001     620274
005     20250715171407.0
024 7 _ |a 10.1140/epjc/s10052-024-13547-2
|2 doi
024 7 _ |a ZEUS:2024mhu
|2 INSPIRETeX
024 7 _ |a inspire:2794054
|2 inspire
024 7 _ |a 1434-6044
|2 ISSN
024 7 _ |a 1434-6052
|2 ISSN
024 7 _ |a arXiv:2406.01430
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2025-00108
|2 datacite_doi
024 7 _ |a WOS:001410352600001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4405871960
037 _ _ |a PUBDB-2025-00108
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2406.01430
|2 arXiv
088 _ _ |a DESY-24-070
|2 DESY
100 1 _ |a Abt, I.
|0 P:(DE-H253)PIP1003352
|b 0
245 _ _ |a The azimuthal correlation between the leading jet and the scattered lepton in deep inelastic scattering at HERA
260 _ _ |a Heidelberg
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736513038_3271987
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a and the SFB 676 of the Deutsche Forschungsgemeinschaft (DFG)
520 _ _ |a The azimuthal correlation angle, $\Delta \phi $, between the scattered lepton and the leading jet in deep inelastic $e^{\pm }p$ scattering at HERA has been studied using data collected with the ZEUS detector at a centre-of-mass energy of $\sqrt{s} = 318 {\,\text {Ge}\hspace{-0.66666pt}\text {V}}$, corresponding to an integrated luminosity of $326 \,\text {pb}^{-1}$. A measurement of jet cross sections in the laboratory frame was made in a fiducial region corresponding to photon virtuality $10 {\,\text {Ge}\hspace{-0.66666pt}\text {V}}^2< Q^2 < 350 {\,\text {Ge}\hspace{-0.66666pt}\text {V}}^2$, inelasticity $0.04< y < 0.7$, outgoing lepton energy $E_e > 10 {\,\text {Ge}\hspace{-0.66666pt}\text {V}}$, lepton polar angle $140^\circ< \theta _e < 180^\circ $, jet transverse momentum $2.5 {\,\text {Ge}\hspace{-0.66666pt}\text {V}}< p_\textrm{T,jet} < 30 {\,\text {Ge}\hspace{-0.66666pt}\text {V}}$, and jet pseudorapidity $-1.5< \eta _\textrm{jet} < 1.8$. Jets were reconstructed using the $k_\textrm{T}$ algorithm with the radius parameter $R = 1$. The leading jet in an event is defined as the jet that carries the highest $p_\textrm{T,jet}$. Differential cross sections, $d\sigma /d\Delta \phi $, were measured as a function of the azimuthal correlation angle in various ranges of leading-jet transverse momentum, photon virtuality and jet multiplicity. Perturbative calculations at $\mathcal {O}(\alpha _{s}^2)$ accuracy successfully describe the data within the fiducial region, although a lower level of agreement is observed near $\Delta \phi \rightarrow \pi $ for events with high jet multiplicity, due to limitations of the perturbative approach in describing soft phenomena in QCD. The data are equally well described by Monte Carlo predictions that supplement leading-order matrix elements with parton showering.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)13245592 - SFB 676: Teilchen, Strings und frühes Universum: Struktur von Materie und Raum-Zeit (13245592)
|0 G:(GEPRIS)13245592
|c 13245592
|x 1
542 _ _ |i 2024-12-29
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-12-29
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
650 _ 7 |a positron p: deep inelastic scattering
|2 INSPIRE
650 _ 7 |a jet: transverse momentum
|2 INSPIRE
650 _ 7 |a jet: multiplicity
|2 INSPIRE
650 _ 7 |a lepton: energy
|2 INSPIRE
650 _ 7 |a jet: multiplicity: high
|2 INSPIRE
650 _ 7 |a perturbation theory: higher-order
|2 INSPIRE
650 _ 7 |a higher-order: 0
|2 INSPIRE
650 _ 7 |a jet: rapidity
|2 INSPIRE
650 _ 7 |a angular correlation
|2 INSPIRE
650 _ 7 |a electron p: deep inelastic scattering
|2 INSPIRE
650 _ 7 |a photon
|2 INSPIRE
650 _ 7 |a DESY HERA Stor
|2 INSPIRE
650 _ 7 |a numerical calculations: Monte Carlo
|2 INSPIRE
650 _ 7 |a quantum chromodynamics: perturbation theory
|2 INSPIRE
650 _ 7 |a ZEUS
|2 INSPIRE
650 _ 7 |a parton
|2 INSPIRE
650 _ 7 |a differential cross section: measured
|2 INSPIRE
650 _ 7 |a angular dependence
|2 INSPIRE
650 _ 7 |a transverse momentum dependence
|2 INSPIRE
650 _ 7 |a multiplicity: dependence
|2 INSPIRE
650 _ 7 |a experimental results
|2 INSPIRE
650 _ 7 |a 318 GeV-cms
|2 INSPIRE
693 _ _ |a HERA
|e HERA: ZEUS
|1 EXP:(DE-588)4159571-3
|0 EXP:(DE-588)4276505-5
|5 EXP:(DE-588)4276505-5
|x 0
700 1 _ |a Aggarwal, R.
