Home > Publications database > Ionization-induced proton and energy transfer in liquid water > print |
001 | 622048 | ||
005 | 20250715151523.0 | ||
024 | 7 | _ | |a 10.1063/5.0258328 |2 doi |
024 | 7 | _ | |a 0021-9606 |2 ISSN |
024 | 7 | _ | |a 1520-9032 |2 ISSN |
024 | 7 | _ | |a 1089-7690 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2025-00160 |2 datacite_doi |
024 | 7 | _ | |a 40231885 |2 pmid |
024 | 7 | _ | |a WOS:001472478200018 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4409445833 |
037 | _ | _ | |a PUBDB-2025-00160 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Inhester, Ludger |0 P:(DE-H253)PIP1023594 |b 0 |e Corresponding author |
245 | _ | _ | |a Ionization-induced proton and energy transfer in liquid water |
260 | _ | _ | |a Melville, NY |c 2025 |b American Institute of Physics |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1745395973_3504559 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We report computational simulation results addressing the ionization response of liquid water upon valence ionization. The simulations cover ionizations in the whole valence-orbital range of liquid water, i.e., vacancies in 1b$_1$, 3a$_1$, 1b$_2$, and 2a$_1$ orbitals. It is found that ionization in any of these valence orbitals leads to rapid proton-transfer dynamics. The timescale on which the proton transfer occurs depends on which type of orbital is ionized. For ionization in the 2a$_1$ orbitals, the proton transfer takes place in about 22 fs, competing with the intermolecular Coulombic decay mechanism that takes place on a similar timescale. This result is discussed in the context of earlier experimental results (Richter et al., Nat. Commun. 9, 4988) regarding the intermolecular Coulombic decay in water. For ionization in the outer-valence orbitals (1b$_1$, 3a$_1$, 1b$_2$), we see rapid internal conversion via non-adiabatic transitions to the electronic ground state. The proton transfer occurs 46, 70, and 91 fs after the initial ionization from a 1b$_1$, 3a$_1$, and 1b$_2$ orbital, respectively. The initial valence ionization induces strong vibrational excitations in the surrounding water molecules, leading to a considerable increase in the local effective temperature. The created heat diffuses into the liquid environment on a timescale of several hundred femtoseconds. We compare the results using two different embedding schemes, subtractive and electrostatic embedding, and find overall very similar dynamics. |
536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
536 | _ | _ | |a AIM, DFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994) |0 G:(GEPRIS)390715994 |c 390715994 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Moros, Arturo Sopena |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Macé, Sam |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Arnold, Caroline |0 P:(DE-H253)PIP1027964 |b 3 |
700 | 1 | _ | |a Santra, Robin |0 P:(DE-H253)PIP1012203 |b 4 |
773 | _ | _ | |a 10.1063/5.0258328 |g Vol. 162, no. 15, p. 154503 |0 PERI:(DE-600)1473050-9 |n 15 |p 154503 |t The journal of chemical physics |v 162 |y 2025 |x 0021-9606 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622048/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622048/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622048/files/Zimbra.pdf |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/622048/files/154503_1_5.0258328.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/622048/files/Zimbra.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/622048/files/154503_1_5.0258328.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:622048 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1023594 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 0 |6 P:(DE-H253)PIP1023594 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 0 |6 P:(DE-H253)PIP1023594 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1023594 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 3 |6 P:(DE-H253)PIP1027964 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1027964 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1012203 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 4 |6 P:(DE-H253)PIP1012203 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 4 |6 P:(DE-H253)PIP1012203 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
914 | 1 | _ | |y 2025 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | p | c | |a TIB: AIP Publishing 2021 |0 PC:(DE-HGF)0102 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-06 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-06 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM PHYS : 2022 |d 2025-01-06 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-06 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-06 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-06 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2025-01-06 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-06 |
920 | 1 | _ | |0 I:(DE-H253)FS-CFEL-3-20120731 |k FS-CFEL-3 |l CFEL-Theory |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-CFEL-3-20120731 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|