001     622050
005     20250723173213.0
024 7 _ |a 10.1039/D3CY01445B
|2 doi
024 7 _ |a 2044-4753
|2 ISSN
024 7 _ |a 2044-4761
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-00162
|2 datacite_doi
024 7 _ |a altmetric:158984870
|2 altmetric
024 7 _ |a WOS:001144839600001
|2 WOS
024 7 _ |a openalex:W4390905209
|2 openalex
037 _ _ |a PUBDB-2025-00162
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Klag, Linda
|0 P:(DE-H253)PIP1092507
|b 0
245 _ _ |a Exploring structure, temperature and activity correlations in the selective oxidation of lower olefins over Bi–Mo–Co–Fe–O catalysts by spatial reactor profile measurements
260 _ _ |a London
|c 2024
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738232038_3825142
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a DFG for financing the Raman spectrometer system (INST 121384/73-1)
520 _ _ |a Improving process efficiency in selective oxidation of lower olefins over mixed metal oxide catalysts requires profound knowledge of the dynamic behaviour of exothermic reactions along the reactor. For this purpose, structure–activity correlations of two Bi–Mo–Co–Fe–O model catalysts were investigated by means of structure, temperature and activity profiling in selective propylene and isobutene oxidation. Both catalysts showed pronounced differences in selectivity, which strongly affected the temperature and gas phase concentration gradients along the reactor, and thus the reaction network of each olefin oxidation process. Complementary structure profiling by synchrotron XRD identified the evolution of crystalline metal oxide phases after testing in propylene oxidation. Molybdate-based structures (e.g., α-Bi$_2$Mo$_3$O$_{12}$, Bi$_3$FeMo$_2$O$_{12}$) were found to moderate oxygen mobility during catalytic reaction and increase selectivity towards acrolein/methacrolein, while particularly single metal oxides (i.e., Co$_3$O$_4$, Fe$_3$O$_4$) enhanced oxygen mobility drastically and favoured total oxidation. Comparison of selective propylene and isobutene oxidation revealed the metal oxide phase ensembles within each catalyst had comparable effects on both reaction networks. Hence, the spatially-resolved testing and characterization allowed a systematic study of the catalytic processes along the reactor, showing great promise for knowledge-based optimization of selective oxidation processes.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)426888090 - SFB 1441: Verfolgung der aktiven Zentren in heterogenen Katalysatoren für die Emissionskontrolle (TrackAct) (426888090)
|0 G:(GEPRIS)426888090
|c 426888090
|x 1
542 _ _ |i 2024-01-16
|2 Crossref
|u http://creativecommons.org/licenses/by/3.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P21.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P21.1-20150101
|6 EXP:(DE-H253)P-P21.1-20150101
|x 0
700 1 _ |a Weber, Sebastian
|0 P:(DE-H253)PIP1086475
|b 1
700 1 _ |a Horn, Raimund
|0 P:(DE-H253)PIP1087798
|b 2
700 1 _ |a Sheppard, Thomas L.