|b 1
700 1 _ |a Aushev, V.
|0 P:(DE-H253)PIP1005536
|b 2
700 1 _ |a Behnke, O.
|0 P:(DE-H253)PIP1002969
|b 3
700 1 _ |a Bertolin, A.
|0 P:(DE-H253)PIP1093306
|b 4
700 1 _ |a Bloch, I.
|0 P:(DE-H253)PIP1014657
|b 5
700 1 _ |a Brock, I.
|0 P:(DE-H253)PIP1002846
|b 6
700 1 _ |a Brook, N. H.
|0 P:(DE-H253)PIP1093313
|b 7
700 1 _ |a Brugnera, R.
|0 P:(DE-H253)PIP1002857
|b 8
700 1 _ |a Bruni, A.
|0 P:(DE-H253)PIP1002859
|b 9
700 1 _ |a Bussey, P. J.
|0 P:(DE-H253)PIP1002812
|b 10
700 1 _ |a Caldwell, A.
|0 P:(DE-H253)PIP1003358
|b 11
700 1 _ |a Catterall, C. D.
|0 P:(DE-H253)PIP1000061
|b 12
700 1 _ |a Chwastowski, J.
|0 P:(DE-H253)PIP1002757
|b 13
700 1 _ |a Ciborowski, J.
|0 P:(DE-H253)PIP1002759
|b 14
700 1 _ |a Ciesielski, R.
|0 P:(DE-H253)PIP1004493
|b 15
700 1 _ |a Cooper-Sarkar, A. M.
|0 P:(DE-H253)PIP1014452
|b 16
700 1 _ |a Corradi, M.
|0 P:(DE-H253)PIP1002769
|b 17
700 1 _ |a Dementiev, R. K.
|b 18
700 1 _ |a Dusini, S.
|0 P:(DE-H253)PIP1002781
|b 19
700 1 _ |a Ferrando, J.
|0 P:(DE-H253)PIP1002612
|b 20
700 1 _ |a Foster, B.
|0 P:(DE-H253)PIP1003141
|b 21
700 1 _ |a Gallo-Voss, Elisabetta
|0 P:(DE-H253)PIP1003350
|b 22
700 1 _ |a Gangadharan, D.
|b 23
700 1 _ |a Garfagnini, A.
|0 P:(DE-H253)PIP1002534
|b 24
700 1 _ |a Geiser, A.
|0 P:(DE-H253)PIP1002698
|b 25
700 1 _ |a Grzelak, G.
|0 P:(DE-H253)PIP1003381
|b 26
700 1 _ |a Gwenlan, C.
|0 P:(DE-H253)PIP1002491
|b 27
700 1 _ |a Hochman, D.
|0 P:(DE-H253)PIP1002477
|b 28
700 1 _ |a Jomhari, N. Z.
|0 P:(DE-H253)PIP1021341
|b 29
700 1 _ |a Kadenko, I.
|b 30
700 1 _ |a Karshon, U.
|0 P:(DE-H253)PIP1002262
|b 31
700 1 _ |a Kaur, P.
|b 32
700 1 _ |a Klanner, R.
|0 P:(DE-H253)PIP1004006
|b 33
700 1 _ |a Klein, U.
|0 P:(DE-H253)PIP1093346
|b 34
700 1 _ |a Korzhavina, I. A.
|0 P:(DE-H253)PIP1002194
|b 35
700 1 _ |a Kovalchuk, N.
|0 P:(DE-H253)PIP1014843
|b 36
700 1 _ |a Kuze, M.
|0 P:(DE-H253)PIP1002183
|b 37
700 1 _ |a Levchenko, B. B.
