001 | 622050 | ||
005 | 20250723173213.0 | ||
024 | 7 | _ | |a 10.1039/D3CY01445B |2 doi |
024 | 7 | _ | |a 2044-4753 |2 ISSN |
024 | 7 | _ | |a 2044-4761 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2025-00162 |2 datacite_doi |
024 | 7 | _ | |a altmetric:158984870 |2 altmetric |
024 | 7 | _ | |a WOS:001144839600001 |2 WOS |
024 | 7 | _ | |a openalex:W4390905209 |2 openalex |
037 | _ | _ | |a PUBDB-2025-00162 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Klag, Linda |0 P:(DE-H253)PIP1092507 |b 0 |
245 | _ | _ | |a Exploring structure, temperature and activity correlations in the selective oxidation of lower olefins over Bi–Mo–Co–Fe–O catalysts by spatial reactor profile measurements |
260 | _ | _ | |a London |c 2024 |b RSC Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738232038_3825142 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a DFG for financing the Raman spectrometer system (INST 121384/73-1) |
520 | _ | _ | |a Improving process efficiency in selective oxidation of lower olefins over mixed metal oxide catalysts requires profound knowledge of the dynamic behaviour of exothermic reactions along the reactor. For this purpose, structure–activity correlations of two Bi–Mo–Co–Fe–O model catalysts were investigated by means of structure, temperature and activity profiling in selective propylene and isobutene oxidation. Both catalysts showed pronounced differences in selectivity, which strongly affected the temperature and gas phase concentration gradients along the reactor, and thus the reaction network of each olefin oxidation process. Complementary structure profiling by synchrotron XRD identified the evolution of crystalline metal oxide phases after testing in propylene oxidation. Molybdate-based structures (e.g., α-Bi$_2$Mo$_3$O$_{12}$, Bi$_3$FeMo$_2$O$_{12}$) were found to moderate oxygen mobility during catalytic reaction and increase selectivity towards acrolein/methacrolein, while particularly single metal oxides (i.e., Co$_3$O$_4$, Fe$_3$O$_4$) enhanced oxygen mobility drastically and favoured total oxidation. Comparison of selective propylene and isobutene oxidation revealed the metal oxide phase ensembles within each catalyst had comparable effects on both reaction networks. Hence, the spatially-resolved testing and characterization allowed a systematic study of the catalytic processes along the reactor, showing great promise for knowledge-based optimization of selective oxidation processes. |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)426888090 - SFB 1441: Verfolgung der aktiven Zentren in heterogenen Katalysatoren für die Emissionskontrolle (TrackAct) (426888090) |0 G:(GEPRIS)426888090 |c 426888090 |x 1 |
542 | _ | _ | |i 2024-01-16 |2 Crossref |u http://creativecommons.org/licenses/by/3.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P21.1 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P21.1-20150101 |6 EXP:(DE-H253)P-P21.1-20150101 |x 0 |
700 | 1 | _ | |a Weber, Sebastian |0 P:(DE-H253)PIP1086475 |b 1 |
700 | 1 | _ | |a Horn, Raimund |0 P:(DE-H253)PIP1087798 |b 2 |
700 | 1 | _ | |a Sheppard, Thomas L. |0 P:(DE-H253)PIP1024276 |b 3 |
