000622099 001__ 622099
000622099 005__ 20250715171440.0
000622099 0247_ $$2doi$$a10.1021/acs.inorgchem.4c01160
000622099 0247_ $$2ISSN$$a0020-1669
000622099 0247_ $$2ISSN$$a1520-510X
000622099 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00185
000622099 0247_ $$2altmetric$$aaltmetric:163785229
000622099 0247_ $$2pmid$$apmid:38787450
000622099 0247_ $$2WOS$$aWOS:001233768200001
000622099 0247_ $$2openalex$$aopenalex:W4398781920
000622099 037__ $$aPUBDB-2025-00185
000622099 041__ $$aEnglish
000622099 082__ $$a540
000622099 1001_ $$aSinclair, Jordan$$b0
000622099 245__ $$aIn-Depth Analysis of the Species and Transformations during Sol Gel-Assisted V$_2$PC Synthesis
000622099 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2024
000622099 3367_ $$2DRIVER$$aarticle
000622099 3367_ $$2DataCite$$aOutput Types/Journal article
000622099 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737727312_786856
000622099 3367_ $$2BibTeX$$aARTICLE
000622099 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000622099 3367_ $$00$$2EndNote$$aJournal Article
000622099 520__ $$aThe sol–gel reaction mechanism of 211 MAX phases has proven to be very complex when identifying the intermediate species, chemical processes, and conversions that occur from a mixture of metal salts and gelling agent into a crystalline ternary carbide. With mostly qualitative results in the literature (Cr$_2$GaC, Cr$_2$GeC, and V$_2$GeC), additional analytical techniques, including thermal analysis, powder diffraction, total scattering, and various spectroscopic methods, are necessary to unravel the identity of the chemical compounds and transformations during the reaction. Here, we demonstrate the combination of these techniques to understand the details of the sol–gel synthesis of MAX phase V$_2$PC. The metal phosphate complexes, as well as amorphous/nanocrystalline vanadium phosphate species (V in different oxidation states), are identified at all stages of the reaction and a full schematic of the reaction process is suggested. The early amorphous vanadium species undergo multiple changes of oxidation states while organic species decompose releasing a variety of small molecule gases. Amorphous oxides, analogous to [NH$_4$][VO$_2$][HPO$_4$], V$_2$PO4O, and VO$_2$P$_2$O$_7$ are identified in the dried gel obtained during the early stages of the heating process (300 and 600 °C), respectively. They are carbothermally reduced starting at 900 °C and subsequently react to crystalline V$_2$PC with the excess carbon in the reaction mixture. Through CHN analysis, we obtain an estimate of left-over amorphous carbon in the product which will guide future efforts of minimizing the amount of carbon in sol gel-produced MAX phases which is important for subsequent property studies.
000622099 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000622099 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000622099 536__ $$0G:(DE-H253)I-20221270$$aFS-Proposal: I-20221270 (I-20221270)$$cI-20221270$$x2
000622099 542__ $$2Crossref$$i2024-05-24$$uhttps://doi.org/10.15223/policy-029
000622099 542__ $$2Crossref$$i2024-05-24$$uhttps://doi.org/10.15223/policy-037
000622099 542__ $$2Crossref$$i2024-05-24$$uhttps://doi.org/10.15223/policy-045
000622099 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000622099 693__ $$0EXP:(DE-H253)P-P22-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P22-20150101$$aPETRA III$$fPETRA Beamline P22$$x0
000622099 7001_ $$00000-0003-4139-7094$$aFlores, Marco$$b1
000622099 7001_ $$aBrugh, Alexander M.$$b2
000622099 7001_ $$0P:(DE-H253)PIP1085589$$aRajh, Tijana$$b3
000622099 7001_ $$0P:(DE-H253)PIP1028922$$aJuelsholt, Mikkel$$b4
000622099 7001_ $$0P:(DE-H253)PIP1104765$$aRiaz, Aysha A.$$b5
000622099 7001_ $$0P:(DE-H253)PIP1011024$$aSchlueter, Christoph$$b6
000622099 7001_ $$0P:(DE-H253)PIP1088057$$aRegoutz, Anna$$b7
000622099 7001_ $$00000-0001-8979-5214$$aBirkel, Christina S.$$b8$$eCorresponding author
000622099 77318 $$2Crossref$$3journal-article$$a10.1021/acs.inorgchem.4c01160$$bAmerican Chemical Society (ACS)$$d2024-05-24$$n23$$p10682-10690$$tInorganic Chemistry$$v63$$x0020-1669$$y2024
000622099 773__ $$0PERI:(DE-600)1484438-2$$a10.1021/acs.inorgchem.4c01160$$gVol. 63, no. 23, p. 10682 - 10690$$n23$$p10682-10690$$tInorganic chemistry$$v63$$x0020-1669$$y2024
000622099 8564_ $$uhttps://bib-pubdb1.desy.de/record/622099/files/sinclair-et-al-2024-in-depth-analysis-of-the-species-and-transformations-during-sol-gel-assisted-v2pc-synthesis.pdf
000622099 8564_ $$uhttps://bib-pubdb1.desy.de/record/622099/files/Birkel_InvitedInorgChem_V2PCMechanism_rev.pdf$$yPublished on 2024-05-24. Available in OpenAccess from 2025-05-24.