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Levy, Aharon
|0 P:(DE-H253)PIP1002090
|b 39
700 1 _ |a Löhr, B.
|0 P:(DE-H253)PIP1002057
|b 40
700 1 _ |a Lohrmann, E.
|0 P:(DE-H253)PIP1002012
|b 41
700 1 _ |a Longhin, A.
|0 P:(DE-H253)PIP1002014
|b 42
700 1 _ |a Lorkowski, F.
|0 P:(DE-H253)PIP1090895
|b 43
700 1 _ |a Lunghi, E.
|b 44
700 1 _ |a Makarenko, I.
|0 P:(DE-H253)PIP1006349
|b 45
700 1 _ |a Malka, J.
|0 P:(DE-H253)PIP1000004
|b 46
700 1 _ |a Masciocchi, S.
|b 47
700 1 _ |a Nagano, K.
|0 P:(DE-H253)PIP1001976
|b 48
700 1 _ |a Nam, J. D.
|b 49
700 1 _ |a Onishchuk, Yu.
|0 P:(DE-H253)PIP1007270
|b 50
700 1 _ |a Paul, Ewald
|0 P:(DE-H253)PIP1001838
|b 51
700 1 _ |a Pidhurskyi, I.
|b 52
700 1 _ |a Polini, A.
|0 P:(DE-H253)PIP1001751
|b 53
700 1 _ |a Przybycień, M.
|0 P:(DE-H253)PIP1015602
|b 54
700 1 _ |a Quintero, A.
|b 55
700 1 _ |a Ruspa, M.
|0 P:(DE-H253)PIP1005368
|b 56
700 1 _ |a Schneekloth, U.
|0 P:(DE-H253)PIP1001589
|b 57
700 1 _ |a Schörner-Sadenius, T.
|0 P:(DE-H253)PIP1000196
|b 58
700 1 _ |a Selyuzhenkov, I.
|b 59
700 1 _ |a Shchedrolosiev, M.
|0 P:(DE-H253)PIP1081297
|b 60
700 1 _ |a Shcheglova, L. M.
|0 P:(DE-H253)PIP1001530
|b 61
700 1 _ |a Sherrill, N.
|b 62
700 1 _ |a Skillicorn, I. O.
|0 P:(DE-H253)PIP1001479
|b 63
700 1 _ |a Słomiński, W.
|b 64
700 1 _ |a Solano, A.
|0 P:(DE-H253)PIP1004704
|b 65
700 1 _ |a Stanco, L.
|0 P:(DE-H253)PIP1001449
|b 66
700 1 _ |a Stefaniuk, N.
|0 P:(DE-H253)PIP1011855
|b 67
700 1 _ |a Surrow, B.
|0 P:(DE-H253)PIP1033026
|b 68
700 1 _ |a Tokushuku, K.
|0 P:(DE-H253)PIP1001394
|b 69
700 1 _ |a Turkot, O.
|0 P:(DE-H253)PIP1013504
|b 70
700 1 _ |a Tymieniecka, T.
|0 P:(DE-H253)PIP1001338
|b 71
700 1 _ |a Verbytskyi, Andrii
|0 P:(DE-H253)PIP1006350
|b 72
700 1 _ |a Abdullah, W. A. T. Wan
|b 73
700 1 _ |a Wichmann, Katarzyna
|0 P:(DE-H253)PIP1004217
|b 74
700 1 _ |a Wing, M.
|0 P:(DE-H253)PIP1002533
|b 75
700 1 _ |a Yamada, Sakue
|0 P:(DE-H253)PIP1004488
|b 76
700 1 _ |a Yamazaki, Y.
|0 P:(DE-H253)PIP1001230
|b 77
700 1 _ |a Zarnecki, Aleksander Filip
|0 P:(DE-H253)PIP1093446
|b 78
700 1 _ |a Zenaiev, O.
|0 P:(DE-H253)PIP1007500
|b 79
700 1 _ |a ZEUS Collaboration
|0 P:(DE-HGF)0
|b 80
|e Collaboration author
773 1 8 |a 10.1140/epjc/s10052-024-13547-2
|b Springer Science and Business Media LLC
|d 2024-12-29
|n 12
|p 1334
|3 journal-article
|2 Crossref
|t The European Physical Journal C
|v 84
|y 2024
|x 1434-6052
773 _ _ |a 10.1140/epjc/s10052-024-13547-2
|g Vol. 84, no. 12, p. 1334
|0 PERI:(DE-600)1459069-4
|n 12
|p 1334
|t The European physical journal / C
|v 84
|y 2024
|x 1434-6052
787 0 _ |a Abt, Iris et.al.