700 | 1 | _ | |a Grunwaldt, Jan-Dierk |0 P:(DE-H253)PIP1008522 |b 4 |e Corresponding author |
773 | 1 | 8 | |a 10.1039/d3cy01445b |b Royal Society of Chemistry (RSC) |d 2024-01-01 |n 4 |p 863-877 |3 journal-article |2 Crossref |t Catalysis Science & Technology |v 14 |y 2024 |x 2044-4753 |
773 | _ | _ | |a 10.1039/D3CY01445B |g Vol. 14, no. 4, p. 863 - 877 |0 PERI:(DE-600)2595090-3 |n 4 |p 863-877 |t Catalysis science & technology |v 14 |y 2024 |x 2044-4753 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622050/files/PDF.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622050/files/PDF.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:622050 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1092507 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1086475 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1087798 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1024276 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1008522 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-19 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CATAL SCI TECHNOL : 2022 |d 2024-12-19 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CATAL SCI TECHNOL : 2022 |d 2024-12-19 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-19 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-19 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-19 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-19 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-20140814 |k FS-PETRA |l FS-PETRA |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-20140814 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1002/9783527610044.hetcat0170 |9 -- missing cx lookup -- |1 Haber |p 3359 - |2 Crossref |u J.Haber , Fundamentals of Hydrocarbon Oxidation, in Handbook of Heterogeneous Catalysis , ed. G. Ertl , H. Knözinger , F. Schüth and J. Weitkamp , Wiley-VCH , Weinheim , 2008 , pp. 3359–3384 |y 2008 |
999 | C | 5 | |a 10.1002/9783527610044.hetcat0177 |9 -- missing cx lookup -- |1 Grasselli |p 3479 - |2 Crossref |u R. K.Grasselli and J. D.Burrington , Oxidation of Low-Molecular-Weight Hydrocarbons, in Handbook of Heterogeneous Catalysis , ed. G. Ertl , H. Knözinger , F. Schüth and J. Weitkamp , Wiley-VCH , Weinheim , 2008 , pp. 3479–3489 |y 2008 |
999 | C | 5 | |a 10.1007/978-1-4615-4175-2 |9 -- missing cx lookup -- |1 Centi |p 1 - |2 Crossref |u G.Centi , F.Cavani and F.Trifirò , Trends and Outlook in Selective Oxidation, Selective Oxidation by Heterogeneous Catalysis , Springer , Boston, MA , 2001 , pp. 1–24 |y 2001 |
999 | C | 5 | |1 Arntz |y 2007 |2 Crossref |u D.Arntz , A.Fischer , M.Höpp , S.Jacobi , J.Sauer , T.Ohara , T.Sato , N.Shimizu and H.Schwind , Acrolein and Methacrolein, Ullmann's Encyclopedia of Industrial Chemistry , Wiley-VCH , Weinheim , 2007 , vol. 1 , pp. 329–346 |t Ullmann's Encyclopedia of Industrial Chemistry |