|0 P:(DE-H253)PIP1024276
|b 3
700 1 _ |a Grunwaldt, Jan-Dierk
|0 P:(DE-H253)PIP1008522
|b 4
|e Corresponding author
773 1 8 |a 10.1039/d3cy01445b
|b Royal Society of Chemistry (RSC)
|d 2024-01-01
|n 4
|p 863-877
|3 journal-article
|2 Crossref
|t Catalysis Science & Technology
|v 14
|y 2024
|x 2044-4753
773 _ _ |a 10.1039/D3CY01445B
|g Vol. 14, no. 4, p. 863 - 877
|0 PERI:(DE-600)2595090-3
|n 4
|p 863-877
|t Catalysis science & technology
|v 14
|y 2024
|x 2044-4753
856 4 _ |u https://bib-pubdb1.desy.de/record/622050/files/PDF.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/622050/files/PDF.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:622050
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1092507
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1086475
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1087798
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1024276
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1008522
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CATAL SCI TECHNOL : 2022
|d 2024-12-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CATAL SCI TECHNOL : 2022
|d 2024-12-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-20140814
|k FS-PETRA
|l FS-PETRA
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-20140814
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1002/9783527610044.hetcat0170
|9 -- missing cx lookup --
|1 Haber
|p 3359 -
|2 Crossref
|u J.Haber , Fundamentals of Hydrocarbon Oxidation, in Handbook of Heterogeneous Catalysis , ed. G. Ertl , H. Knözinger , F. Schüth and J. Weitkamp , Wiley-VCH , Weinheim , 2008 , pp. 3359–3384
|y 2008
999 C 5 |a 10.1002/9783527610044.hetcat0177
|9 -- missing cx lookup --
|1 Grasselli
|p 3479 -
|2 Crossref
|u R. K.Grasselli and J. D.Burrington , Oxidation of Low-Molecular-Weight Hydrocarbons, in Handbook of Heterogeneous Catalysis , ed. G. Ertl , H. Knözinger , F. Schüth and J. Weitkamp , Wiley-VCH , Weinheim , 2008 , pp. 3479–3489
|y 2008
999 C 5 |a 10.1007/978-1-4615-4175-2
|9 -- missing cx lookup --
|1 Centi
|p 1 -
|2 Crossref
|u G.Centi , F.Cavani and F.Trifirò , Trends and Outlook in Selective Oxidation, Selective Oxidation by Heterogeneous Catalysis , Springer , Boston, MA , 2001 , pp. 1–24
|y 2001
999 C 5 |1 Arntz
|y 2007
|2 Crossref
|u D.Arntz , A.Fischer , M.Höpp , S.Jacobi , J.Sauer , T.Ohara , T.Sato , N.Shimizu and H.Schwind , Acrolein and Methacrolein, Ullmann's Encyclopedia of Industrial Chemistry , Wiley-VCH , Weinheim , 2007 , vol. 1 , pp. 329–346
|t Ullmann's Encyclopedia of Industrial Chemistry
999 C 5 |1 Bornscheuer
|y 2015
|2 Crossref
|u U.Bornscheuer , R. W.Fischer , L. J.Gooßen , R.Schlögl , R.Schomäcker and S.Schunk , Katalytische Oxidationsreaktionen als Schlüsseltechnologie, Katalytische Oxidationsreaktionen als Schlüsseltechnologie , German Catalysis Society , 2015 , ISBN: 978-3-89746-176-5, https://dechema.de/dechema_media/Downloads/Positionspapiere/Positionspapier_GeCatS_2015_final.pdf , (accessed 15.01.2024)
|t Katalytische Oxidationsreaktionen als Schlüsseltechnologie, Katalytische Oxidationsreaktionen als Schlüsseltechnologie
999 C 5 |a 10.1002/anie.201410738
|9 -- missing cx lookup --
|1 Schlögl
|p 3465 -
|2 Crossref
|t Angew. Chem., Int. Ed.
|v 54
|y 2015
999 C 5 |a 10.1016/S0360-0564(08)60659-8
|9 -- missing cx lookup --
|1 Moro-Oka
|p 233 -
|2 Crossref
|t Adv. Catal.
|v 40
|y 1994
999 C 5 |a 10.1023/A:1020556131984
|9 -- missing cx lookup --
|1 Grasselli
|p 79 -
|2 Crossref
|t Top. Catal.
|v 21
|y 2002
999 C 5 |a 10.1016/j.apcata.2017.06.022
|9 -- missing cx lookup --
|1 Brazdil
|p 225 -
|2 Crossref
|t Appl. Catal., A
|v 543
|y 2017
999 C 5 |a 10.1021/acscatal.7b01149
|9 -- missing cx lookup --
|1 Sprenger
|p 5628 -
|2 Crossref
|t ACS Catal.
|v 7
|y 2017
999 C 5 |a 10.1016/j.jcat.2021.05.009
|9 -- missing cx lookup --
|1 Bell
|p 436 -
|2 Crossref
|t J. Catal.
|v 408
|y 2022
999 C 5 |a 10.1016/j.jcat.2015.02.015
|9 -- missing cx lookup --
|1 Zhai
|p 87 -
|2 Crossref
|t J. Catal.