|d 2024
|i IsMemberOf
|0 PUBDB-2024-01738
|r DESY-24-070 ; arXiv:2406.01430
|t The azimuthal correlation between the leading jet and the scattered lepton in deep inelastic scattering at HERA
856 4 _ |u https://link.springer.com/article/10.1140/epjc/s10052-024-13547-2?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20241229&utm_content=10.1140%2Fepjc%2Fs10052-024-13547-2
856 4 _ |u https://bib-pubdb1.desy.de/record/620274/files/s10052-024-13547-2.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/620274/files/s10052-024-13547-2.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:620274
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1003352
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1005536
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1002969
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1093306
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1014657
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1002846
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1093313
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1002857
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1002859
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1002812
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1003358
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1000061
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1002759
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1004493
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 16
|6 P:(DE-H253)PIP1014452
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-H253)PIP1002781
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 20
|6 P:(DE-H253)PIP1002612
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 21
|6 P:(DE-H253)PIP1003141
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 21
|6 P:(DE-H253)PIP1003141
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 22
|6 P:(DE-H253)PIP1003350
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 24
|6 P:(DE-H253)PIP1002534
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 25
|6 P:(DE-H253)PIP1002698
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 26
|6 P:(DE-H253)PIP1003381
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 27
|6 P:(DE-H253)PIP1002491
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 28
|6 P:(DE-H253)PIP1002477
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 29
|6 P:(DE-H253)PIP1021341
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 29
|6 P:(DE-H253)PIP1021341
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 31
|6 P:(DE-H253)PIP1002262
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 33
|6 P:(DE-H253)PIP1004006
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 34
|6 P:(DE-H253)PIP1093346
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 35
|6 P:(DE-H253)PIP1002194
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 36
|6 P:(DE-H253)PIP1014843
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 37
|6 P:(DE-H253)PIP1002183
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 39
|6 P:(DE-H253)PIP1002090
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 40
|6 P:(DE-H253)PIP1002057
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 41
|6 P:(DE-H253)PIP1002012
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 42
|6 P:(DE-H253)PIP1002014
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 43
|6 P:(DE-H253)PIP1090895
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 45
|6 P:(DE-H253)PIP1006349
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 46
|6 P:(DE-H253)PIP1000004
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 48
|6 P:(DE-H253)PIP1001976
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 50
|6 P:(DE-H253)PIP1007270
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 51
|6 P:(DE-H253)PIP1001838
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 53
|6 P:(DE-H253)PIP1001751
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 54
|6 P:(DE-H253)PIP1015602
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 56
|6 P:(DE-H253)PIP1005368
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 57
|6 P:(DE-H253)PIP1001589
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 58
|6 P:(DE-H253)PIP1000196
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 60
|6 P:(DE-H253)PIP1081297
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 61
|6 P:(DE-H253)PIP1001530
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 63
|6 P:(DE-H253)PIP1001479
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 65
|6 P:(DE-H253)PIP1004704
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 66
|6 P:(DE-H253)PIP1001449
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 68
|6 P:(DE-H253)PIP1033026
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 69
|6 P:(DE-H253)PIP1001394
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 70
|6 P:(DE-H253)PIP1013504
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 71
|6 P:(DE-H253)PIP1001338
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 72
|6 P:(DE-H253)PIP1006350
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 74
|6 P:(DE-H253)PIP1004217
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 75
|6 P:(DE-H253)PIP1002533
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 76
|6 P:(DE-H253)PIP1004488
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 77
|6 P:(DE-H253)PIP1001230
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 78
|6 P:(DE-H253)PIP1093446
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 79
|6 P:(DE-H253)PIP1007500
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 80
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:05:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:05:14Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2023-10-21
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:05:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J C : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-H253)ZEUS-20120806
|k ZEUS
|l ZEUS Kollaboration
|x 0
920 1 _ |0 I:(DE-H253)CMS-20120731
|k CMS
|l LHC/CMS Experiment
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)ZEUS-20120806
980 _ _ |a I:(DE-H253)CMS-20120731
980 _ _ |a APC
999 C 5 |a 10.1140/epjc/s10052-022-10083-9
|9 -- missing cx lookup --
|2 Crossref
|u H1 and ZEUS Collab., I. Abt et al., Eur. Phys. J. C 82, 243 (2022). https://doi.org/10.1140/epjc/s10052-022-10083-9
999 C 5 |a 10.1140/epjc/s10052-023-12180-9
|9 -- missing cx lookup --
|2 Crossref
|u ZEUS Collab., I. Abt et al., Eur. Phys. J. C 83, 1082 (2023). https://doi.org/10.1140/epjc/s10052-023-12180-9
999 C 5 |a 10.1103/PhysRevLett.122.192003
|1 X Liu
|9 -- missing cx lookup --
|2 Crossref
|u X. Liu et al., Phys. Rev. Lett. 122, 192003 (2019). https://doi.org/10.1103/PhysRevLett.122.192003
|t Phys. Rev. Lett.
