000620296 001__ 620296
000620296 005__ 20250110180203.0
000620296 0247_ $$2CORDIS$$aG:(EU-Grant)101155136$$d101155136
000620296 0247_ $$2CORDIS$$aG:(EU-Call)HORIZON-MSCA-2023-PF-01-01$$dHORIZON-MSCA-2023-PF-01-01
000620296 0247_ $$2originalID$$acorda_____he::101155136
000620296 0247_ $$2doi$$a10.3030/101155136
000620296 035__ $$aG:(EU-Grant)101155136
000620296 150__ $$aQuantum-mechanical modeling of the dissociation of hydrogen bonds$$bAdvanced computational framework could unveil hydrogen bond ultrafast dynamics$$y2024-10-01 - 2026-09-30
000620296 372__ $$aHORIZON-MSCA-2023-PF-01-01$$s2023-04-12$$t2023-09-13
000620296 450__ $$aQM Modeling H-Bond$$y2024-10-01 - 2026-09-30
000620296 5101_ $$0I:(DE-588b)5098525-5$$aEuropean Union$$bCORDIS
000620296 680__ $$aHydrogen bonds are crucial in various scientific fields, including biology, chemistry and atmospheric science. While their spectroscopic features are well understood, the ultrafast dynamics of hydrogen bonds remain less explored. Current theoretical models often rely on classical or semi-classical approximations to describe nuclear movement. Funded by the Marie Skłodowska-Curie Actions programme, the QM Modeling H-Bond project aims to provide a fully quantum mechanical understanding of hydrogen bond dissociation leveraging advances in ultrafast imaging. Specifically, researchers will study the hydrogen bond dissociation dynamics of the pyrrole-H2O complex using a reduced-dimensional framework. The dissociation process will be initiated by infrared excitation. Improved understanding of the quantum dynamics of hydrogen bond dissociation should improve understanding of chemical, biological and atmospheric processes.
000620296 909CO $$ooai:juser.fz-juelich.de:1035205$$pauthority$$pauthority:GRANT
000620296 909CO $$ooai:juser.fz-juelich.de:1035205
000620296 980__ $$aG
000620296 980__ $$aAUTHORITY
000620296 980__ $$aCORDIS