|v 325
|y 2015
999 C 5 |a 10.1016/0021-9517(73)90074-2
|9 -- missing cx lookup --
|1 Mann
|p 276 -
|2 Crossref
|t J. Catal.
|v 30
|y 1973
999 C 5 |a 10.1016/j.apsusc.2018.11.187
|9 -- missing cx lookup --
|1 Liu
|p 846 -
|2 Crossref
|t Appl. Surf. Sci.
|v 470
|y 2019
999 C 5 |a 10.1016/S0166-9834(00)81650-4
|9 -- missing cx lookup --
|1 Benyahia
|p 383 -
|2 Crossref
|t Appl. Catal.
|v 66
|y 1990
999 C 5 |a 10.1039/b309650p
|9 -- missing cx lookup --
|1 Weckhuysen
|p 4351 -
|2 Crossref
|t Phys. Chem. Chem. Phys.
|v 5
|y 2003
999 C 5 |a 10.1039/b403071k
|9 -- missing cx lookup --
|1 Grunwaldt
|p 3037 -
|2 Crossref
|t Phys. Chem. Chem. Phys.
|v 6
|y 2004
999 C 5 |a 10.1039/c0cs00036a
|9 -- missing cx lookup --
|1 Grunwaldt
|p 4741 -
|2 Crossref
|t Chem. Soc. Rev.
|v 39
|y 2010
999 C 5 |a 10.1039/c0cs00089b
|9 -- missing cx lookup --
|1 Beale
|p 4656 -
|2 Crossref
|t Chem. Soc. Rev.
|v 39
|y 2010
999 C 5 |a 10.1016/S0021-9517(02)00133-1
|9 -- missing cx lookup --
|1 Topsøe
|p 155 -
|2 Crossref
|t J. Catal.
|v 216
|y 2003
999 C 5 |a 10.1016/j.cattod.2016.12.012
|9 -- missing cx lookup --
|1 Chakrabarti
|p 27 -
|2 Crossref
|t Catal. Today
|v 283
|y 2017
999 C 5 |a 10.1002/cctc.202201276
|9 -- missing cx lookup --
|1 Klag
|p e202201276 -
|2 Crossref
|t ChemCatChem
|v 15
|y 2023
999 C 5 |a 10.1021/acscatal.8b00696
|9 -- missing cx lookup --
|1 Sprenger
|p 6462 -
|2 Crossref
|t ACS Catal.
|v 8
|y 2018
999 C 5 |a 10.3390/catal8090356
|9 -- missing cx lookup --
|1 Sprenger
|p 356 -
|2 Crossref
|t Catalysts
|v 8
|y 2018
999 C 5 |a 10.1002/cctc.202100054
|9 -- missing cx lookup --
|1 Sprenger
|p 2483 -
|2 Crossref
|t ChemCatChem
|v 13
|y 2021
999 C 5 |a 10.1126/sciadv.adh5331
|9 -- missing cx lookup --
|1 Amakawa
|p eadh5331 -
|2 Crossref
|t Sci. Adv.
|v 9
|y 2023
999 C 5 |a 10.1016/j.jcat.2021.08.053
|9 -- missing cx lookup --
|1 Stehle
|p 339 -
|2 Crossref
|t J. Catal.
|v 408
|y 2022
999 C 5 |a 10.1021/acscatal.3c03433
|9 -- missing cx lookup --
|1 Klag
|p 14241 -
|2 Crossref
|t ACS Catal.
|v 13
|y 2023
999 C 5 |a 10.1021/acscatal.5b02602
|9 -- missing cx lookup --
|1 Morgan
|p 1356 -
|2 Crossref
|t ACS Catal.
|v 6
|y 2016
999 C 5 |a 10.1002/anie.200804077
|9 -- missing cx lookup --
|1 Urakawa
|p 9256 -
|2 Crossref
|t Angew. Chem., Int. Ed.
|v 47
|y 2008
999 C 5 |1 Goguet
|y 2017
|2 Crossref
|u A.Goguet , C.Stewart , J.Touitou and K.Morgan , In situ spatially resolved techniques for the investigation of packed bed catalytic reactors: Current status and future outlook of Spaci-FB, in Advances in Chemical Engineering , ed. A. G. Dixon and O. Deutschmann , Academic Press , 2017 , vol. 50 , pp. 131–160
|t Advances in Chemical Engineering
999 C 5 |a 10.1039/c2cy20141k
|9 -- missing cx lookup --
|1 Touitou
|p 1811 -
|2 Crossref
|t Catal. Sci. Technol.