|v 122
|y 2019
999 C 5 |a 10.1103/PhysRevD.102.094022
|1 X Liu
|9 -- missing cx lookup --
|2 Crossref
|u X. Liu et al., Phys. Rev. D 102, 094022 (2020). https://doi.org/10.1103/PhysRevD.102.094022
|t Phys. Rev. D
|v 102
|y 2020
999 C 5 |a 10.1016/S0370-2693(01)00615-3
|9 -- missing cx lookup --
|2 Crossref
|u ZEUS Collab., S. Chekanov et al., Phys. Lett. B 511, 19 (2001). https://doi.org/10.1016/S0370-2693(01)00615-3
999 C 5 |a 10.1016/j.nuclphysb.2005.09.021
|9 -- missing cx lookup --
|2 Crossref
|u ZEUS Collab., S. Chekanov et al., Nucl. Phys. B 729, 492 (2005). https://doi.org/10.1016/j.nuclphysb.2005.09.021
999 C 5 |a 10.1103/PhysRevD.76.072011
|9 -- missing cx lookup --
|2 Crossref
|u ZEUS Collab., S. Chekanov et al., Phys. Rev. D 76, 072011 (2007). https://doi.org/10.1103/PhysRevD.76.072011
999 C 5 |a 10.1103/PhysRevLett.94.221801
|9 -- missing cx lookup --
|2 Crossref
|u DØ Collab., V. Abazov et al., Phys. Rev. Lett. 94, 221801 (2005). https://doi.org/10.1103/PhysRevLett.94.221801
999 C 5 |a 10.1103/PhysRevLett.106.122003
|9 -- missing cx lookup --
|2 Crossref
|u CMS Collab., V. Khachatryan et al., Phys. Rev. Lett. 106, 122003 (2011). https://doi.org/10.1103/PhysRevLett.106.122003
999 C 5 |a 10.1140/epjc/s10052-016-4346-8
|9 -- missing cx lookup --
|2 Crossref
|u CMS Collab., V. Khachatryan et al., Eur. Phys. J. C 76, 536 (2016). https://doi.org/10.1140/epjc/s10052-016-4346-8
999 C 5 |a 10.1140/epjc/s10052-018-6033-4
|9 -- missing cx lookup --
|2 Crossref
|u CMS Collab., A. Sirunyan et al., Eur. Phys. J. C 78, 566 (2018). https://doi.org/10.1140/epjc/s10052-018-6033-4
999 C 5 |a 10.1103/PhysRevLett.106.172002
|9 -- missing cx lookup --
|2 Crossref
|u ATLAS Collab., G. Aad et al., Phys. Rev. Lett. 106, 172002 (2011). https://doi.org/10.1103/PhysRevLett.106.172002
999 C 5 |a 10.1103/PhysRevD.98.092004
|9 -- missing cx lookup --
|2 Crossref
|u ATLAS Collab., M. Aaboud et al., Phys. Rev. D 98, 092004 (2018). https://doi.org/10.1103/PhysRevD.98.092004
999 C 5 |a 10.1103/PhysRevLett.128.132002
|9 -- missing cx lookup --
|2 Crossref
|u H1 Collab., V. Andreev et al., Phys. Rev. Lett. 128, 132002 (2022). https://doi.org/10.1103/PhysRevLett.128.132002
999 C 5 |2 Crossref
|u STAR Collab., arXiv:2305.10359
999 C 5 |a 10.1007/JHEP09(2015)149
|9 -- missing cx lookup --
|2 Crossref
|u H1 and ZEUS Collab., H. Abramowicz et al., JHEP 09, 149 (2015). https://doi.org/10.1007/JHEP09(2015)149
999 C 5 |a 10.1103/PhysRevLett.125.082001
|1 I Borsa
|9 -- missing cx lookup --
|2 Crossref
|u I. Borsa et al., Phys. Rev. Lett. 125, 082001 (2020). https://doi.org/10.1103/PhysRevLett.125.082001
|t Phys. Rev. Lett.
|v 125
|y 2020
999 C 5 |a 10.1103/PhysRevD.103.014008
|1 I Borsa
|9 -- missing cx lookup --
|2 Crossref
|u I. Borsa et al., Phys. Rev. D 103, 014008 (2021). https://doi.org/10.1103/PhysRevD.103.014008
|t Phys. Rev. D
|v 103
|y 2021
999 C 5 |a 10.1016/0010-4655(92)90068-A
|9 -- missing cx lookup --
|1 L Lönnblad
|p 15 -
|2 Crossref
|u L. Lönnblad, Comput. Phys. Commun. 71, 15 (1992). https://doi.org/10.1016/0010-4655(92)90068-A
|t Comput. Phys. Commun.