999 | C | 5 | |1 Bornscheuer |y 2015 |2 Crossref |u U.Bornscheuer , R. W.Fischer , L. J.Gooßen , R.Schlögl , R.Schomäcker and S.Schunk , Katalytische Oxidationsreaktionen als Schlüsseltechnologie, Katalytische Oxidationsreaktionen als Schlüsseltechnologie , German Catalysis Society , 2015 , ISBN: 978-3-89746-176-5, https://dechema.de/dechema_media/Downloads/Positionspapiere/Positionspapier_GeCatS_2015_final.pdf , (accessed 15.01.2024) |t Katalytische Oxidationsreaktionen als Schlüsseltechnologie, Katalytische Oxidationsreaktionen als Schlüsseltechnologie |
999 | C | 5 | |a 10.1002/anie.201410738 |9 -- missing cx lookup -- |1 Schlögl |p 3465 - |2 Crossref |t Angew. Chem., Int. Ed. |v 54 |y 2015 |
999 | C | 5 | |a 10.1016/S0360-0564(08)60659-8 |9 -- missing cx lookup -- |1 Moro-Oka |p 233 - |2 Crossref |t Adv. Catal. |v 40 |y 1994 |
999 | C | 5 | |a 10.1023/A:1020556131984 |9 -- missing cx lookup -- |1 Grasselli |p 79 - |2 Crossref |t Top. Catal. |v 21 |y 2002 |
999 | C | 5 | |a 10.1016/j.apcata.2017.06.022 |9 -- missing cx lookup -- |1 Brazdil |p 225 - |2 Crossref |t Appl. Catal., A |v 543 |y 2017 |
999 | C | 5 | |a 10.1021/acscatal.7b01149 |9 -- missing cx lookup -- |1 Sprenger |p 5628 - |2 Crossref |t ACS Catal. |v 7 |y 2017 |
999 | C | 5 | |a 10.1016/j.jcat.2021.05.009 |9 -- missing cx lookup -- |1 Bell |p 436 - |2 Crossref |t J. Catal. |v 408 |y 2022 |
999 | C | 5 | |a 10.1016/j.jcat.2015.02.015 |9 -- missing cx lookup -- |1 Zhai |p 87 - |2 Crossref |t J. Catal. |v 325 |y 2015 |
999 | C | 5 | |a 10.1016/0021-9517(73)90074-2 |9 -- missing cx lookup -- |1 Mann |p 276 - |2 Crossref |t J. Catal. |v 30 |y 1973 |
999 | C | 5 | |a 10.1016/j.apsusc.2018.11.187 |9 -- missing cx lookup -- |1 Liu |p 846 - |2 Crossref |t Appl. Surf. Sci. |v 470 |y 2019 |
999 | C | 5 | |a 10.1016/S0166-9834(00)81650-4 |9 -- missing cx lookup -- |1 Benyahia |p 383 - |2 Crossref |t Appl. Catal. |v 66 |y 1990 |
999 | C | 5 | |a 10.1039/b309650p |9 -- missing cx lookup -- |1 Weckhuysen |p 4351 - |2 Crossref |t Phys. Chem. Chem. Phys. |v 5 |y 2003 |
999 | C | 5 | |a 10.1039/b403071k |9 -- missing cx lookup -- |1 Grunwaldt |p 3037 - |2 Crossref |t Phys. Chem. Chem. Phys. |v 6 |y 2004 |
999 | C | 5 | |a 10.1039/c0cs00036a |9 -- missing cx lookup -- |1 Grunwaldt |p 4741 - |2 Crossref |t Chem. Soc. Rev. |v 39 |y 2010 |
999 | C | 5 | |a 10.1039/c0cs00089b |9 -- missing cx lookup -- |1 Beale |p 4656 - |2 Crossref |t Chem. Soc. Rev. |v 39 |y 2010 |
999 | C | 5 | |a 10.1016/S0021-9517(02)00133-1 |9 -- missing cx lookup -- |1 Topsøe |p 155 - |2 Crossref |t J. Catal. |v 216 |y 2003 |
999 | C | 5 | |a 10.1016/j.cattod.2016.12.012 |9 -- missing cx lookup -- |1 Chakrabarti |p 27 - |2 Crossref |t Catal. Today |v 283 |y 2017 |
999 | C | 5 | |a 10.1002/cctc.202201276 |9 -- missing cx lookup -- |1 Klag |p e202201276 - |2 Crossref |t ChemCatChem |v 15 |y 2023 |
999 | C | 5 | |a 10.1021/acscatal.8b00696 |9 -- missing cx lookup -- |1 Sprenger |p 6462 - |2 Crossref |t ACS Catal. |v 8 |y 2018 |
999 | C | 5 | |a 10.3390/catal8090356 |9 -- missing cx lookup -- |1 Sprenger |p 356 - |2 Crossref |t Catalysts |v 8 |y 2018 |
999 | C | 5 | |a 10.1002/cctc.202100054 |9 -- missing cx lookup -- |1 Sprenger |p 2483 - |2 Crossref |t ChemCatChem |v 13 |y 2021 |
999 | C | 5 | |a 10.1126/sciadv.adh5331 |9 -- missing cx lookup -- |1 Amakawa |p eadh5331 - |2 Crossref |t Sci. Adv. |v 9 |y 2023 |