|v 2
|y 2012
999 C 5 |a 10.1039/c3an00250k
|9 -- missing cx lookup --
|1 Touitou
|p 2858 -
|2 Crossref
|t Analyst
|v 138
|y 2013
999 C 5 |a 10.1021/acscatal.8b01509
|9 -- missing cx lookup --
|1 Stewart
|p 8255 -
|2 Crossref
|t ACS Catal.
|v 8
|y 2018
999 C 5 |a 10.1021/acscatal.0c05356
|9 -- missing cx lookup --
|1 Decarolis
|p 2141 -
|2 Crossref
|t ACS Catal.
|v 11
|y 2021
999 C 5 |a 10.1063/1.3428727
|9 -- missing cx lookup --
|1 Horn
|p 064102 -
|2 Crossref
|t Rev. Sci. Instrum.
|v 81
|y 2010
999 C 5 |a 10.1016/j.cep.2011.05.024
|9 -- missing cx lookup --
|1 Korup
|p 998 -
|2 Crossref
|t Chem. Eng. Process.
|v 50
|y 2011
999 C 5 |a 10.1016/j.jcat.2021.08.029
|9 -- missing cx lookup --
|1 Wollak
|p 372 -
|2 Crossref
|t J. Catal.
|v 408
|y 2022
999 C 5 |a 10.1039/C2CY20489D
|9 -- missing cx lookup --
|1 Geske
|p 169 -
|2 Crossref
|t Catal. Sci. Technol.
|v 3
|y 2013
999 C 5 |a 10.1002/cctc.202200337
|9 -- missing cx lookup --
|1 Espinoza
|p e202200337 -
|2 Crossref
|t ChemCatChem
|v 14
|y 2022
999 C 5 |a 10.1007/s11244-016-0684-x
|9 -- missing cx lookup --
|1 Schlögl
|p 1461 -
|2 Crossref
|t Top. Catal.
|v 59
|y 2016
999 C 5 |a 10.1006/jcat.1999.2764
|9 -- missing cx lookup --
|1 Haber
|p 320 -
|2 Crossref
|t J. Catal.
|v 190
|y 2000
999 C 5 |a 10.1002/cjce.5450670310
|9 -- missing cx lookup --
|1 Tan
|p 412 -
|2 Crossref
|t Can. J. Chem. Eng.
|v 67
|y 1989
999 C 5 |a 10.1021/ie030191p
|9 -- missing cx lookup --
|1 Redlingshöfer
|p 5482 -
|2 Crossref
|t Ind. Eng. Chem. Res.
|v 42
|y 2003
999 C 5 |a 10.1021/acscatal.6b01830
|9 -- missing cx lookup --
|1 Bui
|p 6567 -
|2 Crossref
|t ACS Catal.
|v 6
|y 2016
999 C 5 |a 10.1007/BF00811806
|9 -- missing cx lookup --
|1 Breiter
|p 343 -
|2 Crossref
|t Catal. Lett.
|v 24
|y 1994
999 C 5 |a 10.1016/0009-2509(94)00458-4
|9 -- missing cx lookup --
|1 Breiter
|p 785 -
|2 Crossref
|t Chem. Eng. Sci.
|v 50
|y 1995
999 C 5 |a 10.1021/acs.iecr.8b05583
|9 -- missing cx lookup --
|1 Ganzer
|p 1857 -
|2 Crossref
|t Ind. Eng. Chem. Res.
|v 58
|y 2019
999 C 5 |a 10.1039/D1CY00553G
|9 -- missing cx lookup --
|1 Stehle
|p 5781 -
|2 Crossref
|t Catal. Sci. Technol.
|v 11
|y 2021
999 C 5 |a 10.1021/ie0106074
|9 -- missing cx lookup --
|1 Redlingshöfer
|p 1445 -
|2 Crossref
|t Ind. Eng. Chem. Res.