|v 71
|y 1992
999 C 5 |2 Crossref
|u ZEUS Collab., U. Holm (ed.), The ZEUS Detector. Status Report (unpublished), DESY (1993). http://www-zeus.desy.de/bluebook/bluebook.html
999 C 5 |a 10.1016/0168-9002(89)91096-6
|9 -- missing cx lookup --
|1 N Harnew
|p 290 -
|2 Crossref
|u N. Harnew et al., Nucl. Instrum. Methods A 279, 290 (1989). https://doi.org/10.1016/0168-9002(89)91096-6
|t Nucl. Instrum. Methods A
|v 279
|y 1989
999 C 5 |a 10.1016/0920-5632(93)90023-Y
|9 -- missing cx lookup --
|1 B Foster
|p 181 -
|2 Crossref
|u B. Foster et al., Nucl. Phys. Proc. Suppl. B 32, 181 (1993). https://doi.org/10.1016/0920-5632(93)90023-Y
|t Nucl. Phys. Proc. Suppl. B
|v 32
|y 1993
999 C 5 |a 10.1016/0168-9002(94)91313-7
|9 -- missing cx lookup --
|1 B Foster
|p 254 -
|2 Crossref
|u B. Foster et al., Nucl. Instrum. Methods A 338, 254 (1994). https://doi.org/10.1016/0168-9002(94)91313-7
|t Nucl. Instrum. Methods A
|v 338
|y 1994
999 C 5 |a 10.1016/j.nima.2007.08.167
|9 -- missing cx lookup --
|1 A Polini
|p 656 -
|2 Crossref
|u A. Polini et al., Nucl. Instrum. Methods A 581, 656 (2007). https://doi.org/10.1016/j.nima.2007.08.167
|t Nucl. Instrum. Methods A
|v 581
|y 2007
999 C 5 |a 10.1016/j.nima.2004.07.212
|9 -- missing cx lookup --
|1 S Fourletov
|p 191 -
|2 Crossref
|u S. Fourletov, Nucl. Instrum. Methods A 535, 191 (2004). https://doi.org/10.1016/j.nima.2004.07.212
|t Nucl. Instrum. Methods A
|v 535
|y 2004
999 C 5 |a 10.1016/0168-9002(91)90094-7
|9 -- missing cx lookup --
|1 M Derrick
|p 77 -
|2 Crossref
|u M. Derrick et al., Nucl. Instrum. Methods A 309, 77 (1991). https://doi.org/10.1016/0168-9002(91)90094-7
|t Nucl. Instrum. Methods A
|v 309
|y 1991
999 C 5 |a 10.1016/0168-9002(91)90095-8
|9 -- missing cx lookup --
|1 A Andresen
|p 101 -
|2 Crossref
|u A. Andresen et al., Nucl. Instrum. Methods A 309, 101 (1991). https://doi.org/10.1016/0168-9002(91)90095-8
|t Nucl. Instrum. Methods A
|v 309
|y 1991
999 C 5 |a 10.1016/0168-9002(92)90413-X
|9 -- missing cx lookup --
|1 A Caldwell
|p 356 -
|2 Crossref
|u A. Caldwell et al., Nucl. Instrum. Methods A 321, 356 (1992). https://doi.org/10.1016/0168-9002(92)90413-X
|t Nucl. Instrum. Methods A
|v 321
|y 1992
999 C 5 |a 10.1016/0168-9002(93)91078-2
|9 -- missing cx lookup --
|1 A Bernstein
|p 23 -
|2 Crossref
|u A. Bernstein et al., Nucl. Instrum. Methods A 336, 23 (1993). https://doi.org/10.1016/0168-9002(93)91078-2
|t Nucl. Instrum. Methods A
|v 336
|y 1993
999 C 5 |2 Crossref
|u J. Andruszków et al., Preprint DESY-92-066, DESY (1992)
999 C 5 |a 10.1007/BF01580320
|9 -- missing cx lookup --
|2 Crossref
|u ZEUS ZEUS Collab., M. Derrick et al., Z. Phys. C 63, 391 (1994). https://doi.org/10.1007/BF01580320
999 C 5 |1 J Andruszków
|y 2001
|2 Crossref
|u J. Andruszków et al., Acta Phys. Pol. B 32, 2025 (2001)
999 C 5 |a 10.1016/j.nima.2006.06.049
|9 -- missing cx lookup --
|1 M Helbich
|p 572 -
|2 Crossref
|u M. Helbich et al., Nucl. Instrum. Methods A 565, 572 (2006). https://doi.org/10.1016/j.nima.2006.06.049
|t Nucl. Instrum. Methods A
|v 565
|y 2006
999 C 5 |2 Crossref
|u H. Spiesberger, http://wwwthep.physik.uni-mainz.de/ hspiesb/djangoh/djangoh.html
999 C 5 |a 10.1007/s100529900196
|9 -- missing cx lookup --
|2 Crossref
|u CTEQ Collab., H. Lai et al., Eur. Phys. J. C 12, 375 (2000). https://doi.org/10.1007/s100529900196
999 C 5 |2 Crossref
|u N. Brook et al., Future Physics at HERA. (1996)
999 C 5 |a 10.1016/0010-4655(94)90132-5
|9 -- missing cx lookup --
|1 T Sjöstrand
|p 74 -
|2 Crossref
|u T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994). https://doi.org/10.1016/0010-4655(94)90132-5
|t Comput. Phys. Commun.