000622099 8564_ $$uhttps://bib-pubdb1.desy.de/record/622099/files/sinclair-et-al-2024-in-depth-analysis-of-the-species-and-transformations-during-sol-gel-assisted-v2pc-synthesis.pdf?subformat=pdfa$$xpdfa
000622099 8564_ $$uhttps://bib-pubdb1.desy.de/record/622099/files/Birkel_InvitedInorgChem_V2PCMechanism_rev.pdf?subformat=pdfa$$xpdfa$$yPublished on 2024-05-24. Available in OpenAccess from 2025-05-24.
000622099 909CO $$ooai:bib-pubdb1.desy.de:622099$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000622099 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085589$$aExternal Institute$$b3$$kExtern
000622099 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1085589$$aEuropean XFEL$$b3$$kXFEL.EU
000622099 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1028922$$aExternal Institute$$b4$$kExtern
000622099 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104765$$aExternal Institute$$b5$$kExtern
000622099 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011024$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000622099 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088057$$aExternal Institute$$b7$$kExtern
000622099 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000622099 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000622099 9141_ $$y2024
000622099 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-30
000622099 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-30
000622099 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-30
000622099 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000622099 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-30
000622099 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-30
000622099 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-30
000622099 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-30
000622099 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-30
000622099 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM : 2022$$d2024-12-30
000622099 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-30
000622099 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-30$$wger
000622099 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-30
000622099 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000622099 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x1
000622099 980__ $$ajournal
000622099 980__ $$aVDB
000622099 980__ $$aUNRESTRICTED
000622099 980__ $$aI:(DE-H253)HAS-User-20120731
000622099 980__ $$aI:(DE-H253)FS-PETRA-S-20210408
000622099 9801_ $$aFullTexts
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1524/zkri.1960.114.1-6.447
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00901220
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1151-2916.1996.tb08018.x
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.trechm.2019.02.016
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jeurceramsoc.2021.03.013
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jssc.2009.01.003
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jeurceramsoc.2021.12.062
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D1TA04097A
000622099 999C5 $$1Radovic M.$$2Crossref$$oRadovic M. 2013$$y2013
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2020.108492
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mtadv.2020.100123
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C7CP08645H
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C5MH00260E
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matpr.2015.07.098
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/ma11030450
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C9TC01416K
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.inorgchem.1c03415
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D2QI00053A
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D1NR06780J
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D1QM00454A
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.inorgchem.2c02880
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.inorgchem.2c00200
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsorginorgau.1c00022
000622099 999C5 $$2Crossref$$uC-P-V Isothermal Section of Ternary Phase Diagram: Datasheet from “PAULING FILE Multinaries ed. 2022” in SpringerMaterials Springer-Verlag/Material Phases Data System (MPDS)/National Institute for Materials Science (NIMS): Berlin/Heidelberg/Switzerland/Japan.
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.elspec.2004.03.004
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.materresbull.2010.06.010
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tsf.2017.12.024
000622099 999C5 $$1Weil J. A.$$2Crossref$$oWeil J. A. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications 2007$$tElectron Paramagnetic Resonance: Elementary Theory and Practical Applications$$y2007
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmr.2005.08.013
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5084611$$uSchlueter, C.; Gloskovskii, A.; Ederer, K.; Schostak, I.; Piec, S.; Sarkar, I.; Matveyev, Y.; Lömker, P.; Sing, M.; Claessen, R.; Wiemann, C.; Schneider, C. M.; Medjanik, K.; Schönhense, G.; Amann, P.; Nilsson, A.; Drube, W. The New Dedicated HAXPES Beamline P22 at PETRAIII. In AIP Conference Proceedings; American Institute of Physics Inc.: College Park, MD, 2019; Vol. 205410.1063/1.5084611.
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576718000183
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889813005190
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.48550/arXiv.1402.3163
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/19/33/335219
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/molecules26061507
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ccr.2014.10.014
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/ma8085255
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.apsusc.2023.157507
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/sia.740210302
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/fmats.2021.645915
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/9780470027318.a5606
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/a901956a
000622099 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.saa.2010.08.044