999 | C | 5 | |a 10.1016/j.jcat.2021.08.053 |9 -- missing cx lookup -- |1 Stehle |p 339 - |2 Crossref |t J. Catal. |v 408 |y 2022 |
999 | C | 5 | |a 10.1021/acscatal.3c03433 |9 -- missing cx lookup -- |1 Klag |p 14241 - |2 Crossref |t ACS Catal. |v 13 |y 2023 |
999 | C | 5 | |a 10.1021/acscatal.5b02602 |9 -- missing cx lookup -- |1 Morgan |p 1356 - |2 Crossref |t ACS Catal. |v 6 |y 2016 |
999 | C | 5 | |a 10.1002/anie.200804077 |9 -- missing cx lookup -- |1 Urakawa |p 9256 - |2 Crossref |t Angew. Chem., Int. Ed. |v 47 |y 2008 |
999 | C | 5 | |1 Goguet |y 2017 |2 Crossref |u A.Goguet , C.Stewart , J.Touitou and K.Morgan , In situ spatially resolved techniques for the investigation of packed bed catalytic reactors: Current status and future outlook of Spaci-FB, in Advances in Chemical Engineering , ed. A. G. Dixon and O. Deutschmann , Academic Press , 2017 , vol. 50 , pp. 131–160 |t Advances in Chemical Engineering |
999 | C | 5 | |a 10.1039/c2cy20141k |9 -- missing cx lookup -- |1 Touitou |p 1811 - |2 Crossref |t Catal. Sci. Technol. |v 2 |y 2012 |
999 | C | 5 | |a 10.1039/c3an00250k |9 -- missing cx lookup -- |1 Touitou |p 2858 - |2 Crossref |t Analyst |v 138 |y 2013 |
999 | C | 5 | |a 10.1021/acscatal.8b01509 |9 -- missing cx lookup -- |1 Stewart |p 8255 - |2 Crossref |t ACS Catal. |v 8 |y 2018 |
999 | C | 5 | |a 10.1021/acscatal.0c05356 |9 -- missing cx lookup -- |1 Decarolis |p 2141 - |2 Crossref |t ACS Catal. |v 11 |y 2021 |
999 | C | 5 | |a 10.1063/1.3428727 |9 -- missing cx lookup -- |1 Horn |p 064102 - |2 Crossref |t Rev. Sci. Instrum. |v 81 |y 2010 |
999 | C | 5 | |a 10.1016/j.cep.2011.05.024 |9 -- missing cx lookup -- |1 Korup |p 998 - |2 Crossref |t Chem. Eng. Process. |v 50 |y 2011 |
999 | C | 5 | |a 10.1016/j.jcat.2021.08.029 |9 -- missing cx lookup -- |1 Wollak |p 372 - |2 Crossref |t J. Catal. |v 408 |y 2022 |
999 | C | 5 | |a 10.1039/C2CY20489D |9 -- missing cx lookup -- |1 Geske |p 169 - |2 Crossref |t Catal. Sci. Technol. |v 3 |y 2013 |
999 | C | 5 | |a 10.1002/cctc.202200337 |9 -- missing cx lookup -- |1 Espinoza |p e202200337 - |2 Crossref |t ChemCatChem |v 14 |y 2022 |
999 | C | 5 | |a 10.1007/s11244-016-0684-x |9 -- missing cx lookup -- |1 Schlögl |p 1461 - |2 Crossref |t Top. Catal. |v 59 |y 2016 |
999 | C | 5 | |a 10.1006/jcat.1999.2764 |9 -- missing cx lookup -- |1 Haber |p 320 - |2 Crossref |t J. Catal. |v 190 |y 2000 |
999 | C | 5 | |a 10.1002/cjce.5450670310 |9 -- missing cx lookup -- |1 Tan |p 412 - |2 Crossref |t Can. J. Chem. Eng. |v 67 |y 1989 |
999 | C | 5 | |a 10.1021/ie030191p |9 -- missing cx lookup -- |1 Redlingshöfer |p 5482 - |2 Crossref |t Ind. Eng. Chem. Res. |v 42 |y 2003 |
999 | C | 5 | |a 10.1021/acscatal.6b01830 |9 -- missing cx lookup -- |1 Bui |p 6567 - |2 Crossref |t ACS Catal. |v 6 |y 2016 |
999 | C | 5 | |a 10.1007/BF00811806 |9 -- missing cx lookup -- |1 Breiter |p 343 - |2 Crossref |t Catal. Lett. |v 24 |y 1994 |
999 | C | 5 | |a 10.1016/0009-2509(94)00458-4 |9 -- missing cx lookup -- |1 Breiter |p 785 - |2 Crossref |t Chem. Eng. Sci. |v 50 |y 1995 |