|v 82
|y 1994
999 C 5 |a 10.1016/S0370-1573(97)00045-8
|9 -- missing cx lookup --
|2 Crossref
|u ALEPH Collab., R. Barate et al., Phys. Rep. 294, 1 (1998). https://doi.org/10.1016/S0370-1573(97)00045-8
999 C 5 |a 10.1016/0010-4655(92)90136-M
|9 -- missing cx lookup --
|1 A Kwiatkowski
|p 155 -
|2 Crossref
|u A. Kwiatkowski et al., Comput. Phys. Commun. 69, 155 (1992). https://doi.org/10.1016/0010-4655(92)90136-M
|t Comput. Phys. Commun.
|v 69
|y 1992
999 C 5 |a 10.1016/S0010-4655(96)00157-9
|9 -- missing cx lookup --
|2 Crossref
|u G. Ingelman et al., Comput. Phys. Commun. 101, 108 (1997). https://doi.org/10.1016/S0010-4655(96)00157-9
999 C 5 |a 10.1016/0010-4655(94)00150-Z
|9 -- missing cx lookup --
|1 H Jung
|p 147 -
|2 Crossref
|u H. Jung, Comput. Phys. Commun. 86, 147 (1995). https://doi.org/10.1016/0010-4655(94)00150-Z
|t Comput. Phys. Commun.
|v 86
|y 1995
999 C 5 |a 10.1088/1126-6708/2006/05/026
|9 -- missing cx lookup --
|1 T Sjöstrand
|p 026 -
|2 Crossref
|u T. Sjöstrand et al., JHEP 05, 026 (2006). https://doi.org/10.1088/1126-6708/2006/05/026
|t JHEP
|v 05
|y 2006
999 C 5 |2 Crossref
|u R. Brun et al., Technical Report CERN-DD/EE/84-1 (1987)
999 C 5 |2 Crossref
|u G. Hartner, Y. Iga, ZEUS Note 90-084
999 C 5 |2 Crossref
|u W.H. Smith et al., in The proceedings of Computing in High-Energy Physics (CHEP) (September 21–25, Annecy, France (1992)). DESY-92-150B
999 C 5 |a 10.1016/j.nima.2007.06.106
|9 -- missing cx lookup --
|1 P Allfrey
|p 1257 -
|2 Crossref
|u P. Allfrey et al., Nucl. Instrum. Methods A 580, 1257 (2007). https://doi.org/10.1016/j.nima.2007.06.106
|t Nucl. Instrum. Methods A
|v 580
|y 2007
999 C 5 |a 10.1016/j.physletb.2010.06.015
|9 -- missing cx lookup --
|2 Crossref
|u ZEUS Collab., H. Abramowicz et al., Phys. Lett. B 691, 127 (2010). https://doi.org/10.1016/j.physletb.2010.06.015
999 C 5 |a 10.1016/j.physletb.2012.07.031
|9 -- missing cx lookup --
|2 Crossref
|u ZEUS Collab., H. Abramowicz et al., Phys. Lett. B715, 88 (2012). https://doi.org/10.1016/j.physletb.2012.07.031
999 C 5 |a 10.1007/JHEP01(2018)032
|9 -- missing cx lookup --
|2 Crossref
|u ZEUS Collab., H. Abramowicz et al., JHEP 01, 032 (2018). https://doi.org/10.1007/JHEP01(2018)032
999 C 5 |2 Crossref
|u U. Amaldi et al., ECFA Study of an ep Facility for Europe, pp. 377–414. (1979)
999 C 5 |2 Crossref
|u S. Bentvelsen et al., Workshop on Physics at HERA. (1992)
999 C 5 |a 10.1016/0370-2693(93)90065-P
|9 -- missing cx lookup --
|2 Crossref
|u ZEUS Collab., M. Derrick et al., Phys. Lett. B 303, 183 (1993). https://doi.org/10.1016/0370-2693(93)90065-P
999 C 5 |a 10.1016/0168-9002(95)00612-5
|9 -- missing cx lookup --
|1 H Abramowicz
|p 508 -