|v 41
|y 2002
999 C 5 |a 10.1039/C4CC07527G
|9 -- missing cx lookup --
|1 Schuh
|p 15404 -
|2 Crossref
|t Chem. Commun.
|v 50
|y 2014
999 C 5 |a 10.1107/S1600577520000776
|9 -- missing cx lookup --
|1 Kieffer
|p 558 -
|2 Crossref
|t J. Synchrotron Radiat.
|v 27
|y 2020
999 C 5 |a 10.1107/S1600576718000183
|9 -- missing cx lookup --
|1 Coelho
|p 210 -
|2 Crossref
|t J. Appl. Crystallogr.
|v 51
|y 2018
999 C 5 |a 10.1002/3527602658
|1 Chorkendorff
|y 2003
|2 Crossref
|u I.Chorkendorff and J. W.Niemantsverdriet , Concepts of Modern Catalysis and Kinetics , Wiley-VCH Verlag GmbH & Co. KGaA , Weinheim , 2003
|9 -- missing cx lookup --
999 C 5 |a 10.1080/03602457908065099
|9 -- missing cx lookup --
|1 Bielański
|p 1 -
|2 Crossref
|t Catal. Rev.: Sci. Eng.
|v 19
|y 1979
999 C 5 |a 10.1023/A:1024859917786
|9 -- missing cx lookup --
|1 Grasselli
|p 5 -
|2 Crossref
|t Top. Catal.
|v 23
|y 2003
999 C 5 |a 10.1006/jcat.1996.0058
|9 -- missing cx lookup --
|1 Arora
|p 1 -
|2 Crossref
|t J. Catal.
|v 159
|y 1996
999 C 5 |a 10.1021/acscatal.6b02523
|9 -- missing cx lookup --
|1 Licht
|p 161 -
|2 Crossref
|t ACS Catal.
|v 7
|y 2016
999 C 5 |a 10.1021/jp400440p
|9 -- missing cx lookup --
|1 Getsoian
|p 7123 -
|2 Crossref
|t J. Phys. Chem. C
|v 117
|y 2013
999 C 5 |a 10.1039/D0CP01506G
|9 -- missing cx lookup --
|1 Gaur
|p 11713 -
|2 Crossref
|t Phys. Chem. Chem. Phys.
|v 22
|y 2020
999 C 5 |a 10.1006/jcat.2002.3659
|9 -- missing cx lookup --
|1 Ressler
|p 67 -
|2 Crossref
|t J. Catal.
|v 210
|y 2002
999 C 5 |a 10.1007/BF00767186
|9 -- missing cx lookup --
|1 He
|p 35 -
|2 Crossref
|t Catal. Lett.
|v 12
|y 1992
999 C 5 |a 10.1021/bk-1993-0523.ch019
|9 -- missing cx lookup --
|1 Ponceblanc
|p 262 -
|2 Crossref
|u H.Ponceblanc , J.-M. M.Millet , G.Coudurier and J. C.Védrine , Synergy Effect of Multicomponent Co, Fe, and Bi Molybdates in Propene Partial Oxidation, in Catalytic Selective Oxidation , ed. S. T. Oyama and J. W. Hightower , ACS Publications , Washington, DC , 1993 , pp. 262–272
|y 1993
999 C 5 |a 10.1039/C5CY00387C
|9 -- missing cx lookup --
|1 Brazdil
|p 3452 -
|2 Crossref
|t Catal. Sci. Technol.
|v 5
|y 2015
999 C 5 |a 10.1016/j.cattod.2014.05.036
|9 -- missing cx lookup --
|1 Grasselli
|p 10 -
|2 Crossref
|t Catal. Today
|v 238
|y 2014
999 C 5 |a 10.1016/0926-860X(92)80093-R
|9 -- missing cx lookup --
|1 Weng
|p 141 -
|2 Crossref
|t Appl. Catal., A
|v 81
|y 1992
999 C 5 |a 10.1016/j.apcata.2008.05.038
|9 -- missing cx lookup --
|1 Liotta
|p 81 -
|2 Crossref
|t Appl. Catal., A
|v 347
|y 2008


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21