999 | C | 5 | |a 10.1021/acs.iecr.8b05583 |9 -- missing cx lookup -- |1 Ganzer |p 1857 - |2 Crossref |t Ind. Eng. Chem. Res. |v 58 |y 2019 |
999 | C | 5 | |a 10.1039/D1CY00553G |9 -- missing cx lookup -- |1 Stehle |p 5781 - |2 Crossref |t Catal. Sci. Technol. |v 11 |y 2021 |
999 | C | 5 | |a 10.1021/ie0106074 |9 -- missing cx lookup -- |1 Redlingshöfer |p 1445 - |2 Crossref |t Ind. Eng. Chem. Res. |v 41 |y 2002 |
999 | C | 5 | |a 10.1039/C4CC07527G |9 -- missing cx lookup -- |1 Schuh |p 15404 - |2 Crossref |t Chem. Commun. |v 50 |y 2014 |
999 | C | 5 | |a 10.1107/S1600577520000776 |9 -- missing cx lookup -- |1 Kieffer |p 558 - |2 Crossref |t J. Synchrotron Radiat. |v 27 |y 2020 |
999 | C | 5 | |a 10.1107/S1600576718000183 |9 -- missing cx lookup -- |1 Coelho |p 210 - |2 Crossref |t J. Appl. Crystallogr. |v 51 |y 2018 |
999 | C | 5 | |a 10.1002/3527602658 |1 Chorkendorff |y 2003 |2 Crossref |u I.Chorkendorff and J. W.Niemantsverdriet , Concepts of Modern Catalysis and Kinetics , Wiley-VCH Verlag GmbH & Co. KGaA , Weinheim , 2003 |9 -- missing cx lookup -- |
999 | C | 5 | |a 10.1080/03602457908065099 |9 -- missing cx lookup -- |1 Bielański |p 1 - |2 Crossref |t Catal. Rev.: Sci. Eng. |v 19 |y 1979 |
999 | C | 5 | |a 10.1023/A:1024859917786 |9 -- missing cx lookup -- |1 Grasselli |p 5 - |2 Crossref |t Top. Catal. |v 23 |y 2003 |
999 | C | 5 | |a 10.1006/jcat.1996.0058 |9 -- missing cx lookup -- |1 Arora |p 1 - |2 Crossref |t J. Catal. |v 159 |y 1996 |
999 | C | 5 | |a 10.1021/acscatal.6b02523 |9 -- missing cx lookup -- |1 Licht |p 161 - |2 Crossref |t ACS Catal. |v 7 |y 2016 |
999 | C | 5 | |a 10.1021/jp400440p |9 -- missing cx lookup -- |1 Getsoian |p 7123 - |2 Crossref |t J. Phys. Chem. C |v 117 |y 2013 |
999 | C | 5 | |a 10.1039/D0CP01506G |9 -- missing cx lookup -- |1 Gaur |p 11713 - |2 Crossref |t Phys. Chem. Chem. Phys. |v 22 |y 2020 |
999 | C | 5 | |a 10.1006/jcat.2002.3659 |9 -- missing cx lookup -- |1 Ressler |p 67 - |2 Crossref |t J. Catal. |v 210 |y 2002 |
999 | C | 5 | |a 10.1007/BF00767186 |9 -- missing cx lookup -- |1 He |p 35 - |2 Crossref |t Catal. Lett. |v 12 |y 1992 |
999 | C | 5 | |a 10.1021/bk-1993-0523.ch019 |9 -- missing cx lookup -- |1 Ponceblanc |p 262 - |2 Crossref |u H.Ponceblanc , J.-M. M.Millet , G.Coudurier and J. C.Védrine , Synergy Effect of Multicomponent Co, Fe, and Bi Molybdates in Propene Partial Oxidation, in Catalytic Selective Oxidation , ed. S. T. Oyama and J. W. Hightower , ACS Publications , Washington, DC , 1993 , pp. 262–272 |y 1993 |
999 | C | 5 | |a 10.1039/C5CY00387C |9 -- missing cx lookup -- |1 Brazdil |p 3452 - |2 Crossref |t Catal. Sci. Technol. |v 5 |y 2015 |
999 | C | 5 | |a 10.1016/j.cattod.2014.05.036 |9 -- missing cx lookup -- |1 Grasselli |p 10 - |2 Crossref |t Catal. Today |v 238 |y 2014 |
999 | C | 5 | |a 10.1016/0926-860X(92)80093-R |9 -- missing cx lookup -- |1 Weng |p 141 - |2 Crossref |t Appl. Catal., A |v 81 |y 1992 |
999 | C | 5 | |a 10.1016/j.apcata.2008.05.038 |9 -- missing cx lookup -- |1 Liotta |p 81 - |2 Crossref |t Appl. Catal., A |v 347 |y 2008 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|