|2 Crossref
|u H. Abramowicz et al., Nucl. Instrum. Methods A 365, 508 (1995). https://doi.org/10.1016/0168-9002(95)00612-5
|t Nucl. Instrum. Methods A
|v 365
|y 1995
999 C 5 |a 10.1016/0550-3213(93)90166-M
|9 -- missing cx lookup --
|1 S Catani
|p 187 -
|2 Crossref
|u S. Catani et al., Nucl. Phys. B 406, 187 (1993). https://doi.org/10.1016/0550-3213(93)90166-M
|t Nucl. Phys. B
|v 406
|y 1993
999 C 5 |a 10.1103/PhysRevD.48.3160
|9 -- missing cx lookup --
|1 S Ellis
|p 3160 -
|2 Crossref
|u S. Ellis et al., Phys. Rev. D 48, 3160 (1993). https://doi.org/10.1103/PhysRevD.48.3160
|t Phys. Rev. D
|v 48
|y 1993
999 C 5 |a 10.1140/epjc/s10052-012-1896-2
|9 -- missing cx lookup --
|1 M Cacciari
|p 1896 -
|2 Crossref
|u M. Cacciari et al., Eur. Phys. J. C 72, 1896 (2012). https://doi.org/10.1140/epjc/s10052-012-1896-2
|t Eur. Phys. J. C
|v 72
|y 2012
999 C 5 |a 10.1016/j.physletb.2006.08.037
|9 -- missing cx lookup --
|1 M Cacciari
|p 57 -
|2 Crossref
|u M. Cacciari et al., Phys. Lett. B 641, 57 (2006). https://doi.org/10.1016/j.physletb.2006.08.037
|t Phys. Lett. B
|v 641
|y 2006
999 C 5 |2 Crossref
|u ZEUS Collab., M. Wing, Frascati Phys. Ser. 21, 617 (2001)
999 C 5 |a 10.1088/1748-0221/7/10/T10003
|9 -- missing cx lookup --
|1 S Schmitt
|p T10003 -
|2 Crossref
|u S. Schmitt, JINST 7, T10003 (2012). https://doi.org/10.1088/1748-0221/7/10/T10003
|t JINST
|v 7
|y 2012
999 C 5 |2 Crossref
|u I. Borsa et al., Personal communications (2021)
999 C 5 |a 10.1103/PhysRevLett.115.082002
|1 M Cacciari
|9 -- missing cx lookup --
|2 Crossref
|u M. Cacciari et al., Phys. Rev. Lett. 115, 082002 (2015). https://doi.org/10.1103/PhysRevLett.115.082002
|t Phys. Rev. Lett.
|v 115
|y 2015
999 C 5 |a 10.1103/PhysRevLett.120.139901
|1 M Cacciari
|9 -- missing cx lookup --
|2 Crossref
|u M. Cacciari et al., Phys. Rev. Lett. 120, 139901 (2018). https://doi.org/10.1103/PhysRevLett.120.139901
|t Phys. Rev. Lett.
|v 120
|y 2018
999 C 5 |a 10.1088/0954-3899/43/2/023001
|1 J Butterworth
|9 -- missing cx lookup --
|2 Crossref
|u J. Butterworth et al., J. Phys. G 43, 023001 (2016). https://doi.org/10.1088/0954-3899/43/2/023001
|t J. Phys. G
|v 43
|y 2016
999 C 5 |a 10.1140/epja/i2016-16268-9
|9 -- missing cx lookup --
|1 A Accardi
|p 268 -
|2 Crossref
|u A. Accardi et al., Eur. Phys. J. A 52, 268 (2016). https://doi.org/10.1140/epja/i2016-16268-9
|t Eur. Phys. J. A
|v 52
|y 2016
999 C 5 |a 10.1016/j.nuclphysa.2022.122447
|1 R Abdul Khalek
|9 -- missing cx lookup --
|2 Crossref
|u R. Abdul Khalek et al., Nucl. Phys. A 1026, 122447 (2022). https://doi.org/10.1016/j.nuclphysa.2022.122447
|t Nucl. Phys. A
|v 1026
|y 2022


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21