000620212 001__ 620212
000620212 005__ 20250715171240.0
000620212 0247_ $$2doi$$a10.1021/acs.nanolett.4c04581
000620212 0247_ $$2ISSN$$a1530-6984
000620212 0247_ $$2ISSN$$a1530-6992
000620212 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00085
000620212 0247_ $$2altmetric$$aaltmetric:172282940
000620212 0247_ $$2pmid$$apmid:39701817
000620212 0247_ $$2WOS$$aWOS:001387528300001
000620212 0247_ $$2openalex$$aopenalex:W4405582522
000620212 037__ $$aPUBDB-2025-00085
000620212 041__ $$aEnglish
000620212 082__ $$a660
000620212 1001_ $$00000-0003-3869-7707$$aRütten, Lisa M.$$b0
000620212 245__ $$aCharge-Density-Wave Control by Adatom Manipulation and Its Effect on Magnetic Nanostructures
000620212 260__ $$aWashington, DC$$bACS Publ.$$c2025
000620212 3367_ $$2DRIVER$$aarticle
000620212 3367_ $$2DataCite$$aOutput Types/Journal article
000620212 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737026141_1240280
000620212 3367_ $$2BibTeX$$aARTICLE
000620212 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000620212 3367_ $$00$$2EndNote$$aJournal Article
000620212 500__ $$aThe authors acknowledge financial support by the DeutscheForschungsgemeinschaft (DFG, German Research Founda-tion) through Projects 277101999 (CRC 183, Project C03)and 328545488 (CRC 227, Project B05). Sample growth wassupported by DFG through Project 434434223 (CRC 1461).L.M.R. acknowledges membership in the International MaxPlanck Research School “Elementary Processes in PhysicalChemistry”.
000620212 520__ $$aCharge-density waves (CDWs) are correlated states of matter, in which the electronic density is modulated periodically due to electronic and phononic interactions. Often, CDW phases coexist with other correlated states, such as superconductivity, spin-density waves, or Mott insulators. Controlling CDW phases may, therefore, enable the manipulation of the energy landscape of these interacting states. The transition metal dichalcogenide 2H-NbSe$_2$ hosts both CDW order and superconductivity, with the incommensurate CDW phase resulting in different CDW-to-lattice alignments at the atomic scale. Using scanning tunneling microscopy, we position adatoms on the surface to induce reversible CDW domain switching. We show that the domain structure critically affects other local interactions, particularly the hybridization of Yu–Shiba–Rusinov states, which emerge from exchange interactions of magnetic Fe atoms with the superconductor. Our results suggest that CDW manipulation could also be used to introduce domain walls into coupled spin chains on superconductors, potentially impacting topological superconductivity.
000620212 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000620212 536__ $$0G:(GEPRIS)316546650$$aDFG project G:(GEPRIS)316546650 - Hybride topologische Plattformen (C03) (316546650)$$c316546650$$x1
000620212 536__ $$0G:(GEPRIS)397935742$$aDFG project G:(GEPRIS)397935742 - Spindynamik in atomar präzisen Nanostrukturen (B05) (397935742)$$c397935742$$x2
000620212 536__ $$0G:(GEPRIS)434434223$$aDFG project G:(GEPRIS)434434223 - SFB 1461: Neuroelektronik: Biologisch inspirierte Informationsverarbeitung (434434223)$$c434434223$$x3
000620212 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000620212 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000620212 7001_ $$aLiebhaber, Eva$$b1
000620212 7001_ $$0P:(DE-H253)PIP1007948$$aRossnagel, Kai$$b2
000620212 7001_ $$0P:(DE-HGF)0$$aFranke, Katharina J.$$b3$$eCorresponding author
000620212 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.4c04581$$gVol. 25, no. 1, p. 115 - 120$$n1$$p115 - 120$$tNano letters$$v25$$x1530-6984$$y2025
000620212 8564_ $$uhttps://bib-pubdb1.desy.de/record/620212/files/restricted%20document%2C%20copyright%20restrictions.pdf$$yOpenAccess
000620212 8564_ $$uhttps://bib-pubdb1.desy.de/record/620212/files/restricted%20document%2C%20copyright%20restrictions.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000620212 909CO $$ooai:bib-pubdb1.desy.de:620212$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000620212 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007948$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000620212 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000620212 9141_ $$y2025
000620212 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000620212 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000620212 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000620212 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000620212 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2022$$d2024-12-18
000620212 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000620212 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000620212 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000620212 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000620212 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000620212 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000620212 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000620212 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2022$$d2024-12-18
000620212 9201_ $$0I:(DE-H253)FS-SXQM-20190201$$kFS-SXQM$$lFS-SXQM$$x0
000620212 980__ $$ajournal
000620212 980__ $$aVDB
000620212 980__ $$aUNRESTRICTED
000620212 980__ $$aI:(DE-H253)FS-SXQM-20190201
000620212 9801_ $$aFullTexts