718017016$$p47 -$$tJ. Appl. Cryst.$$v52$$y2019
000622215 999C5 $$1Volostnikov$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01120784$$p601 -$$tJ. Russ. Laser Res.$$v11$$y1990
000622215 999C5 $$1Wasserman$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja00197a054$$p5852 -$$tJ. Am. Chem. Soc.$$v111$$y1989
000622215 999C5 $$1Wen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.advwatres.2022.104180$$p104180 -$$tAdv. Water Resour.$$v163$$y2022
000622215 999C5 $$1Woll$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.075479$$p075479 -$$tPhys. Rev. B$$v84$$y2011
000622215 999C5 $$1Zhou$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.47.3174$$p3174 -$$tPhys. Rev. E$$v47$$y1993
000622215 999C5 $$1Zhou$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(94)00110-O$$p223 -$$tPhys. Rep.$$v257$$y1995