000622159 001__ 622159
000622159 005__ 20250715151504.0
000622159 0247_ $$2INSPIRETeX$$aAngelides:2023noe
000622159 0247_ $$2inspire$$ainspire:2739158
000622159 0247_ $$2arXiv$$aarXiv:2312.12831
000622159 0247_ $$2doi$$a10.1038/s41534-024-00950-6
000622159 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00211
000622159 0247_ $$2altmetric$$aaltmetric:157679529
000622159 0247_ $$2WOS$$aWOS:001397992900002
000622159 0247_ $$2openalex$$aopenalex:W4406516506
000622159 037__ $$aPUBDB-2025-00211
000622159 041__ $$aEnglish
000622159 082__ $$a530
000622159 088__ $$2arXiv$$aarXiv:2312.12831
000622159 1001_ $$0P:(DE-H253)PIP1100309$$aAngelides, Takis$$b0$$eCorresponding author
000622159 245__ $$aFirst-Order Phase Transition of the Schwinger Model with a Quantum Computer
000622159 260__ $$aLondon$$bNature Publ. Group$$c2025
000622159 3367_ $$2DRIVER$$aarticle
000622159 3367_ $$2DataCite$$aOutput Types/Journal article
000622159 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737973243_1787058
000622159 3367_ $$2BibTeX$$aARTICLE
000622159 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000622159 3367_ $$00$$2EndNote$$aJournal Article
000622159 500__ $$a21 pages, 10 figures, 1 table
000622159 520__ $$aWe explore the first-order phase transition in the lattice Schwinger model in the presence of a topological $\theta$-term by means of the variational quantum eigensolver (VQE). Using two different fermion discretizations, Wilson and staggered fermions, we develop parametric ansatz circuits suitable for both discretizations, and compare their performance by simulating classically an ideal VQE optimization in the absence of noise. The states obtained by the classical simulation are then prepared on the IBM's superconducting quantum hardware. Applying state-of-the art error-mitigation methods, we show that the electric field density and particle number, observables which reveal the phase structure of the model, can be reliably obtained from the quantum hardware. To investigate the minimum system sizes required for a continuum extrapolation, we study the continuum limit using matrix product states, and compare our results to continuum mass perturbation theory. We demonstrate that taking the additive mass renormalization into account is vital for enhancing the precision that can be obtained with smaller system sizes. Furthermore, for the observables we investigate we observe universality, and both fermion discretizations produce the same continuum limit.
000622159 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000622159 536__ $$0G:(EU-Grant)101087126$$aQUEST - QUantum computing for Excellence in Science and Technology (101087126)$$c101087126$$fHORIZON-WIDERA-2022-TALENTS-01$$x1
000622159 536__ $$0G:(EU-Grant)101034267$$aENGAGE - Enabling the Next-Generation of Computational Physicists and Engineers (101034267)$$c101034267$$fH2020-MSCA-COFUND-2020$$x2
000622159 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000622159 7001_ $$0P:(DE-H253)PIP1106829$$aNaredi, Pranay$$b1
000622159 7001_ $$0P:(DE-H253)PIP1097418$$aCrippa, Arianna$$b2
000622159 7001_ $$0P:(DE-H253)PIP1003636$$aJansen, Karl$$b3
000622159 7001_ $$0P:(DE-H253)PIP1086314$$aKühn, Stefan$$b4
000622159 7001_ $$0P:(DE-HGF)0$$aTavernelli, Ivano$$b5
000622159 7001_ $$0P:(DE-HGF)0$$aWang, Derek S.$$b6
000622159 773__ $$0PERI:(DE-600)2841736-7$$a10.1038/s41534-024-00950-6$$p6$$tnpj Quantum information$$v11$$x2056-6387$$y2025
000622159 7870_ $$0PUBDB-2024-07804$$aAngelides, Takis et.al.$$d2024$$iIsParent$$rarXiv:2312.12831$$tFirst-Order Phase Transition of the Schwinger Model with a Quantum Computer
000622159 8564_ $$uhttps://www.nature.com/articles/s41534-024-00950-6
000622159 8564_ $$uhttps://bib-pubdb1.desy.de/record/622159/files/Article%20Approval%20Service.pdf
000622159 8564_ $$uhttps://bib-pubdb1.desy.de/record/622159/files/HTML-Approval_of_scientific_publication.html
000622159 8564_ $$uhttps://bib-pubdb1.desy.de/record/622159/files/PDF-Approval_of_scientific_publication.pdf
000622159 8564_ $$uhttps://bib-pubdb1.desy.de/record/622159/files/Article%20Approval%20Service.pdf?subformat=pdfa$$xpdfa
000622159 8564_ $$uhttps://bib-pubdb1.desy.de/record/622159/files/s41534-024-00950-6.pdf$$yOpenAccess
000622159 8564_ $$uhttps://bib-pubdb1.desy.de/record/622159/files/s41534-024-00950-6.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000622159 8767_ $$92025-01-16$$d2025-01-16$$eAPC$$jDEAL$$lSpringerNature$$zkeine Angabe DFG, Rechnung SN-2025-00446-b
000622159 8767_ $$92025-01-16$$d2025-01-16$$eOther$$jDEAL$$lSpringerNature$$zMPDL Gebühr
000622159 909CO $$ooai:bib-pubdb1.desy.de:622159$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000622159 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1100309$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000622159 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1106829$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000622159 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1106829$$aExternal Institute$$b1$$kExtern
000622159 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1097418$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000622159 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003636$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000622159 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086314$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000622159 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000622159 9141_ $$y2025
000622159 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
000622159 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
000622159 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000622159 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNPJ QUANTUM INFORM : 2022$$d2024-12-12
000622159 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNPJ QUANTUM INFORM : 2022$$d2024-12-12
000622159 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:43:48Z
000622159 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:43:48Z
000622159 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
000622159 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-12
000622159 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
000622159 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000622159 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:43:48Z
000622159 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-12
000622159 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-12
000622159 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
000622159 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
000622159 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000622159 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000622159 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000622159 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000622159 9201_ $$0I:(DE-H253)CQTA-20221102$$kCQTA$$lCentre f. Quantum Techno. a. Application$$x0
000622159 980__ $$ajournal
000622159 980__ $$aVDB
000622159 980__ $$aUNRESTRICTED
000622159 980__ $$aI:(DE-H253)CQTA-20221102
000622159 980__ $$aAPC
000622159 9801_ $$aAPC
000622159 9801_ $$aFullTexts